
A knowledge-based approach to Domineering
Department of Knowledge Engineering, Maastricht University, Bachelor Year 3

Florian van Daalen

June 20, 2012

Abstract

Domineering is a combinatoriall two-player
game for which a large number of boards has
been solved. This knowledge will be used in a
number of approaches to create AI’s capable of
playing the game. In order to compare the re-
sulting AI’s two base cases, a random player
and a player based on a very simple evaluation
function, are used. All the AI’s then perform
in a tournament in order to determine which
is the best. The results show that the resulting
AI’s with the current, limited, knowledge avail-
able are not good enough.

Keywords: Domineering, Knowledge-based ap-
proach, alpha-beta search, Subgames

1 Introduction
Domineering is a combinatoriall two-player game played
on a board consisting of small squares. The shape of
the board can vary from squares to an entirely irregular
polygon or any combination thereof. However in this
paper only rectangular boards will be considered. Both
players have a selection of dominoes which they can place
on the grid in turn, one player placing his dominoes in a
horizontal orientation, the other in a vertical orientation.
In this way the grid is slowly filled until one of the players
becomes incapable of making a move during his turn.
Whichever player is the first to find he has no valid moves
left loses.

Domineering has, in the past, been thoroughly looked
at. The game has been solved for a large number of
boards [4][7]. The goal of this paper is to attempt to ap-
ply this knowledge about solved games on the subgames
that naturally appear while playing. Doing this might
result in an algorithm capable of playing Domineering.

1.1 Structure of the paper

In Section 2 a number of different approaches to the
use of the knowledge will be presented together with
their resulting AI’s. Section 3 will discuss some improve-
ments. Section 4 will contain a comparison between the

different AI’s based on tournaments held on a number of
different board sizes. Finally in Section 5 a conclusion
will be made as to how useful the applied knowledge is
when playing Domineering, and if perhaps other meth-
ods would be more promising.

2 AI’s
There are a multitude of approaches possible for apply-
ing the knowledge about solved games to the subgames in
a larger game. To start with, one must think of a way to
compare different moves to each other. A good approach
to determine the strength of a move in any two-player
game is the alpha-beta algorithm [6] which all the follow-
ing AI’s use as their base. The knowledge about solved
games is then applied to the subgames one can observe
in a larger game and the resulting derivations are then
combined into something applicable to the larger game
as a whole.

2.1 Subgames

In order to be able to apply the knowledge about solved
games to subgames one must first define what exactly
a subgame entails as the definition can put restrictions
on the performance of the algorithm. For example, any
single empty square on the board could be defined to
be a ”subgame”, however looking at only one square at
a time surely is not the best option. Furthermore, the
absence of knowledge about non-rectangular subgames
restricts the algorithm to only use rectangular ” sub-
games”. This also means that non-rectangular subgames
need to be expressed in rectangular ones. ”Subgames”
are thus defined according to the following two rules:

1. A subgame is any possible rectangle that can be
made around an empty square on the board without
including occupied squares.

2. Any rectangle that is completely included in another
subgame is not a subgame.

Figure 1 shows an example configuration on a
6 × 6 board, Figures 2 to 6 show all subgames of the
configuration.



Florian van Daalen

Figure 1: A configuration on a 6 × 6 board

Figure 2: Subgame 1, 4 × 4 with value: 1

Figure 3: Subgame 2, 2 × 6 with value: 1

Figure 4: Subgame 3, 4 × 4 with value: 1

Figure 5: Subgame 4, 1 × 6 with value: H

Figure 6: Subgame 5, 6 × 2 with value: 1

(v. June 20, 2012, p.2)



Florian van Daalen

These subgames can then be valued according to
the following scheme [7] [3]:

1. First player win: 1

2. Second player win: 2

3. Horizontal player win irrespective of who starts: H

4. Vertical player win irrespective of who starts: V

2.2 Control-AI’s

In order to compare the AI’s to each other one first needs
a base case. After all, just comparing the AI’s amongst
themselves might give a distorted image of how effective
they really are given that the material they are compared
with might be significantly worse or better than a normal
player. Because of this two simple base cases were made.
The first base case is a random AI, which as the name
implies plays randomly. The second AI is an alpha-beta
based AI called the orderingbot.

