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Abstract

This paper investigates whether a Monte-Carlo
Tree Search (MCTS) agent playing the game
of Tron can be improved by applying evalua-
tion functions to the Play-Out phase of MCTS.
Tron is a two-player board game and originated
in the movie TRON in 1982. Two heuristics,
namely the Voronoi heuristic and the “Tree of
Chambers” heuristic are introduced and imple-
mented in a MCTS agent with several enhance-
ments including MCTS-Solver.

Experiments revealed that both heuristics per-
form well in certain scenarios, but fail in others.
One drawback is the computational overhead
caused by the heuristics. When tested with a
fixed number of Play-Outs the agents using the
new heuristics perform better and are able to
beat the existing agents.

1 Introduction
Artificial Intelligence (AI) in games is a growing re-
search field in past and in present times. The idea is to
develop computer programs capable of playing games.
More specifically, these computer programs should be
able to play games as adaptive, efficient and also as vic-
torious as possible. Researchers have developed a va-
riety of game AI models, one of which is tree search.
αβ-minimax search [7, 15] explores the game tree up to
a certain level using iterative deepening search. Leaf
nodes are evaluated according to an evaluation function.
Such an evaluation function estimates the utility of a
certain game state. αβ is heavily dependent on the ac-
curacy of the evaluation function, since a bad evaluation
causes the algorithm to choose a weak move. Monte-
Carlo Tree Search (MCTS) [3, 4, 8] does not necessar-
ily require an evaluation function. It selects and ex-
pands nodes according to statistics and then randomly
or semi-randomly simulates one complete game. The
results of these simulated games are then propagated
backwards through the whole tree up to the root. These
simulations completely replace an evaluation function in
MCTS. Each node stores a value depending on the sim-
ulation results, according to which the program chooses

the next move. It is, however, possible to assess nodes
with an evaluation function in MCTS as well [6].

MCTS has shown to outperform other search tech-
niques in quite some games [2]. Go is the most prominent
example of a game where MCTS is the only search tech-
nique which is able to compete with human grandmas-
ters [9, 12], although still with handicap. Recently, re-
search has been conducted on MCTS applied to the game
of Tron [5]. It is a two-player simultaneous-move board
game. Both players simultaneously move either verti-
cally or horizontally on a chess-like board leaving walls
on squares they visited. The player who lasts longest,
i.e. who crashes into a wall after the opponent, wins the
game. If both players move to the same square or both
crash into a wall at the same time the game ends in a
draw. In 2011 Den Teuling [5] tested several Play-Out
strategies and other search enhancements in MCTS ap-
plied to Tron and concluded that their success is highly
dependent on the board configuration. Especially an αβ-
minimax program with a sophisticated evaluation func-
tion [14] outperformed all tested MCTS players. This
paper aims at further enhancing the existing MCTS Tron
player [5]. More specifically, a static evaluation function
is implemented. The evaluation function is able to pre-
maturely terminate a simulation [10, 17]. It is expected
that nodes get a better estimate of the current game
state value. An efficient evaluation function could allow
the program to evaluate more nodes, because games are
not simulated until the end anymore.

The following two research questions are investi-
gated:

1. How can we construct evaluation functions that are
able to accurately assess the game-theoretic score of
Tron positions?

2. Do more accurate estimates of endgame positions
increase the performance of an MCTS Tron player?

This paper is organized as follows. First, in Section
2 the rules and the origin of the game of Tron are dis-
cussed. Section 3 explains MCTS and its application to
Tron. Next, Section 4 gives a detailed description of the
new evaluation functions. Additionally, their advantages
and disadvantages are discussed. This is followed by an
explanation of how the new evaluation functions are ap-
plied to MCTS in Section 5. Experiments are given in
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Figure 1: The game of Tron after 13 turns with a square
in the middle as an initial obstacle (based on [5]).

Section 6. Finally, conclusions are drawn and future re-
search suggestions are made in Section 7.

