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Abstract

This thesis presents alternative methods for
tackling the problem of General Video Game
Level Generation (GVG-LG). For this pur-
pose three Monte Carlo (MC) search algo-
rithms have been implemented in the General
Video Game AI (GVGAI) framework. Also
an improvement of the Constructive Gener-
ator algorithm available in the framework is
proposed and tested. In a user study par-
ticipants clearly preferred levels generated by
the Improved Constructive Generator over all
other methods. Additionally the participants
were unable to distinguish the levels generated
by the MC Search-based Generator from lev-
els generated by the Genetic-Algorithm (GA)
Search-based Generator. The work presented
here provides valuable insights for further stud-
ies in the field of GVG-LG.

1 Introduction
To ensure proper understanding of the following sections
it is necessary to provide an introduction to the domain.
It is assumed that the definition of the phrases Video
Game, Level and (Software) Agent, as well as the ter-
minologies of Search Algorithms and Search Trees are
commonly known.

1.1 Level Generation

Level Generation can be understood as a subset of the
broader field Procedural Content Generation (PCG) [2,
9, 22]. While the ideas of PCG and Level Generation
have already been around long for analog games, this
thesis assumes the setting of digital or video games.
In this context it can be found that this concept first
emerged in the 1980s with example games like Rogue,
published in 1980, and Elite, published in 1984. At that
time the idea of PCG was mainly used to make the most
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use out of the limited disk capacity by calculating con-
tent of the game dynamically during runtime instead of
shipping precalculated environments. The concept has
come a long way from there as with the number of video
games played raising also the need for new content for
those games rises. For this reason it has developed from
being a space-saving to being a cost-saving factor in the
game industry. It occurs in many different contextual
aspects of game development, ranging from the simple
layout of levels and placement of objects in those up
to narrative elements of the story of a game. Most of
the commercial PCG-algorithms that emerged in the last
decades are all tailored to be used with one specific game
only. There are only a few exceptions to this specificity,
for example SpeedTree [2, 9].

For the remainder of this thesis only the previously
mentioned example of the layout of a level and location
of objects within it is considered and is referred to as
Level Generation.

1.2 General Video Game AI Framework

As this kind of specificity also reflects in the field of cre-
ating agents for video game playing the need emerged to
shift this research into the field of General Video Game
Playing (GVGP) [16]. The aim of GVGP is to reduce
the domain knowledge often included in agents submit-
ted to video game playing competitions that are centred
around a certain game, for example StarCraft [18]. Re-
ducing the impact of domain specific knowledge is done
by providing a variety of different games instead of pro-
viding only one.

The first step towards creating a suitable environ-
ment for GVGP was to provide a language capable of
describing a large set of video games. Here Ebner et
al. [10] introduced the Video Game Description Lan-
guage (VGDL) in 2013. Essentially it breaks a game
down into four components, the SpriteSet, the Interac-
tionSet, the TerminationSet and the LevelMapping. Us-
ing this language it is possible to represent a large subsec-
tion of video games, namely arcade-style games. These
games are situated in a 2D environment and are subject
to real-time changes [13], spanning many different genres
(see Figure 1 for examples).

The next step was the creation of the General Video
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Figure 1: Some examples of games that can be repre-
sented in VGDL, top: Aliens (Space Invaders), centre-
left: Sokoban, centre-right: Zelda (The Legend of Zelda),
bottom: Frogs (Frogger).

Game AI (GVGAI) framework in 2014 [17] which con-
sisted of the components necessary to hold competitions
in the field of GVGP. In the following years the GV-
GAI framework and competition was further extended,
including a total of 180 games written in VGDL in 2018
and several other competition tracks [18].

One of these tracks is the General Video Game Level
Generation (GVG-LG) competition, which was held in
2016 [13, 18] and is designed analogous to the concept
of GVGP, asking for submissions of level generators that
are capable of generating a level for any single-player
game described in VGDL. The work done on that part
by Khalifa et al. [13] and the sample level generators
presented by them form the cornerstone of the research
in this thesis.

1.3 Problem Statement & Research
Questions

Given the above environment and taking into account
the work performed by Khalifa et al. [13] we can derive
the following problem statement:

Considering different games that are available in
VGDL-representation, how can we generate a human-
enjoyable variety of levels using the same generator?

As becomes clear form the conclusion of their
work [13], people that judged the performance of the
sample generators were unable to distinguish between
a level generated by the Random and the Constructive
Generator. Also only one search-based generator, the
Genetic-Algorithm (GA) Search-based Generator, was
presented and applied to the above problem.

From their findings two research questions have been
be formulated:

1. Can the Constructive Generator be improved to be
more preferable than the Random Generator?

2. Can Monte Carlo search algorithms be used for level
generation?

1.4 Outline
Section 2 gives an overview of the aforementioned work
by Khalifa et al. [13] performed on the topic of level gen-
eration, including a description of the sample generators
that are available in the GVGAI framework. Next, in
Section 3, different search-based approaches that might
be suitable for the problem at hand are presented, fol-
lowed by the implementation of these algorithms within
the GVGAI framework in Section 4. Experiments on
these implementations are then performed in Section 5
and the results with regard to the research questions to-
gether with additional insight are presented in Section 6.

2 Previous Work
When the GVG-LG competition track was introduced
in 2016 it was accompanied by the paper General Video
Game Level Generation by Khalifa et al. [13]. Here the
historical and scientific background of the competition
track gets explained, as well as the GVG-LG program-
ming framework, and three sample level generators.