Orderingbot

The evaluation function of OrderingBot is given by the
following formula[3]:

value = (real moves player) −
(real moves opponent) + (safe moves player) −
(safe moves opponent)

The safe moves are the moves one player is able to
make regardless of what the opponent will do. The
real moves are the total number of moves that are actu-
ally possible for the player, assuming the opponent does
nothing, given the current board. The higher the result-
ing value is, the better the move.

It is considered as a base case AI because this value
used for move ordering has a large effect on pruning in
an alpha-beta search [3], implying that it orders strong
moves relatively high. It also owes its name to the use
of the evaluation function as a move ordering.

2.3 AI’s

All of the following AI’s use the knowledge about solved
subgames [7] [3] in order to determine if a subgame is
a win or a loss. To give indications of the difference
between the bots the values for the horizontal and ver-
tical player for the configuration shown in Figure 1 will
be given for the deterministic bots. This is assuming
that that player is the first player. These scores give
an indication for which player this board would be more
favorable, whichever player gets the highest score finds
this board the most favorable assuming he is the first
player.

TotalVoteBot

TotalVoteBot uses the following evaluation function:

1. For all empty squares on the board give them a score
according to the following model:

(a) +1 for every subgame they are in that is a win
for the evaluating player.

(b) −1 for every subgame they are in that is a loss
for the evaluating player.

2. Sum the scores of all empty squares to get the score
of the complete board.

Vertical value: 50, Horizontal value: 62

MajorityBot

1. For all empty squares on the board give them a score
according to the following model:

(a) Give it one win vote for every subgame they are
in that is a win for the evaluating player.

(b) Give it one loss vote for every subgame they
are in that is a loss for the evaluating player.

(c) The final score is equal to 1 if there are more
win votes than loss votes, −1 in case of the op-
posite.

(d) In case of a draw, we arbitrarily assume it is a
win1.

2. Sum the scores of all empty squares to get the score
of the complete board.

Vertical value: 26, Horizontal value: 30

ProportionalBot

1. For all empty squares on the board give them a score
according to the following model:

(a) +1/n for every subgame they are in that is a
win for the evaluating player, where n is the
number of subgames this square is a part of.

(b) −1/n for every subgame they are in that is a
loss for the evaluating player, where n is the
number of subgames this square is a part of.

2. Sum the scores of all empty squares to get the score
of the complete board.

Vertical value: 23 1
3 , Horizontal value: 30

ProportionalOverlapBot

This bot applies a penalty based on the amount of over-
lap there is between subgames in an attempt to minimize
the amount of overlap. This is based on the notion that
the more overlap there is the more uncertain it becomes
that the values of the rectangular subgames are repre-
senting the true value of the game.

1. For all empty squares on the board give them a score
according to the following model:

(a) +1/n for every subgame they are in that is a
win for the evaluating player, where n is the
number of subgames this square is a part of.

1In hindsight it would’ve been better to give this a score of 0 as
this would most likely improve the AI. However the expectation is
that this improvement would not be large.

(v. June 20, 2012, p.3)



Florian van Daalen

(b) −1/n for every subgame they are in that is a
loss for the evaluating player, where n is the
number of subgames this square is a part of.

2. Sum the scores of all empty squares to get the total
score.

3. For each square in more than one subgame add +1
for each subgame more than one to the penalty.

4. Substract the penalty from the total score to get the
final score.

Vertical value: −8 2
3 , Horizontal value: −2

ProportionalSubgameOnlyBot

Similar to ProportionalOverlBot this bot gives a penalty
based on the amount of overlap between subgames, How-
ever it only looks at subgames and not at individual
squares on the board.

1. For all subgames that are present on the board in-
crease the total score as follows:

(a) +1/n for every subgame that is a win for the
evaluating player, where n is the number of sub-
games.

(b) −1/n for every subgame they are in that is a
loss for the evaluating player, where n is the
number of subgames.

2. For each square in more than one subgame add +1
to the penalty for each subgame more than one.

3. Substract the penalty from the total score to get the
final score.

Vertical value: −31.2, Horizontal value: −31

ProportionalAbsoluteBot

1. For all empty squares on the board give them a score
according to the following model:

(a) For every subgame that has a length and width
of more than one:

i. +1/n for every subgame they are in that is a
win for the evaluating player, where n is the
number of subgames this square is a part of.

ii. −1/n for every subgame they are in that is a
loss for the evaluating player, where n is the
number of subgames this square is a part of.