2 Tron
The game of Tron originated in the movie TRON by
Walt Disney Productions from 1982. In the movie the
game occurs as a multi-player game where the players
ride on motorbike-like vehicles called “Light Cycles”. It
is played on an initially empty square field. The vehicles
can change their direction of travel only in a 90 degree
angle. Additionally they construct walls behind them-
selves. The path they have traveled becomes a wall and
hence cannot be used again. The player’s goal is to steer
a vehicle making all opponents crash into a wall before
her/himself. There are, though, differences between the
game in the movie and the game of Tron, as referred to
in this paper. The game of Tron, as referred to in this
paper, is a two-player game where both players move at
constant speed. Unlike the game in the movie, Tron can
be played not only on square boards but on any rectan-
gular board of m × n squares. Furthermore boards do
not have to be empty at the beginning but may contain
any kind of obstacles (see Figure 1). At each turn both
players simultaneously move to an adjacent square. Note
that at each turn a player has to decide upon a maximum
of 3 squares to move onto (see Figure 1). The game ends
as its original in the movie TRON. One player wins if
she/he survives the other. When both players crash si-
multaneously, the game ends in a draw. The difficulty of
Tron is to estimate the space which is left on the board
for oneself.

3 Monte-Carlo Tree Search
Monte-Carlo Tree Search (MCTS) [3, 4, 8] is a search
technique using a tree as data structure. As in other tree
search techniques applied to computer games each level

of the tree consists of nodes representing game states
after a move of a certain player. In a two-player game
having players i and j all even numbered layers corre-
spond to game states where player i has to make a move
and vice versa. The main difference between MCTS and
most search techniques applied to games is that there is
no requirement for an evaluation function. For instance
αβ search only works well with an adequate evaluation
function. Leaf nodes are assigned a value by that func-
tion. The best move is selected according to values prop-
agated back in the tree. In contrast MCTS uses random-
ized simulated games instead of an evaluation function.
It can be split up in four distinct phases [3] (see Figure
2):

Figure 2: The four phases of Monte-Carlo Tree Search
(based on [3]).

Selection. First, starting at the root, MCTS recur-
sively selects a child from the current node. This
selection can be made either according to a sophis-
ticated strategy or random. Ideally the selection
strategy should keep a balance between exploiting
known and good move sequences and exploring new
moves [3]. A selection strategy keeping this balance
is Upper Confidence Bounds applied to Trees (UCT)
[8]. UCT converges to the game-theoretic value of
a position after a sufficient number of simulations.
Each node saves both the number of times it was
visited ni and the current value vi. Commonly vi
is the winning ratio of all simulated games which
passed this node. Another possibility is vi to be
the total number of wins. In Tron a node’s value is
its winning ratio. UCT uses these values to select
a child keeping a balance between exploitation and
exploration of the tree. In fact, the following for-
mula shows how UCT selects a child k from a node
p:

k = argmaxi∈I

(
vi + C ×

√
ln np
ni

)
(1)

In Tron UCT showed to perform best with the con-
stant C set to 10 [5]. The Selection phase lasts until

(v. June 19, 2012, p.2)



Lukas Kang

there is no more child available to select, i.e. when
a leaf node is selected.

Play-Out. Beginning with the game state represented
by the selected node a game is simulated until an
endgame position emerges. Such a Play-Out can be
completely random. Mostly, however, sophisticated
Play-Out strategies are applied. They specify which
moves are preferred at which position. In Tron one
Play-Out strategy is the wall hugging strategy [5].
It prefers moves that leave the most space after-
wards to others. There are several maps available
for Tron. It turned out that the best performing
Play-Out strategies differ from one map to another
[5]. None of the strategies beats all others in all
tests. It was shown, however, that random Play-
Outs are the most robust strategy throughout the
testing. It won more than 50% of the test games
against almost all other strategies. Therefore ran-
dom Play-Outs are used in the game. Finally, the
result of the game is stored in the node where the
Play-Out started.

Expansion. After the Play-Out the Expansion phase
starts. One or more children of the current leaf node
are generated and added to the tree. Since in Tron
there are at most three possible moves from each
position, all children are added [5].

Backpropagation. Every time a simulated game is
completed the ni and vi of all nodes which lie on
the path from the leaf node back to the root are
updated, i.e. the values are propagated backwards
through the tree.

When the Backpropagation phase is completed selection
starts again. This process is repeated until a certain
number of iterations or a time threshold is reached. In
that way every iteration can change the end result of
MCTS. In the best case more iterations cause MCTS to
ultimately select better moves and play better. At last,
MCTS selects the move to be performed in the game.
In our case, it selects the most ‘secure‘ child of the root
[3, 5]. The formula vi + A√

ni
specifies the secureness of

a node i. Trial-and-error showed A=1 to be appropriate
for experiments [5].