When working in the GVG-LG framework, which
provides a Java interface, the generators have access to
certain information about the game they are given in
form of the GameDescription and GameAnalyzer ob-
jects [13]. The GameDescription object provides raw
information encapsulated in the VGDL description of
the given game. It includes the occurring sprites from
the SpriteSet, possible events created by the interaction
of those sprites with themselves or the border of the
screen from the InteractionSet, the game’s termination
conditions from the TerminationSet and lastly the Lev-
elMapping, a mapping from character to sprite, for the
graphical representation of the game [10]. As the name
implies, the GameAnalyzer already processes the data
resulting from the SpriteSet, InteractionSet, and Termi-
nationSet. After this analysis, sprites are classified ac-
cording to whether they are an avatar, solid, harmful,
collectable or none of the previous. The LevelMapping
also contributes to the competition by imposing on it the
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constraints to only include one avatar and only charac-
ters that correspond to a valid sprite representation. Ad-
ditionally due to relying on the GVGAI framework the
competitors have access to a GUI for playing the games
as well as several agents capable of doing so.

In the end, the three sample generators described be-
low and the submissions for the 2016 competition were
judged by human players being able to state their pref-
erence, if any, over two levels chosen randomly from two
different generators [13, 18]. In the initial pilot study this
resulted in the sample Random and Constructive Gener-
ator receiving a similar number of votes and the sample
Search-based Generator creating the most appealing lev-
els. These generators are discussed in Subsections 2.1,
2.2, and 2.3, respectively.

2.1 Random Generator

The Random Generator [13, 18] is the most simple ap-
proach. It has only one parameter, the probability for
each tile of the level being considered for placing a ran-
domly chosen sprite on it. After that, it automatically
chooses the size of the level to be generated depending
on the number of sprites available for the given game and
ensures that each available sprite is at least placed once.
Only the avatar, which is to be placed exactly once only,
is an exception to this. No additional information about
the game at hand is taken into account when creating
the level.

2.2 Constructive Generator

A more sophisticated approach is presented with the
Constructive Generator [13, 18]. It already utilises the
information provided by the GameAnalyzer and priori-
tises sprites based on their occurrences in the Interac-
tionSet : the more often a sprite is mentioned there, the
more often it is placed in the level. Apart from a pre-
and post-processing phase the generator passes through
four main phases. First, a general layout of the level
is created, if the SpriteSet of the game contains a solid
sprite. In the second step the avatar is placed. The third
step consists of placing harmful sprites either randomly
or at a distance from the avatar depending on whether
the harmful sprite is moving. Lastly, a random num-
ber of collectable and other sprites are placed. This is
all done according to the desired cover-percentages cal-
culated in the pre-processing step and concluded with
checking that the number of sprites listed as goals is at
least as high as required in the TerminationSet.

2.3 Search-based Generator

The last presented sample generator falls into the cat-
egory of search-based generators. According to Perez-
Liebana et al. [18] a search-based generator makes
use of simulating a playthrough of the generated level

to ensure playability. Here Khalifa et al. [13] use
a Feasible-Infeasible Two-Population (FI-2Pop) [14]
Genetic-Algorithm (GA) approach. For this purpose
they created several features that are maximised using
the GA. Those features can be divided into either Direct
Fitness Functions or Simulation-based Fitness Functions
according to the definition by Togelius et al. [22]. The
difference between the two being that the first class of
fitness functions can directly be applied to a generated
level and the second class making use of one or several
agents playing the generated level.

In case of one half of the populations of the GA gen-
erator the Direct Fitness Functions include features re-
garding the number of avatars, the number of sprites, the
number of goals, as well as the current cover-percentage
of the level. Also in this half Simulation-based Fitness
Functions are applied, consisting of measuring the length
of the solution generated by the used agent, checking
if the agent did win the game and lastly whether an
agent did not die within a predefined time span. The
second half of the populations of the GA solely re-
lies on Simulation-based Fitness Functions, calculating
the score-difference after playthrough between a simple
agent and a better agent, as well as inspecting how of-
ten the rules defined by the InteractionSet are utilised
by different agents. For the previously mentioned bet-
ter agent Khalifa et al. [12] introduced an agent that
is a deviation of one of the highest ranking agents for
playthrough in the GVGAI framework. It was modified
such that it sometimes tends to not perform an action
or to repeat the same action several times in order to
closer mimic human behaviour. When calculating the
score-difference as well as when checking for the agent
not dying within a certain number of steps they use an
agent that simply performs no actions at all.

Due to the default time for a playthrough of a gener-
ated level by means of the agents mentioned before be-
ing set to three seconds in the framework, the number of
levels that can be generated and tested within a certain
amount of time is limited. Because of having a total du-
ration of five hours available for generating a level during
the GVG-LG competition [13, 18] the algorithm is still
able to generate and test a sufficient number of levels.
Five hours is also the allowed duration that is used for
the experiments in Section 5.

3 Different Search-based
Approaches

The following Subsections 3.1, 3.2, and 3.3 provide an in-
troduction to the functionality of the search-algorithms
as they are described in the literature. All three algo-
rithms have in common that they apply Monte Carlo
(MC) [3] methods, which initially were used for approx-
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imating statistical solutions. The idea behind using MC
methods when applied to search problems is to approx-
imate the actual value of a state by pseudo-randomly
simulating a sequence of actions [7] and using the re-
sulting value as the estimate. Additionally to pointing
out their functionality, also similarities and differences
between the different approaches are shown below. Fur-
ther domain-specific details on the algorithms follow in
Section 4.