(b) For every subgame that has a length or width
of one:

i. +1/n× γ for every subgame they are in that
is a win for the evaluating player, where n is
the number of subgames this square is a part
of. γ is a preset weight.

ii. −1/n× γ for every subgame they are in that
is a loss for the evaluating player, where n is
the number of subgames this square is a part
of. γ is a preset weight.

2. Sum the scores of all empty squares to get the score
of the complete board.

Vertical value: 26 1
3 − 3 2

3γ, Horizontal value: 261
3 + 3 2

3γ

ProportionalAbsoluteSwapBot

This AI uses the same evaluation function as Propor-
tionalAbsoluteBot. However, normally in alpha-beta
search if one encounters two possible moves with the
same value, one picks the move that occurs first in the
move list. This AI has a small random chance of picking
the second move if it encounters a move that is equally
good as the current best move.

ProportionalAbsoluteRandomBot

This AI is a combination of the RandomBot and the
ProportionalAbsoluteBot. Each time it has to decide
on making a move it will randomly pick one of the two
AI’s to decide for it. This option was considered because
RandomBot in preliminary testing often got long lucky
streaks where it would make multiple decent moves in
a row. This led to the conclusion that a small chance
of doing something random would improve the AI as a
whole and make it less predictable [1].

OrderedAbsoluteSwapBot

This AI uses the same evaluation function as Proportion-
alAbsoluteSwapBot, however it uses the move ordering
that OrderingBot uses as its evaluation function. This is
done with the expectation that the move ordering would
improve the pruning in the alpha-beta search, possibly
leading to a better end result.

OrderingAbsoluteSwapBot

This is a combination of ProportionalAbsoluteSwapBot
and OrderingBot. ProportionalAbsoluteSwapBot occa-
sionally makes bad moves, such as placing a domino
against the side of the playing field instead of one row or
column away from it, whereas OrderingBot would never
do that. On the other hand OrderingBot has trouble
distinguishing between certain moves because in its eyes
they are equivalent. By combining the two it is hoped
that these problems are solved. They are combined in
the following way:

1. Calculate the score Naccording to OrderingBot

2. Calculate the score Maccording to ProportionalAb-
soluteSwapBot

3. The final score is: α ×N + β ×M , where α and β
are preset weigths

3 Improvements
After the initial tests some improvements were made in
hopes of increasing the performance of the eleven AI’s.

(v. June 20, 2012, p.4)



Florian van Daalen

3.1 Nondeterminism

After the initial tests it became clear that OrderingBot,
although potent in comparison to the others, was overall
one of the easier bots to play against. Due to its de-
terminism and simple evaluation function it is relatively
easy for a human to use a strategy to counter it. Fur-
thermore, given its simplicity it has a tendency of giving
the same score to a multitude of moves. For example:
when playing on an 8 × 8board, for its opening move
as horizontal, any move that is in the second or seventh
row and does not leave an odd number of squares empty
above or below it has an equivalent score. All of these
moves would be equivalently good opening moves. This
leads to the following change in the evaluation function:

value = (real moves opponent) −
(real moves player) + (safe moves opponent) −
(safe moves player) + λ
where λ is a random value from zero to one. This would
allow the bot to become nondeterministic making it a
more capable opponent against humans. Furthermore,
although moves that used to be equivalent will no longer
be, moves that were deemed better than others will not
suddenly become worse due to this addition. This is due
to the fact that if move A is better than B its score will
be at least one higher and the random factor is unable
to increase the score of B by enough to outrank A.

For similar reasons this random factor was also ap-
plied to TotalVoteBot and MajorityBot. However it was
not applied to the variations that used a proportional-
vote approach as these do not have integer scores, and
thus lack the clear classes in their scoring model of equiv-
alent configurations.

Furthermore, this nondeterminism meant all AI’s,
with the exception of ProportionalBot and the bots us-
ing overlap, have a random element in them. This makes
the tournaments more representable of a real situation.