4 Determining the
game-theoretic value

Evaluating positions in Tron involves estimating the
space left to be filled on the board. An agent that is able
to accurately assess the space left to fill would play opti-
mally. It would always make a decision that maximizes
the surplus of its own space left to be filled compared
to the opponent’s. The complexity of assessing the free
space left to fill for one player is dependent on the current

game position. In Tron there are positions possible, for
which it is almost trivial to assess the space for both play-
ers. Even the future winner can be determined quickly in
that case. Other positions, nevertheless, are much more
difficult to evaluate. Subsection 4.1 deals with the space
estimation of the existing Tron agent of Den Teuling [5].
Subsection 4.2 introduces the Voronoi heuristic, which
is the basis concept of one of the two newly developed
evaluation functions. The “Tree of Chambers” heuristic
is elaborated in Subsection 4.3. It is more sophisticated
than the Voronoi heuristic and the basis of the second
new evaluation function.

4.1 Checker Board Heuristic
Den Teuling [5] uses a space estimation technique in or-
der to enhance his UCT agent. A lower and an upper
bound of the space left are calculated. For the lower
bound, a Play-Out is performed with a Player using
the so-called wall-following heuristic. This player al-
ways moves to an adjacent square which is adjacent to as
many walls as possible and which leaves the most space
for the following moves. The lower bound is the number
of moves performed by that player. For calculating the
upper bound the board is treated as a checker board con-
taining gray and white squares. The idea is that every
time the player moves, he steps on a square with a differ-
ent color. The available space M is calculated as follows.
M = Z−|cg−cw|, where Z is the total free space on the
board and cg and cw are the number of gray and white
squares, respectively [5]. The difference of the colored
squares is subtracted from the free space of the board.
Squares that cannot be reached are not counted. The
“Checker Board Heuristic” assesses the space left to fill
for a player only if he is separated from his opponent.

4.2 Voronoi Heuristic
A so-called Voronoi diagram (VD) [1, 16] indicates which
regions of the board can be reached earlier by which
player (see Figure 4). Squares that are at an equal dis-
tance for both players have a special role. They belong
to the so-called ‘battlefront’ [14]. It plays an important
role in the ‘Tree of Chambers’ heuristic (Subsection 4.3).
A heuristic which works well as an evaluation of this kind
of positions is the difference in size of the players region
and the opponent’s region [5, 14]. It is referred to as
the Voronoi heuristic. Generally there are three distin-
guishable scenarios, two of which are well assessed by
the Voronoi heuristic:

Separate components. Figure 3 shows a position of
Tron after 20 moves. The players are in separate
components of the board, i.e. the players can-
not reach each other. In this case the task of as-
sessing the available space is easy. Counting and
comparing the sizes of both components will reveal
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Figure 3: The game of Tron after 20 moves.

Figure 4: Voronoi diagram of the game of Tron after 15
moves. Squares containing a 1 belong to the region of
Player 1 and vice versa. Squares containing a 0 belong
to the battlefront.

who will ultimately win the game. In Figure 3 all
empty squares on the right side of the board belong
to the region of Player 2 (Red). Player 1 (Blue),
on the other hand, has the smaller region on the
left. Counting the squares on both sides shows that
Player 2 has a surplus of 24 squares. If Player 2 ef-
ficiently fills his region, he is going to win the game.
The Voronoi heuristic easily comes to the same con-
clusion, because all squares in a player’s component
of course also are of lower distance to him than to
the opponent.

Connected component. It becomes more complex
when the players are located in the same compo-
nent of the board. The position shown in Figure 4
occurred after 15 moves. To assess the surplus of
space for a player in this kind of position a Voronoi
diagram (VD) [1, 16] can be computed. In the
described scenario the Voronoi heuristic accurately
assesses the space and is able to anticipate which

Figure 5: Tron game after 14 moves. Articulation points
are indicated by an X. Squares which belong to the bat-
tlefront contain a 0.

player has better chances to win the game. The
Voronoi diagram in Figure 4 evaluates a Tron posi-
tion after 15 moves. Player 1’s region (left) clearly
is larger than Player 2’s. Player 1 (Blue) can reach
any square in his region before Player 2 (Red) does
and vice versa. Player 1 simply has to move towards
the battlefront (indicated by 0’s) and then cut the
connected component into two parts. The resulting
position has two separate components with Player
1’s region larger than Player 2’s.