3.1 Monte Carlo Tree Search

The first algorithm is Monte Carlo Tree Search
(MCTS) [8, 15] and consists of four phases [7], selec-
tion, expansion, rollout, and backpropagation (see Fig-
ure 2). Over the time it builds a search tree where

Figure 2: Basic structure of MCTS [7].

each node contains its value and the number of times
it has been visited so far. In the first phase the par-
tial search-tree that has been created so far is recur-
sively traversed from the root node to a previously un-
expanded node by applying certain means of selection.
Once such a node is reached it is chosen for expansion,
consequently being added to the tree. Starting from the
chosen child/children, a MC rollout is performed until a
terminal state is reached. This terminal state can be
easily evaluated and the resulting value is backpropa-
gated through the nodes that were visited during the
first phase, each time updating the two fields inside the
node. After those four phases are concluded they are re-
peated from the beginning as long as the current time- or
resource-constraints allow it. Due to using the value of a
terminal state as an estimate no intermediate evaluation
function is necessary, making MCTS suitable for appli-
cations where such an intermediate evaluation function
is not available.

Each of the phases can be modified, leading to a large
variety of algorithms tailored for certain purposes. One
of the most popular modification for the selection step,
which also is used in this thesis, is Upper Confidence
bound applied to Trees (UCT) [15]. The UCT selection
strategy states that a move i will be chosen such that it
maximises Formula 1:

vi + C ×
√

lnN

ni
(1)

where vi represents the average score achieved by node
i so far, ni represents the number of visits of node i,
N represents the number of visits for the parent node of
node i and C is an adjustable constant. The constant C,
which is denoted by

√
2 in the literature, is used to de-

termine how much influence the
√

lnN
ni

part of Formula 1

has. A high value of C makes moves that have not been
visited often more favourable and a low C value results
in choosing moves that previously scored high. Tuning
C is also considered balancing between exploration of
unknown moves and exploitation of previously success-
ful moves, respectively. Regarding the expansion phase
the strategy proposed by Coulom [8] is used here, stating
that each run one node is added to the tree. The rollouts
are performed in a random manner and also the back-
propagation is handled in the default way as described
above by Chaslot et al. [7].

3.2 Nested Monte Carlo Search
The second algorithm for the problem at hand is the
Nested Monte Carlo Search (NMCS) [5], which intro-
duces the notion of nesting levels. It relies on the idea
that an action or a sequence of actions that performs
well on a lower-level search also performs well on the
higher level. In NMCS the base level behaves similar to
a rollout in MCTS [7], randomly choosing actions from
the given state until reaching a terminal state, which
again can be easily evaluated. On nesting levels higher
than the base level, the algorithm recursively performs
a lower-level search for all available legal actions, each
time returning the value of the terminal state and the
sequence that led to this result. This result for example
is a random sequence of legal actions, together with its
score, in case of the base level. By combining the result-
ing sequences from all lower level searches, a complete
sequence of actions from the root to a terminal state is
generated. Next, the algorithm considers the first action
from the returned sequence as the root node, thus result-
ing in a possibly different set of legal actions. From there
on it tries to improve on the result of the initially found
sequence by again performing a lower-level search for all
of those actions. In case such an improvement is found,
the remaining initial sequence of actions is replaced with
the new sequence. This procedure is repeated until the
point where the current root node is a terminal state,
in other words when every other action of the initial or
updated sequence was considered once as root node with
the intention of finding a better follow-up sequence using
a nested MC rollout (see Figure 3).

In comparison to the previously described MCTS [7],
it does not rely on building a partial search tree, but
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Figure 3: Basic structure of NMCS [6]. A straight line
represents all allowed actions at the current node and
a wavy line indicates a lower level search. According
to the found value, the current node is changed for the
next iteration, displayed by a bold line. A total of three
iterations are shown above.

instead only memorises the best found sequence so far
together with the evaluated result [5], making it more
memory-efficient. This sequence is also kept after one
complete run of NMCS is concluded and is used as input
for the next run, guaranteeing that the next result can
only either stay the same or improve, which is not given
in case of the default MCTS with UCT [15]. The only
parameter that can be used for adjusting the behaviour
of the algorithm is l, the number of nesting levels that
are to be used. With increasing values of l the num-
ber of rollouts, as well as the computation time for one
run increases, so in the literature usually values for l
from 0 to 3 are considered. Apart from the l parameter,
there is no direct way of tuning the algorithm towards
either more exploration or exploitation, yet NMCS out-
performed variations of MCTS in areas where the later
previously had achieved new records [3].

3.3 Nested Rollout Policy Adaption

The third presented algorithm is the Nested Rollout Pol-
icy Adaption (NRPA) [19] which also belongs to the fam-
ily of Monte Carlo algorithms [3]. Contrary to the first
two approaches, this algorithm does not solely rely on
randomness during rollout, but it utilises a policy π when
determining the sequence of actions. For any state S and
any legal action aS for that state, a code code(S, aS) is
computed. It allows to include domain-specific knowl-
edge during NRPA in the form of having code(S, aS) re-
turn the same value for different, but under the consid-
eration of domain-specific knowledge sufficiently similar,
state-action pairs. This calculated code is then used as
input for the policy, such that during rollout an action
is considered proportional to its value π(code(S, aS)).
Apart from this policy the structure of the algorithm
is similar to the structure of NMCS [5], again making
use of nesting levels l.

On the base level NRPA [19] performs a simple roll-

out, choosing the sequence of actions according to the
current policy as described above. During each higher-
level search M lower-level searches are initiated recur-
sively, where M represents the number of iterations,
an adjustable parameter of NRPA. Additionally, when
initiating those lower-level searches, they are given the
current policy of the higher-level search that initiated
them to be used for either rollout or initiating lower-
level searches themselves. Once all M iterations are
concluded, the highest scoring sequence of actions and
its value is returned back to the higher level. Next the
policy is adapted according to a learning rate α, the sec-
ond adjustable parameter in NRPA, ensuring that future
searches are more likely to be performed in favour of the
best found sequence so far. Again, similar to NMCS [5],
the overall best sequence, value and also the policy are
stored after completing a run of the algorithm to be used
for subsequent calls, such that the next value can never
drop below the best finding so far.