4 Experiments and Results
In the following section the experiments and their results
will be discussed.

4.1 Initial experiments

In order to test the different AI’s a number of tourna-
ments were held, not including the improvements men-
tioned in Section 3. In these tournaments all bots played
10 matches against each other, both in the role as first
and as second player. Each bot has slight variations with
respect to search depth, and any other possible variable.
Furthermore, the tournaments were held on 5 × 5, 6 × 6
and 8 × 8 boards. For both the 5 × 5 and 6 × 6 board
45 different bots were tested. For the 8 × 8 board the
amount of bots was limited to 11. Summaries of the re-
sults of the tournament on the 5×5 board and the 8×8

board can be found in tables 1 and 2, respectively. The
6 × 6 results have been excluded from this paper due
to the similairity with the 5 × 5 results. Further results
can be requested from the author. In all cases the verti-
cal player is the first player. Furthermore, it should be
noted that no AI can ever win all matches. This is due
to the fact that it cannot win the matches against itself
as both the first and second player. Because of this any
AI will lose at least 10 matches in each tournament. The
following parameters where varied for each AI:

1. Search depth

2. Absolute: the weight given to the subgames with
a width or height of one by ProportionalAbsolute-
Bot, ProportionalAbsoluteSwapBot, OrderedAbso-
luteSwapBot, OrderingAbsoluteSwapBot and Pro-
portionalAbsoluteRandomBot.

3. Threshold: The chance of doing a random move
or choosing an equivalent move by Proportional-
AbsoluteRandomBot, ProportionalAbsoluteSwap-
Bot, OrderedAbsoluteSwapBot and OrderingAbso-
luteSwapBot.

4. Absolute weight, Ordering weight: The weights
used by OrderingAbsoluteSwapBot.

Discussion

Rapidly it became clear that TotalVoteBot, Majori-
tyBot, ProportionalSubgameOnlyBot and Proportion-
alOverlapBot were outclassed by the other AI’s. All of
them were barely capable of standing up against even
the random AI. Furthermore, OrderedAbsoluteSwapBot
had no significant difference in the results compared to
ProportionalAbsoluteSwapBot. This indicates that the
mere use of a better ordering did not result in better
pruning as hoped. ProportionalAbsoluteBot, Propor-
tionalAbsoluteSwapBot, ProportionalAbsoluteRandom-
Bot and OrderingAbsoluteSwapBot consistently occu-
pied the upper half of the rankings, with OrderingAbso-
luteSwapBot tending to outperform the others in most
cases. However, depending on the board size, the inter-
nal ranking could differ. Furthermore, one should note
that OrderingBot, although overall rarely ranked first,
had a tendency of outperforming the best AI when only
compared to that one.

Another thing worth noting is that the search depth
of the alpha-beta search did not seem to have a consis-
tently positive, or even negative, effect on the perfor-
mance of the algorithm. The winner of the 6 × 6 tour-
nament, for example, was a variation of OrderingAbso-
luteSwapBot with a search depth of 1. However, the
same variation but with a search depth of 2 resulted in
the second worst AI in this tournament, and a depth of
3 and 4 ended somewhere in the middle of the rankings.
A similar lack of consistency can be observed with the

(v. June 20, 2012, p.5)



Florian van Daalen

AI Vertical
win/total

Horizontal
win/total

total
win/total

ProportionalOverlapBot, depth: 1 40/450 30/450 70/900
ProportionalSubGameOnlyBot, depth: 1 43/450 41/450 84/900
MajorityBot depth: 1 50/450 87/450 137/900
OrderingAbsoluteSwapBot, depth: 2, absolute: 3, treshold: 0.05,
weigth absolute: 1, weigth order 5

29/450 111/450 140/900

TotalVoteBot, depth: 1 61/450 90/450 151/450
TotalVoteBot, depth: 2 33/450 132/450 165/900
MajorityBot, depth: 2 28/450 153/450 181/900
ProportionalBot, depth: 2 30/450 163/450 193/900
OrderingBot, depth: 2 62/450 140/450 202/900
ProportionalAbsoluteSwapBot, depth: 2, absolute: 2, treshold:
0.05