The third scenario includes positions containing more
than one chamber. Subsection 4.3 explains what cham-
bers are, how the “Tree of Chambers” heuristic is able
to cope with them and why the Voronoi heuristic is not.
The Voronoi heuristic explained in this section is im-
plemented in an agent that is further referred to as the
Voronoi Player.

4.3 Tree of Chambers

Positions with articulation points can cause the Voronoi
heuristic to make mistakes. An articulation point is a
square which, when passed by a player, cuts off parts
of the board for that player. Figure 5 shows a Tron
position after 14 moves. The Voronoi heuristic would
determine Player 2 as the winner, since his region (57
squares) is larger than Player 1’s region (53 squares).
What makes this evaluation problematic is the fact that
there are five articulation points on this board (indicated
by an X). In this case more than just counting the free
space is required to evaluate the position. If Player 2
(Red) chooses to fill the space in the upper right corner,
Player 1 (Blue) can move to the lowest of the articulation
points and cut his opponent off. When Player 2 decides
to move down immediately the upper right region is cut
off and cannot be filled anymore. In both cases there
is no way for Player 2 to fill his entire Voronoi region.

(v. June 19, 2012, p.4)
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Hence, Player 1 definitely wins the game. His region
does not contain articulation points and therefore can
be filled completely in both cases.

During the Google AI Challenge 2010, Andy Sloane
developed an αβ-search agent [14]. He used a concept
referred to as “Tree of Chambers” for his evaluation func-
tion. The idea is to restrict the Player’s Voronoi region,
if it contains articulation points. The position shown
in Figure 5 has articulation points. As discussed, the
Voronoi heuristic declares Player 2 as the winner. Ac-
cording to the “Tree of Chambers” heuristic, Player 2
loses the game. It assesses the Player’s space as follows.
Starting at the current Player’s position the evaluation
function recursively explores the squares adjacent to the
Player’s position, not iterating over articulation points.
This explored space is the Player’s chamber. It is bor-
dered by walls and articulation points. Additionally, ad-
jacent articulation points are saved in an array. Once
the Player’s chamber is defined, adjacent chambers are
explored using the stored articulation points as initial
squares. If such a chamber does not contain the battle-
front it is counted as a neighbouring chamber. Other-
wise, if the adjacent chamber contains the battlefront, it
is discarded. Eventually, when all neighbouring cham-
bers have been found and saved, the value is the size of
the largest neighbouring chamber added to the player’s
chamber. In the case where the Player’s Voronoi region
does not contain articulation points, the value simply is
the size of the player’s Voronoi region (Player 1 in Figure
5). In any case the resulting value is the assessed space
the Player is able to fill. As in the Voronoi heuristic
(Subsection 4.2), this value is calculated for both play-
ers. The surplus of the player’s value compared to the
opponent’s then is the “Tree of Chambers”-value of the
evaluated position. Returning to Figure 5, Player 2’s
chamber is in the upper right corner. This chamber has
only one adjacent chamber (bordered by 5 articulation
points). This chamber is not added, because it contains
the battlefront. Player 2’s value, therefore, is the size
of his chamber (35). Player 1’s Voronoi region does not
contain any articulation points. His value is the size of
his Voronoi region (53). Comparing the two values gives
a surplus of 53 − 35 = 18 for Player 1. Thus, the “Tree
of Chambers” heuristic assesses the position in Figure 5
as a win for Player 1, whereas his Voronoi region (53)
clearly is smaller than his opponent’s (55). The “Tree of
Chambers” heuristic, as explained in this section, is also
implemented and applied in an agent. It will further be
referred to as the TC player. In fact, the TC Player com-
bines the Voronoi- and the “Tree of Chambers” heuristic.
In case there are no articulation points in the current
position, the TC Player only uses the Voronoi heuristic,
otherwise it looks for chambers. Note that the described
“Tree of Chambers” heuristic fails when there are many

Figure 6: A Tron game after 11 moves. Articulation
points are indicated by an X. Squares which belong to
the battlefront contain a 0. “XO” indicates an articula-
tion point which belongs to the battlefront.

chambers on a board. In Figure 6 there are 19 articu-
lation points and 8 chambers. Every move might add
or remove chambers and articulation points. The TC
Player would only look for the chambers adjacent to his
own. The calculated available space would vary from
his real space and the assessment of the “Tree of Cham-
bers” heuristic is not correct. Fortunately, this scenario
does not occur often. Most of the time there are not
more than three chambers and the “Tree of Chambers”
heuristic accurately assesses the player’s space. Some-
times, however, the heuristic fails.