When returning to the notion of exploration and ex-
ploitation mentioned during the description of MCTS [7],
analogous statements can be made about NRPA [19] us-
ing the available parameters M , α and l. Even though
not stated explicitly, choosing a high number of itera-
tions M results in the same policy being used for a higher
number of subsequent rollouts, similar to the notion of
exploration. This can also be achieved by considering a
low value for α, causing the policy to converge slower
than it would do with a high value for α. The later,
as well as choosing a relatively small M , can in turn
be considered exploitation as the given policy converges
faster and does not get many iterations to find a better
result. The literature uses sample values of 100 and 1
for M and α, respectively. Adjusting l again influences
the total number of rollouts that are performed during
one run of the algorithm. NRPA scored even higher than
NMCS [5] on similar problems that were previously used
for comparing NMCS with MCTS.

4 Implementation of the Level
Generator

The following subsections provide insight into the imple-
mentations that were made in the course of this thesis.
These implementations are split into two parts, each of
which arose from one of the two research questions from
Subsection 1.3.

4.1 Improved Constructive Generator

To address the first of the two previously stated research
questions it is helpful to revise the differences between
the Random and the Constructive Generator mentioned
in Section 2. Apart from the obvious difference, specifi-
cally the Constructive Generator following a more struc-
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tured approach than the Random Generator, one other
crucial aspect is noteworthy as it was given as a possible
explanation by Khalifa et. al. [13] for the issue at hand.
This issue is the unexpected indistinguishability between
the Constructive and the Random Generator that arose
during the initial pilot study.

While the Random Generator ensures that all
sprites available through the GameDescription object
are placed in the level, the Constructive Generator does
not do so. Instead, only a random selection from the
sprites that are considered non-essential by the Con-
structive Generator is used to fill the remaining tiles of
the level. This behaviour can lead to unplayable levels
if the importance of a sprite is hidden in the game’s
VGDL representation. It happens for example with
the game Zelda, where there is a dungeon exit, clearly
marked as goal, and additionally a key, only considered
a collectable sprite, but without which the exit is unus-
able. Even though the Constructive Generator contains
a phase where it checks that the number of goal sprites
is acceptable, it does not consider collectable sprites, as
their desired number of occurrences can be any value,
including zero. When participants of the initial pilot
study [13] encountered levels where the above situation
showed up, they obviously preferred a playable level over
an unplayable one, regardless of its random nature. The
reasoning behind this strategy for the Constructive Gen-
erator is that if there are several sprites that can be
grouped into one class, the generator would not neces-
sarily place one or more of each sprite, but only of each
class. Considering again the example of Zelda this can
be visualised by having three different types of enemy
sprites, where a level containing only one type of enemy
sprite would appear less cluttered than each level always
containing all three types.

The improvement made to the Constructive Genera-
tor in this thesis is to include an additional phase where
it is ensured that also each collectable sprite is at least
placed once. Whether this proposed improvement is suf-
ficient to answer the first research question is discussed
in Section 5. The motivation behind this decision is that
having a playable level outweighs having a less cluttered
level.

4.2 Alternative Search-based
Generators

Regarding the second research question the resulting im-
plementations and their discussion require more insight.
To justify the usage of the three algorithms described
in Section 3, one should consider that all three have
been successfully applied to single-player games [3] and
that level generation can be considered as a single-player
game.

Evaluation Function

For the three algorithms an improved version of the
already existing Direct Fitness Functions [22] is used,
containing more features. Contrary to the GA Search-
based algorithm [13] no Simulation-based Fitness Func-
tions [22] are employed. The reasoning for this decision
is to fully utilise the strength of the MC search-based
algorithms, lying in performing as many rollouts as pos-
sible. If one would use Simulation-based Fitness Func-
tions with the default parameters given in the GVGAI
framework, only one rollout every three seconds would
be possible.

When ignoring any features that make use of
Simulation-based Fitness Functions we are initially left
with the following direct evaluation function as shown in
Equation 2 [13].

fdirectScore =

favatarNumber + fspriteNumber

+ fgoalNumber + fcoverPercentage

4
(2)

In the above equation favatarNumber is 0 if the level
contains no or multiple avatars and 1 if it contains ex-
actly one. fspriteNumber is 1 when each sprite from
the SpriteSet, that is not spawned by another sprite,
is placed at least once, and 0 if the level contains none
of these sprites. Similar fgoalNumber is 1 as soon as the
minimum number of occurrences for all goal sprites is
reached, and fcoverPercentage is 1 as long as the number
of covered tiles lies within a predefined range. The fact
that all parts of the numerator of Equation 2 are in the
range [0, 1], with favatarNumber being a binary variable,
leads to fdirectScore also being within that range. Addi-
tionally in the initial setup all Direct Fitness Functions
are equally weighted. These four features by themselves
seem too imprecise for generating playable levels. This is
why they were accompanied by Simulation-based Fitness
Functions in the original implementation. As those sim-
ulations do not take place when applying MCTS [8, 15],
NMCS [5] and NRPA [19], the evaluation function has
been improved in this thesis to consist of the following
features:

• Accessibility: A binary variable indicating
whether all non-solid tiles of the level are reachable
from the current position of the avatar.

• Avatar number: Similar binary variable as
favatarNumber mentioned in Equation 2.

• Connected walls: The ratio between solid sprites
that are directly adjacent to another solid sprite and
the total number of solid sprites.

• Cover-percentage: Similar real-valued variable
as fcoverPercentage from Equation 2 indicating how
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close the current tile-coverage of the level is to the
desired cover-percentage.