58/450 146/450 204/900

ProportionalAbsoluteRandomBot, depth: 2, treshold: 0.05, abso-
lute: 2

60/450 162/450 212/900

OrderedAbsoluteSwapBot, depth: 2, absolute: 2, treshold: 0.05 56/450 157/450 213/900
ProportionalOverlapBot, depth: 2 43/450 203/450 246/900
ProportionalSubGameOnlyBot, depth: 2 132/450 121/450 253/900
ProportionalAbsoluteBot, depth: 2, absolute: 3 75/450 180/450 255/900
RandomBot 127/450 180/450 307/900
ProportionalBot, depth: 4 96/450 280/450 376/900
ProportionalOverlapBot, depth: 4 120/450 286/450 406/900
MajorityBot, depth: 3 218/450 205/450 423/900
ProportionalOverlapBot, depth: 3 167/450 258/450 425/900
OrderingAbsoluteSwapBot, depth: 4, absolute: 3, treshold: 0.05,
weigth absolute: 1, weigth order 5

202/450 231/450 433/900

MajorityBot, depth: 4 206/450 228/450 434/900
OrderingBot, depth: 4 214/450 222/450 436/900
TotalVoteBot, depth: 3 223/450 231/450 454/900
OrderedAbsoluteSwapBot, depth: 4, absolute: 2, treshold: 0.05 208/450 257/450 465/900
TotalVoteBot, depth: 4 245/450 237/450 482/900
ProportionalAbsoluteSwapBot, depth: 4, absolute: 2, treshold:
0.05

220/450 262/450 482/900

ProportionalAbsoluteRandomBot, depth: 4, treshold: 0.05, abso-
lute: 2

201/450 285/450 486/900

ProportionalSubGameOnlyBot, depth: 3 271/450 147/450 518/900
ProportionalAbsoluteBot, depth: 4, absolute: 3 249/450 213/450 564/900
ProportionalSubGameOnlyBot, depth: 4 246/450 319/450 565/900
OrderedAbsoluteSwap, depth: 3, absolute: 2, treshold: 0.05 362/450 254/450 616/900
ProportionalAbsoluteSwapBot, depth: 3, absolute: 2, treshold:
0.05

277/450 340/450 617/900

OrderingAbsoluteSwapBot, depth: 3, absolute: 3, treshold: 0.05,
weigth absolute: 1, weigth order 5

308/450 345/450 653/900

ProportionalAbsoluteRandomBotBot, depth: 1, treshold: 0.05,
absolute: 2

339/450 351/450 690/900

ProportionalAbsoluteSwapBot, depth: 1, absolute: 2, treshold:
0.05

344/450 365/450 709/900

OrderedAbsoluteSwapBot, depth: 1, absolute: 2, treshold: 0.05 333/450 380/450 713/900
OrderingAbsoluteSwapBot, depth: 1, absolute: 3, treshold: 0.05,
weigth absolute: 1, weigth order 5

358/450 399/450 757/900

ProportionalAbsoluteBot, depth: 1, absolute: 3 377/450 386/450 763/900
OrderingBot, depth: 1 373/450 398/450 771/900
ProportionalBot, depth: 1 384/450 389/450 773/900
ProportionalAbsoluteBot, depth: 3, absolute: 3 326/450 338/450 774/900
ProportionalAbsoluteRandomBot, depth: 3, treshold: 0.05, abso-
lute: 2

376/450 429/450 805/900

OrderingBot, depth: 3 358/450 450/450 808/900
ProportionalBot, depth: 3 389/450 450/450 839/900

Table 1: Summary of initial results for the 5 × 5 board

(v. June 20, 2012, p.6)



Florian van Daalen

AI Vertical
win/total

Horizontal
win/total

total
win/total

TotalVoteBot, depth: 1 20/110 0/110 20/220
MajorityBot, depth: 1 30/110 0/110 30/220
ProportionalSubGameOnlyBot, depth: 1 30/110 10/110 40/220
ProportionalOverlapBot, depth: 1 40/110 30/110 70/220
ProportionalBot, depth: 1 73/110 42/110 115/220
ProportionalAbsoluteBot, depth: 1, Absolute : 3 87/110 42/110 129/220
ProportionalAbsoluteRandomBot, depth: 1, treshold: 0.05, abso-
lute: 2