5 Application to MCTS
Originally MCTS uses Play-Outs to assess the value of
a game position. In Tron it is expected that the above
mentioned evaluation functions give a good approxima-
tion of the real value of the explained types of game
positions (see Subsections 4.2 and 4.3). In fact, in some
cases these evaluation functions might be able to be more
accurate than numerous Play-Outs. There are multi-
ple possibilities implementing an MCTS agent with an
evaluation function. One is to completely replace the
Play-Out by an evaluation function [6]. Another possi-
bility is to stop the Play-Out after a number of moves
and assess the current node using the evaluation function
[10, 17]. Both the Voronoi Player and the TC Player are
extensions of the existing UCT agent developed by Den
Teuling in 2011 [5]. His agent uses the MCTS-Solver
enhancement, which is able to prove the game-theoretic
value of a game position without excessive simulations
[17]. Moreover it applies a so-called Predictive Expan-
sion Strategy [5]. If the evaluator can certainly assess the
future winner of a position during the Expansion phase
the containing node is treated as a terminal node and no
game is simulated. Additionally it stops the Play-Out

(v. June 19, 2012, p.5)
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every 5 moves (Play-Out Cut-off) and tries to evaluate
the current position. This, however, only works if the
two players are separated from each other. The Play-
Out keeps continuing for 5 moves until it encounters a
position where the two players are separated.

For the new heuristics it has to be specified how high
the surplus of space of a player needs to be in the current
position in order to be assessed as a win for this player
(Subsection 5.1). Additionally it has to be defined where
the Play-Out is stopped (Subsection 5.2) in order to play
Tron most optimally.

5.1 Determining a winner
A crucial part of the heuristic evaluation functions is the
amount of space surplus the player must have in a posi-
tion to be assessed as a win for this player. This value
will be referred to as the Win-threshold. It is not clear
that the player having only a slight surplus of space will
ultimately win the game. In Figure 5 Player 2 has a
larger Voronoi region than his opponent. However, the
surplus of space is only 2 and his opponent is going to win
the game. The Voronoi heuristic with Win-threshold 1
determines the wrong player to be winning. Tuning this
value could improve the Voronoi heuristic. If that value
would be 3 in the case of the scenario explained above,
the Voronoi heuristic would not declare a winner and
thereby avoid a mistake. In the case, where one of the
new evaluation functions is not able to determine a win-
ner, the Play-Out is continued for five more moves and
another assessment takes place. One of the experiments
described in Section 6 is to tune the surplus of space a
player needs to have to be assessed as the winner, the
Win-threshold.

5.2 Cut-off point
The point where to first stop a simulated game and
evaluate the current position is crucial for MCTS. As
described in Section 4, both new evaluators might give
false assessments depending on the current position. The
point where the simulated game is first stopped and a
position is evaluated will be referred to as the Cut-off
point. Once the Cut-off point is reached, the Play-Out is
stopped every 5 moves and the current node is evaluated.
This makes sure that the position which is evaluated is
not at the very beginning of a game, but a few moves
inside of it. The Cut-off point has to be tuned in such
a way that the evaluation functions perform optimal. In
Section 6 experiments which aim to find the most opti-
mal Cut-off point are presented and Subsection 6.1 shows
the results of all parameter tuning experiments.

6 Experiments
For the experiments the Java Tron program of Den Teul-
ing [5] is used. In the implementation all rules mentioned

Figure 7: The 10 boards used in the experiments
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in Section 2 are implemented. The used machine to run
the experiments is an Opteron CPU with 2.4 GHz and
8 GB RAM. Two different types of experiments are con-
ducted. The first is parameter tuning. Cut-off point,
Win-threshold and the time setting are tuned. Parame-
ter Tuning is performed with a UCT agent including the
Play-Out Cut-off using the Voronoi evaluation against a
simple UCT agent without enhancements. Second, both
agents (Voronoi Player and TC Player; see Section 5) are
tested to find their playing strength. In total 10 differ-
ent symmetric boards are employed for the tests. They
contain different kinds and numbers of obstacles and are
chosen in order to find the overall playing strength of an
agent. Figure 7 shows the boards used. To avoid a bias
towards a specific starting position, the agents play with
both colors. Both Players start once from both starting
spots (Indicated by 1 and 2 in Figure 7). In that way
both players have the same (dis)advantages.