• Ends initially: The ratio between the number of
unsatisfied termination conditions listed in the Ter-
minationSet and the total number of termination
conditions, inspired by fgoalNumber.

• Goal distance: The distance of the closest cur-
rently placed goal sprite to the position of the avatar
over the maximum possible distance.

• Neutral-harmful ratio: Indicating whether the
ratio between neutral and harmful sprites fulfils a
predefined ratio.

• Simplest avatar: Binary variable ensuring that
the currently placed avatar is in the most simplest
form and not an powered-up avatar that usually re-
quires interaction with another sprite before it be-
comes available.

• Sprite number: Identical to fspriteNumber from
Equation 2.

• Space around avatar: The number of popu-
lated tiles that are reachable by two steps from the
avatar’s position over the sum of all the tiles within
the two step range.

• Symmetry: Checking for symmetry along the X-
and Y-axis for each tile in each quadrant of the level.

Alternatively to the initial evaluation function the im-
proved version consists of the weighted, [0, 1]-normalised,
score, resulting in the following equation:

fdirectScore =

∑
i

(wifi)∑
i

wi
, (3)

where wi is the integer weight for the ith feature fi.
These 11 features are chosen in a way to create mostly
playable and appealing levels while only using Direct Fit-
ness Functions and still trying not overfit on any of the
many genres represented in VGDL.

General Information
Concerning the actual implementation of the three algo-
rithms in the GVGAI framework additional remarks are
necessary. Also the terminology of the described algo-
rithms needs to be transferred into the domain of level
generation. This means that a node or state can be
thought of as the current layout of the level, while all
actions possible at that state or descending from that
node can be viewed as placing all possible sprites on all
possible remaining tiles.

Monte Carlo Tree Search
MCTS with UCT [8, 15] is implemented as in the liter-
ature. Due to the existence of more advanced improve-
ments for the different phases of MCTS that would be

applicable to the problem at hand [3, 4, 20] one should
bear in mind that there is still potential for an increase
in performance. Yet those improvements are not imple-
mented in the course of this thesis, such that the only
adjustable parameter for MCTS is the value C as shown
in Formula 1.

Nested Monte Carlo Search

NMCS [5] is also implemented as in the literature. This
includes memorisation of the currently best found se-
quence and using it as input for subsequent calls, which
ensures that the next value found can either only im-
prove or stay the same. Here again only one adjustable
parameter, namely the nesting level l, can be specified.

Nested Rollout Policy Adaption

Likewise NRPA [19] is implemented according to the
literature, but as its code(S, aS) function incorporates
domain-specific knowledge it needs to be described ex-
plicitly. To recall, the purpose of code(S, aS) is to ensure
that, under consideration of domain-specific knowledge,
several state-action pairs are treated identically when
deciding which policy to use, even though the pairs are
actually not the same. To make use of that in the do-
main of level generation the state S is chosen to not
represent the complete current level, but only the last n
executed actions. This works analogous to the concept
of N-Grams [21], which already has been successfully ap-
plied to the field of General Game Playing. When consid-
ering the expression of the policy function π(code(S, aS))
as a simple English sentence it would translate to: What
is the policy value of action aS, given that the last n ac-
tions were S? As the order of the n previously executed
actions S does not influence the layout of the level, the
order of the actions in S is neglected when determining
the policy value of aS . This results in a total of four
adjustable parameters for NRPA: the previously intro-
duced n, the number of iterations M , the learning rate
α and the nesting level l.

5 Experiments
The first series of experiments deal with defining
all aforementioned parameters for the algorithms and
weights for the evaluation function. The goal of the sec-
ond series of experiments is to determine, which of the
three algorithms used for level generation in this thesis
on average achieves the highest score. The third series
of experiments is a user study, where participants are
asked to state their preference over two levels. These
levels come from four different generators, namely the
sample Random Generator [13], the improved construc-
tive generator, the GA Search-Based Generator and the
best performing algorithm from the Monte Carlo family.
Due to the aim of this thesis being to present comparable
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alternative algorithms for level generation the most focus
is put on the second and third round of experiments.

5.1 Parameter Tuning
In this subsection first the weights and parameters for
the new evaluation function described in Subsection 4.2
are determined, followed by the individual parameters
for the three algorithms at hand.

Feature Weights
The weights of the proposed evaluation function were
chosen intuitively rather than by means of experiments.
This was mainly due to only having a small number
of already created levels available, of which some even
lacked proper quality that is they were not playable or
did not represent the concept of the underlying game. If
those levels would have been available, one could, just
to mention one possibility, have applied gradient search
algorithms on the weights of the evaluation function in
order to learn which weights would on average result
in the highest score over those example levels. Instead
all weights were initialised at 1 and then increased by
1 if the respective feature subjectively seemed more im-
portant than the other features. This resulted in the
following values for the weights:

• wAccessibility = 3

• wAvatarNumber = 4

• wConnectedWalls = 1

• wCoverPercentage = 2

• wEndsInitially = 4

• wGoalDistance = 1

• wNeutralHarmfulRatio = 1

• wSimplestAvatar = 4

• wSpriteNumber = 2

• wSpaceAroundAvatar = 3

• wSymmetry = 1

Those values were chosen such that features that con-
tribute to an increased playability of the level have a
larger weight than those that have a mere aesthetic as-
pect.

Algorithm-specific Parameters
When generating a level according to the initial research
as well as during the 2016 GVG-LG competition [13] a
time limit of five hours was given. This made tuning
the parameters for the individual algorithms very time-
consuming. For this reason the experiments were con-
ducted on shorter time periods and from those results
assumptions about the parameters influence on longer
periods were made. Finally this assumed influence and
behaviour was then either confirmed or rejected by a
small number of five-hour runs.

Parameters for MCTS

As pointed out in Subsection 4.2 there only is one tune-
able parameter for MCTS with UCT [8, 15], namely C,
which is used to balance between exploration and ex-
ploitation. For these experiments the size of the level to
be generated was fixed at width and height of 8 each.
MCTS was then used for level generation with a dura-
tion of 10 minutes, repeated 30 times, with 0.05, 0.5,
0.9, 1.4 and 3 as possible values for C. Out of those
values C = 0.05, a value resulting in high exploitation,
on average reached the highest score, yet when used for
the actual duration of five hours the score did not no-
tably improve. For this reason a value of C = 1.4 (as an
approximation to C =

√
2), the standard value as pro-

posed in the literature [1, 15], was tried for the five-hour
scenario. Because it already achieved higher scores than
the previously chosen value, it was decided to continue
using C = 1.4. The reason for the poor performance of
the exploitation-focused value on the long duration can
easily be explained with the same. When there only is
little time available for finding a solution, of course it is
more feasible to exploit a quick acceptable solution. If
more time is available it becomes more feasible to spend
time on exploring the search space for alternative solu-
tions. This is why a small C was appropriate for the
short duration, but not as applicable to the long dura-
tion.

Parameters for NMCS

The only adjustable parameter for NMCS [5] is the nest-
ing level l. At a value of l = 0 only one rollout is per-
formed to generate a level and its outcome is purely ran-
dom. With increasing values of l also the number of
rollouts increase. Already at l = 2 the algorithm was
not able to generate a level with a score only remotely
as high as with l = 1 within a duration of 10 minutes.
For this reason l = 1 was chosen, as it provided accept-
able results and did so in a timely fashion.

Parameters for NRPA

With NRPA [19] as implemented in this thesis there are
a total of four tuneable parameters. For the code func-
tion of NRPA an N-Gram parameter of n = 1 is used,
as further increasing n did not improve on the average
result. Here n = 1 corresponds to considering only the
current action and none of the preceding actions. When
considering the learning rate parameter α, the litera-
ture [19] used a value of α = 1, as it provided a stable
balance between converging too slow or too fast. This
value was also used in the course of this thesis. The re-
maining parameters, M and l, the number of iterations
and the nesting level, determine the number of rollouts
that are performed to generate a level. Using small val-
ues for M in combination with small values for l lead
to a decreasing quality in the generated levels. On the
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other hand using high l and M values could result in
the algorithm taking too long to return a proper level.
Since M = 10000 combined with l = 1 and M = 100
combined with l = 2 resulted in similarly good scores
that were returned in acceptable time, it was decided to
use the later combination.

5.2 Highest Scoring Algorithm

To find out which of the three algorithms is most appli-
cable for level generation they are each used with the pa-
rameters determined above. As a time limit for level gen-
eration the previously mentioned duration of five hours is
applied. From all available games in the GVGAI frame-
work four were chosen, namely Aliens, Frogs, Sokoban
and Zelda. Two out of these four (Frogs and Zelda) were
also used in the pilot study conducted during the initial
research [13]. For each of the four games 30 levels were
generated per algorithm, resulting in a total of 120 levels
each. These levels had their size fixed at 10 × 10 tiles.
The performance of the three algorithms was compared
by three different scores. First the number of rollouts,
second the time it took to reach the highest value and
third the highest returned value itself. Out of those mea-
surements the last one decides about the highest scoring
algorithm, but the other two still present valuable in-
sights. The 95% confidence intervals of those three mea-
sures are presented in the plots in Figure 4.

Number of Rollouts

In Subfigure 4a the 95% confidence intervals for the num-
ber of rollouts for each of the three algorithms is shown.
The means for MCTS [8, 15], NMCS [5] and NRPA [19]
are x̄rolloutsMCTS ≈ 105323 × 103, x̄rolloutsNMCS ≈
284481 × 103 and x̄rolloutsNRPA ≈ 6383 × 103, respec-
tively. Those values are rounded to the nearest thou-
sands. NMCS on average has the highest number of
rollouts. This can be explained by the fact that NMCS
does neither create a search tree nor has to keep track
of a policy. Because of this, more time can be spent
on actually performing rollouts, resulting in these val-
ues. As already indicated above, MCTS with UCT does
build a partial search tree and also has to update all
visited nodes of a solution during the backpropagation
step. Due to this more sophisticated selection-strategy,
MCTS is only able to perform the second highest average
number of rollouts. Of the three algorithms NRPA has
the lowest average number of rollouts. The reason for
this is keeping track of the underlying policy. It includes
updating the values of the policy accordingly as well as
creating copies of it for the nesting levels. There is a
visible trade-off between using more information during
the search and the number of performed rollouts.

Time Until Reaching Highest Score

Subfigure 4b shows the 95% confidence intervals for the
duration it took the three algorithms to reach the high-
est returned score. Again the means for MCTS [8, 15],
NMCS [5] and NRPA [19] are x̄durationMCTS ≈ 136,
x̄durationNMCS ≈ 117 and x̄durationNRPA ≈ 134 min-
utes, respectively. These values are rounded to the near-
est integer value. On average there only is a small differ-
ence in duration when comparing the three algorithms.
The fact that all three means and also all three confi-
dence intervals lie close to half of the available time of
five hours is more interesting. It implies that from this
point onward on average the three algorithms did not
find a better solution. This leads to the assumption that
the parameters determined in Subsection 5.1 are not per-
fectly fit for the five-hour timeframe. Judging from these
averages one could safely decrease the time-limit to three
hours and would still receive results of similar quality.