The following experiments are conducted with a time
setting of 5 seconds per move. The Cut-off point of the
agent is tuned as follows. Four different types of a simple
UCT agent are tested: Initially cutting off the Play-Out
after 5, 10, 15 and 20 moves. Win-threshold is tested
with values 1, 2, 3 and 4. Next, the time setting is
tested with 5 values: 1, 2, 3, 4 and 5 seconds. Each
parameter is tested against another simple UCT agent
without Cut-off in 400 games spread over the 10 boards.

For both, the Predictive Expansion Strategy and the
Play-Out Cut-off, the evaluator described in Subsection
4.1 is used in the UCT-Solver Player of Den Teuling [5].
The Voronoi-Solver Player and the TC-Solver player ex-
tend the UCT-Solver Player by additionally applying the
heuristics explained in Subsections 4.2 and 4.3, respec-
tively, for the Play-Out Cut-off. Both new players ap-
ply the Predictive Expansion Strategy in the same way
as the UCT-Solver Player of Den Teuling [5]. The dif-
ference between the new players and the original one,
hence, is only the heuristic applied in the Play-Out Cut-
off. In fact, the new players use the Voronoi and the
“Tree of Chambers” evaluation function, as long as the
players are not separated from each other (see Subsec-
tion 4.2). When a position emerges where the players
are separated the new players also use the evaluation
function explained in Subsection 4.1. This is due to the
fact that in case the two players are separated on the
board, this evaluation function assesses positions more
accurately than the two new ones do.

To find out about the playing strengths of the
Voronoi Player and the TC Player, 80 games are played
on each of the 10 maps (including the different starting
positions). The opponent is the UCT-Solver player of
Den Teuling [5]. In Subsection 6.2 the results are shown
both for all boards and for each board separately.

Last, the Voronoi Player, the TC Player and the

UCT-Solver Player are tested without a time limit but
with a maximum of 10,000 Play-Outs per move against
each other. This time the Voronoi Player and the TC
Player play against each other as well. The results are
presented in Subsection 6.2.

6.1 Parameter-tuning results
In this subsection the results of the parameter-tuning
experiments are presented.

Win-threshold

The Win-threshold is the required surplus of space a
player needs to have to be assessed as the future winner
of the game. 400 games spread across the 10 maps (Fig-
ure 7) are played for each value. The value 15 is used
for the Cut-off point and a time setting of 5 seconds per
move is used. The result of the Win-threshold parameter
(WT) tuning is shown in Table 1.

WT Voronoi Cut Confidence
1 62.88% ±4.73%
2 62.25% ±4.75%
3 54.50% ±4.88%
4 44.00% ±4.86%

TC Cut Confidence
1 60.63% ±4.79%
2 59.25% ±4.82%
3 57.90% ±4.84%
4 55.50% ±4.87%

Table 1: Win-threshold parameter tuning with a 0.95
confidence interval. Opponent is a simple UCT agent.

Both Players perform best with a Win-threshold of 1.
This means that an assessed game position is considered
as a win if a player has a surplus of 1 square in that
position. The “Playing strength” experiments, hence,
are conducted with a Win-threshold of 1 for both the
Voronoi Solver Player and the TC Solver Player (results
in Subsection 6.2).

Cut-off point

The Cut-off point is the point where a simulated game
is allowed to be cut off for an evaluation. It is tuned
by playing 400 games spread across the 10 boards for
each tested value. The experiment is run with a Win-
threshold of 1 and a time setting of 5 seconds per move.
Table 2 shows the results of the Cut-off point (CP) pa-
rameter tuning.