Highest Score

The last plot, Subfigure 4c, shows the 95% confidence
intervals for the highest score reached by the three
algorithms. Their means are x̄scoreMCTS ≈ 0.9423,
x̄scoreNMCS ≈ 0.939 and x̄scoreNRPA ≈ 0.9369 for
MCTS [8, 15], NMCS [5] and NRPA [19], respectively.
These values are rounded to the nearest ten thousandths.
It is visible that all three means and confidence intervals
result in a score above 0.93. Considering that the highest
possible score is 1 all three algorithms performed well.
From this observation one could make the assumption
that a more granular and detailed evaluation function
would have been applicable, making it harder for the
algorithms to reach scores close to the maximum.

As a next step three null hypotheses, namely that
for any of the three possible combinations of two algo-
rithms their means are equal, are set up. For all three
combinations a Welch Two Sample t-test is performed.
The p-values are 0.2327, 0.04179 and 0.4259 for MCTS
vs NMCS, MCTS vs NRPA and NMCS vs NRPA, re-
spectively. From this result it is safe to say that, with
the exception of MCTS vs NRPA, the null hypotheses
can not be rejected. For MCTS vs NRPA the p-value in-
dicates that there is a statistically significant difference
between the means of the two algorithms. Additionally
taking into concern the data shown in Subfigure 4c it
becomes visible that MCTS outperformed NRPA. Fol-
lowing this line of reasoning MCTS with UCT will be
considered as a candidate for the user study in the next
subsection.

5.3 User Study

To properly answer the research questions of this the-
sis it is important to let participants play the generated
levels. The level generators under consideration here are
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(a) Number of rollouts (b) Minutes until highest score (c) Highest score

Figure 4: Results of determining the highest scoring algorithm. The above figures show the 95% confidence intervals
with sample size 120.

the sample Random Generator [13], the improved con-
structive generator, the GA Search-Based Generator and
the highest scoring algorithm from Subsection 5.2, the
MCTS generator.

Setup of the Experiment

An online-survey was conducted, where participants
were asked to download and execute a .jar-file. This
survey-program is a modified version of the software used
to carry out the original pilot study. Upon starting the
program the participants were first informed about the
intention of the study, which is to compare preferabil-
ity of levels generated by different algorithms. Next,
one of the four games mentioned in Subsection 5.2 was
randomly chosen for them. The participants were then
presented with a handmade tutorial-level to get used to
the purpose and the controls of the selected game. Af-
terwards they were presented with one level from one
randomly chosen generators and upon finishing it with a
level from a different randomly chosen generator. Each
of the levels for each generator came from a pool of five
possible levels, where again always one was chosen ran-
domly. With four different algorithms there are six dif-
ferent combinations of pairing two of these algorithms.
Thus a complete run of the experiment consisted of play-
ing six pairs of levels, where the order of the two paired
algorithms was also randomised by the program. After
playing one pair, the participants were asked to state
their preference, if any, over the two recently played lev-
els. The possible answers to the question Which level
do you prefer? were Neither, First, Second and Equal.
After all six combinations of algorithms were presented
once, the experiment started over with a different ran-
domly chosen game. It was left to the participants to
decide when to stop the program, as it would otherwise
continue forever, but it was suggested that they at least

finish one complete run.

Setting up and carrying out the experiment was done
similarly to the original pilot study conducted by Khal-
ifa et al. [13]. The two studies differ only in the number
of algorithms being compared and partly in the games
available to the participants. In this user study four al-
gorithms were compared, while the original study only
concerned three algorithms. This results in setting up six
instead of three null hypotheses, each stating that there
is no preference between any two chosen algorithms.
Each of these hypotheses is likewise analysed using a
two-tailed binomial test between the number of times an
algorithm was preferred and not preferred. Contrary to
the initial research the Neither and Equal answers are
only discarded for the binomial test, but also discussed.
In the initial pilot study these answers were discarded
completely.

Results of the Experiment

The survey program, along with a short motivation, was
posted in Facebook groups related to studying at DKE
as well as distributed to friends and family. From this,
the age-range of the participants can be assumed to be
between 18 and 55 years. As the survey did not col-
lect any user-specific information, apart from a unique
user-id, no statement can be made about the distribu-
tion of male and female participants or their occupation.
Over the duration of one week 453 responses were col-
lected from 26 different participants. All participants
completed at least one whole run (six responses) and in
total 74 whole runs were conducted. The remaining 9
responses were not discarded as they only provide ad-
ditional information. The results of the experiment are
shown in Table 1, where each row corresponds to one of
the six possible combinations of algorithms.

From the information in Table 1 it becomes clear
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Preferred Not preferred Neither Equal Binomial p-value
Improved Constructive vs Random 61 4 10 1 3.919× 10−14

GA Search-based vs Random 36 8 27 5 2.545× 10−5

MCTS Search-based vs Random 37 5 27 5 4.434× 10−7

GA Search-based vs Improved Constructive 17 43 7 7 0.001066
MCTS Search-based vs Improved Constructive 14 43 9 10 0.0001539
MCTS Search-based vs GA Search-based 26 19 25 7 0.3713

Table 1: In the table above the rows represent the possible combinations of two algorithms. For each combination the
number and kind of collected responses is given. The two-sided binomial test was conducted between the Preferred
and Not preferred responses and expected them to be equal.

that we can reject the null hypotheses for the first five
combinations of algorithms. This implies that in these
cases the alternative hypothesis, namely that there is a
significant difference in preferability, holds. The sixth
null hypothesis, stating that there is no significant dif-
ference between the GA Search-based algorithm [13] and
the MCTS Search-based algorithm can not be rejected.

Upon closer inspecting the data, some interesting ob-
servations can be made. The first example is the first
combination of algorithms, the improved constructive
generator and the Random Generator [13]. It is clearly
visible that the number of times the improved construc-
tive generator, implemented in the course of this thesis,
was preferred over the Random Generator outweighs the
number of times it was not preferred. Also for the sec-
ond and the third combination of algorithms, the Ran-
dom Generator versus the GA Search-based and MCTS
Search-based generator, respectively, the later were more
preferred. For the next two combinations, the improved
constructive generator versus the GA Search-based and
MCTS Search-based generator, respectively, an interest-
ing observation can be made. While the p-value only
indicates that there is a significant difference in prefer-
ability, we can only make statements about which algo-
rithm was preferred more in terms of the collected re-
sponses. In both cases the improved constructive gen-
erator was preferred more often than the two search-
based generators. Since we were unable to reject the
null hypothesis for the last combination, the MCTS ver-
sus the GA Search-based Generator, we can only again
argue in terms of the available data. The MCTS Search-
based generator, implemented in the course of this thesis,
was preferred slightly more often than the original GA
Search-based Generator.

Apart from that the high number of Neither re-
sponses needs to be pointed out. One reason for par-
ticipants to respond in such a way would be if none of
the two presented levels were preferable. With 105 out
of 453 responses being Neither, almost one fourth of all
pairs of levels were either not enjoyable or not playable.
Equal was only selected as answer in approximately 7%

of the responses.

Discussion of the Experiment

In the initial pilot study [13] no significant difference
in preference could be observed between the Construc-
tive and the Random Generator. This was the reason
for setting up the first research question of this thesis
and trying to improve the Constructive Generator. From
the above described results it is clearly visible that im-
proving the constructive generator had the desired ef-
fect. The preferability of the improved constructive over
the Random Generator was the strongest of all possible
combinations of algorithms.

The second research question of this thesis can also
be answered from the previously presented results. Fail-
ure to reject the null hypothesis for the corresponding
combination of algorithms does not directly imply that
it holds. Yet from the gathered data it becomes clear
that the MCTS and the GA Search-based Generator
were nearly equally likely preferred, despite using dif-
ferent kinds of evaluation functions. It leads to the as-
sumption that MC search-based algorithms can indeed
be applied successfully to the problem of level genera-
tion.

Other insights on the problem at hand can be for-
mulated from the results of the experiment. First, the
improved constructive generator was the most preferred
algorithm over all combinations. This can be explained
by the fact that it utilises the information about the
games in a different way. As a result the underlying con-
cepts of the games are represented more properly than
in the case of the search-based algorithms. One exam-
ple for this is the game Aliens, where the concept of the
game is an avatar placed at the bottom of the screen,
having to shoot targets that are placed above him. In
the VGDL [10] representation this concept is only rep-
resented by limiting the avatars movement to a horizon-
tal line. While in the improved constructive generator
this can lead to placing the avatar on the bottom of the
level, the search-based algorithms tended to place the
avatar randomly, violating the idea of the game. This
is supported by the fact that the winner of the 2016
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GVG-LG competition also was an algorithm that is of
constructive nature [18]. Easablade, a multi-layered cel-
lular automaton, won the competition by a huge margin.
It used the VGDL description of the games to decide on
the parameters of the cellular automaton and iteratively
constructed a level from that. Additionally this set the
foundation for starting to develop Marahel, a descrip-
tion language for constructive generators, by Khalifa et
al. [11]. The second valuable insight is the high num-
ber of Neither responses. They indicate that the gen-
erated levels are far from being perfect. Here it seems
to be unimportant whether the level was generated us-
ing Simulation-based Fitness Functions or Direct Fitness
Functions [22]. Obviously with the later it is very hard
to ensure playability or even to represent the concept be-
hind games using a measurable quantity. But even with
Simulation-based Fitness Functions the same problem is
observable. While there might be an agent capable of
playing the generated level, there is no guarantee that
the way he finished the level represented the concept of
the underlying game. This problem was already partly
tackled during the initial research, by having an agent
that behaves more human-like [12]. Yet, until the agent
acts according to the idea of the game at hand, there
seems to be no huge improvement in quality of the levels
when utilising Simulation-based Fitness Functions over
Direct Fitness Functions.

6 Conclusions & Future
Research

The first conclusion to draw from the research conducted
in this thesis is that the original Constructive Genera-
tor can be improved to become distinguishable from the
Random Generator. It even becomes the most preferred
algorithm of the four algorithms under consideration in
the user study. This conclusion at the same time is
the answer to the first research question. The second
conclusion, in turn answering the second research ques-
tion, is that MC search algorithms [3] can as equally
likely be applied to the problem of level generation as
the genetic algorithm. Also results similar to the orig-
inal GA Search-based generator [13] can be reached by
the MC algorithms without needing the full five hour
time-window. This thesis also points out that the main
issue with search-based level generators in general is not
the algorithm itself, but the underlying evaluation func-
tions. In addition, the importance of the information
encoded in the VGDL [10] representation of the games
was learned in the course of this thesis, which becomes
visible from the high preference of the improved con-
structive level generator. Another conclusion is that all
levels, generated in the course of this thesis and the orig-
inal pilot study, are far from being perfect, with nearly

25% of responses by participants of the user study being
Neither.

While work on further improving the constructive
level generators has already been started [11], the fo-
cus for future research can be set into another direction.
One obvious next step is to further improve on the evalu-
ation functions utilised in the different search-based gen-
erators. Another possible field of study is to apply deep
learning algorithms to the problem of level generation.
For both of those suggestions it would be helpful to have
a larger pool of handcrafted levels available for all games
represented in VGDL [10]. From these either a suitable
evaluation function or the ideal layout of a level could
directly be learned. Alternatively these handcrafted lev-
els could be used to record the actions of a human player
playing the level, as well as his experience [23]. In turn
this information could then be applied to generate levels
that truly incorporate the concept of the game at hand,
rather than forcibly making the level playable at the cost
of ignoring its concept.
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