The Voronoi Heuristic performs best when the game
is played for 20 moves before first evaluating a game
position. The TC Cut Players with a Cut-off point of
10, 15 and 20 score best. For the experiments conducted
in Section 6.2 the Voronoi Solver Player uses a Cut-off
point of 20 while the TC Solver Player uses one of 15. As
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CP Voronoi Cut Confidence
5 58.50% ±4.83%
10 60.00% ±4.80%
15 59.50% ±4.81%
20 64.63% ±4.69%

TC Cut Confidence
5 55.50% ±4.87%
10 59.25% ±4.82%
15 60.25% ±4.80%
20 57.13% ±4.85%

Table 2: Cut-off point parameter tuning with a 0.95 con-
fidence interval. Opponent is a simple UCT agent.

shown in Table 2 the TC Cut Player is approximately
equally strong with Cut-off point values of 10, 15 and
20. A value of 15 is chosen to have a difference in the
Cut-off point parameter between the two players.

Time setting

In this series of experiments the influence of the time set-
ting is investigated by playing 400 games spread across
all 10 boards. The time setting experiment used a Cut-
off point of 15 and a Win-threshold of 1.

Time Voronoi Cut Confidence
1 sec 45.13% ±4.88%
2 sec 42.75% ±4.85%
3 sec 39.25% ±4.79%
4 sec 45.00% ±4.88%
5 sec 56.88% ±4.85%

TC Cut Confidence
1 sec 44.13% ±4.87%
2 sec 50.13% ±4.90%
3 sec 46.50% ±4.89%
4 sec 50.00% ±4.90%
5 sec 52.88% ±4.89%

Table 3: Time settings with a 0.95 confidence interval.
Opponent is a simple UCT agent.

The results (Table 3) show that a time setting of 5
seconds outperforms the other tested values. Although,
for both players, there is an outlier for 3 seconds, it is
clear that 5 seconds to compute a move is best. All
experiments that are conducted to assess the playing
strength of the new players are using a time setting of
5 seconds per move. The more time per move the new
players have, the better they perform. 10 or more sec-
onds per move probably cause better performances, but
also cause more time consuming experiments. A max-
imum of 5 seconds is chosen because of the time con-
straint of this paper. Note that the results (Table 3)
are not in accordance with the other parameter-tuning

experiments (Tables 1 and 2). This is because the ma-
chine used for the experiments was overloaded at the
time and some experiments were thus conducted with
different computing capabilities.

6.2 Playing Strength
This subsection presents the results of the conducted ex-
periments to find out about the playing strength of the
TC-Solver Player and the Voronoi-Solver Player. Both
play 80 games on each of the 10 maps against the UCT-
Solver Player using Play-Out Cut-off and Predictive Ex-
pansion Strategy [5].

TC-Solver vs. UCT-Solver

Table 4 shows the results of the 800 games played by the
TC-Solver Player against the UCT-Solver player [5].

Board TC-Solver UCT-Solver Confidence

a 60.00% 40.00% ±10.74%
b 20.00% 80.00% ±8.77%
c 24.38% 75.62% ±9.41%
d 3.75% 96.25% ±4.16%
e 33.75% 66.25% ±10.36%
f 58.12% 41.88% ±10.81%
g 73.75% 26.25% ±9.64%
h 23.75% 76.25% ±9.33%
i 89.38% 10.62% ±6.75%
j 55.00% 45.00% ±10.90%

Total 44.19% 55.81% ±3.44%

Table 4: Results of TC-Solver vs. UCT-Solver with a
0.95 confidence interval.

Although the TC-Solver Player achieves a better win-
ratio than his opponent on 5 of the 10 boards, in total
he only wins 44.19 % of the games. Note that the TC-
Solver Player is only able to simulate 8,000 games on
average per second, while the UCT-Solver Player sim-
ulates 36,000 on average. The 5 boards on which the
TC-Solver Player is able to win more games than his op-
ponent are entirely different (boards a, f, g, i and j in
Figure 7). Therefore it is difficult to tell why he actually
plays stronger on these and weaker on the others.

Voronoi-Solver vs. UCT-Solver

Table 5 shows the results of the 800 games played by the
Voronoi-Solver Player against the UCT-Solver Player [5].

The Voronoi-Solver Player wins on 4 of the 10 boards.
But on 3 of these 4 boards, he only achieves a win-ratio of
below 60%. The Voronoi-Solver player simulates 15,000
games on average per second. This is a bit more than
the TC Player is capable of, but still clearly lower than
the UCT-Solver Player (36,000). In total the Voronoi
Player wins 34.75% of the 800 games played. Similar as
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Board Voronoi-Solver UCT-Solver Confidence

a 56.88% 43.12% ±10.85%
b 13.12% 86.88% ±7.40%
c 25.00% 75.00% ±9.49%
d 3.75% 96.25% ±4.16%
e 21.88% 78.12% ±9.06%
f 56.25% 43.75% ±10.87%
g 53.75% 46.25% ±10.93%
h 30.00% 70.00% ±10.04%
i 89.38% 10.62% ±6.75%
j 25.00% 75.00% ±9.49%

Total 34.75% 65.25% ±3.3 %

Table 5: Results of Voronoi-Solver vs. UCT-Solver with
a 0.95 confidence interval.

the TC-Player the Voronoi Player plays stronger than
his opponent on 4 maps with major differences (boards
a, f, g and i in Figure 7).

Play-Out limit

Table 6 shows the results for the games of the UCT-
Solver Player, the Voronoi-Solver Player and the TC-
Solver Player against each other. In all games the players
applied a fixed number of 10,000 Play-Outs.

Play-Out limit UCT-Solver Voronoi-Solver TC-Solver

UCT-Solver 45.50± 3.45% 49.19± 3.46%
Voronoi-Solver 54.50± 3.45% 44.19± 3.44%
TC-Solver 50.81± 3.46% 55.81± 3.44%

Table 6: Result for the experiments with 10,000 Play-
Outs.

Both new players, the Voronoi-Solver and the TC-
Solver, beat the UCT-Solver. Moreover, the TC-Solver
is able to win 55.81% of the games against the Voronoi-
Solver. As the Cut-off point tuning experiments (Sub-
section 6.1) this series was conducted while the machine
was under heavy load. In this case this does not in-
fluence the number of computations per move. It was
observed that the experiments, especially including the
TC-Solver, logged exceptions. Ususally an exception in
a game causes the program to repeat this game. During
this series of experiments, however, the program would
occasionally count this game as a win for the player
that finished his computations first. Hence, in some of
the games, the slower player is disadvantaged. This ex-
plains why the TC-Solver Player clearly wins against the
Voronoi-Solver Player, but does not achieve an as good
win-ratio against the UCT-Solver Player.

7 Conclusion and Future
Research

The experiments (Subsection 6.1 and 6.2) show, on the
one hand, that unfortunately both new players are inca-
pable of winning more than 50% of the games on average
against the UCT-Solver Player of Den Teuling [5] with a
time setting of 5 seconds per move. On the other hand,
both new players achieved considerably good scores (Ta-
bles 4 and 5) on board i (Figure 7). Furthermore the
TC-Solver Player is able to clearly beat the UCT-Solver
Player on at least two more boards (boards a and g in
Figure 7). Although, in the end the new Players lost
(Tables 4 and 5), they are able to improve the perfor-
mance of the existing Player in certain situations. One
reason for the loss of the new players definitely is the
computational overhead of the applied heuristics. As
stated in Subsection 6.2 the UCT-Solver Player using the
Predictive Expansion Strategy and the Play-Out Cut-off
enhancement runs 36,000 Play-Outs per second on av-
erage. Both new players run substantially fewer Play-
Outs. The Voronoi-Solver Player is able to make 15,000
Play-Outs per second. The TC-Solver Player only runs
about 8,000 Play-Outs on average per second. Restrict-
ing not the time but the number of Play-Outs per move
clearly increases the performance of both new players.
The results presented in Table 6, however, do not rep-
resent the real playing strengths of the new Players (see
Subsection 6.2). They are an indicator that the new
heuristics accurately assess Tron positions.

Additional to the experiments from Subsection 6.2,
the parameter-tuning experiments (Subsection 6.1) show
that simple UCT agents with the new heuristics applied
in the Play-Out Cut-off win against UCT agents without
enhancements. This confirms the ability of both heuris-
tics to accurately assess positions in Tron.

In the future it could be investigated in which exact
situations the new agents outperform the existing agents.
Then the players could be combined according to the
obtained information. The TC heuristic seems to be
performing quite well in certain situations. An agent
which computes the “Tree of Chambers” heuristic only
in such cases would most likely play stronger than all
existing agents. Another part where there is room for
improvement is diminishing the computational overhead
of the “Tree of Chambers” heuristic. Improving upon
that would increase the number of games the agent is
able to simulate per second. Being able to simulate more
games always means that the agent is capable of more
thoroughly searching the state space. This, in the end,
leads to a better playing Tron agent.
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