84/110 50/110 134/220

OrderedAbsoluteSwapBot, depth: 1, absolute: 2, treshold: 0.05 84/110 55/110 139/220
ProportionalAbsoluteSwapBot, depth: 1, absolute: 2, treshold:
0.05

92/110 58/110 150/220

OrderingBot, depth: 1 100/110 91/110 191/220
OrderingAbsoluteSwapBot, depth:1, absolute: 3, treshold: 0.05,
weigth absolute: 1, weigth order: 5

99/110 93/110 192/220

Table 2: Summary of initial results for the 8 × 8 board

other AI’s. A possible explanation for this phenomenon
would be that many configurations have similar, if not
the same score. Furthermore, making move A first, then
move B has the same result as when one would first
make move B followed by A. This may lead the differ-
ent AI’s to evaluate two moves as equivalent when in
reality they are not. The only exception to this rule
was when the search depth allowed the AI to solve the
remainder of the current game, in which case it gave a
significant improvement. Although there is a lack of con-
sistency, odd depths do seem to outperform even depths.
This could be caused by the odd-even effect which oc-
curs frequently in alpha-beta and mini-max searches for
two-player games.

4.2 Final Experiments
For the final experiment the best values for the parame-
ters as found in earlier tests were used. Due to the fact
that odd depths seemed to outperform even depths, this
test only had depth 1 and depth 3. Furthermore, the im-
provements discussed in Section 3 have been applied to
the AI’s. It was only run on an 8× 8board. A summary
of the results can be found in Table 3.

Discussion
As can be seen very clearly the OrderingBot with its
improvements has become significantly better than the
other AI’s. Where earlier the difference between the top
bots was only a few matches it now has won roughly ten
percent more matches than its competitors. Other than
that there has not been much change.

5 Conclusion
In the end using the knowledge about the results of
subgames proved to be inefficient, as a simple evalu-

ation function is capable of outperforming any of the
proposed methods. A possible explanation for this is
that many configurations of subgames have equal val-
ues. Furthermore overlap is not covered by this knowl-
edge and attempts to manage this lack of information
by using various voting schemes failed. This caused the
AI’s to make mistakes when there was a lot of overlap
between different subgames. However, when the over-
lap was limited, some AI’s such as the ProportionalBot
and the ProportionalAbsoluteBot were fairly capable.
This overlap is solely caused by the lack of knowledge
about non-rectangular subgames, commonly refered to
as snakes [8]. Since the value of these non-rectangular
subgames is not known one has to make due with rect-
angular ones inevitably creating overlap and thus uncer-
tainty. This indicates that if one could add knowledge
about non-rectangular subgames, thus removing over-
lap between subgames, the AI’s would be significantly
improved. However, adequate knowledge about these
subgames is currently unavailable as far as known. Fur-
ther improvements could be made by using combinato-
rial game theory [5]. By using combinatorial game the-
ory one could get more accurate values for the subgames
than simply a win or a loss.

A final improvement to the knowledge could be made
by taking into account the number of moves a subgame
would take to win [2], as there could be a significant dif-
ference between a configuration where, for example, one
has two subgames which both can be won in four moves,
or a configuration with two subgames one of which can
be won in five moves, the other in three. However, cur-
rently these two configurations could be given the same
value by the evaluation functions used, as this is not
taken into account.

(v. June 20, 2012, p.7)



Florian van Daalen

AI Vertical
win/total

Horizontal
win/total

total
win/total

MajorityBot, depth: 1 40/220 0/220 40/440
ProportionalSubGameOnlyBot, depth: 1 40/220 0/220 40/440
TotalVoteBot, depth: 1 50/220 0/220 50/440
ProportionalOverlapBot, depth: 1 52/220 30/220 82/440
TotalVoteBot, depth: 3 70/220 30/220 100/440
MajorityBot, depth: 3 70/220 40/220 110/440
ProportionalSubGameOnlyBot, depth: 3 70/220 42/220 112/440
ProportionalOverlapBot, depth: 3 75/220 52/220 127/440
OrderedAbsoluteSwapBot, depth: 3, absolute: 2, treshold: 0.05 97/220 87/220 184/440
ProportionalAbsoluteSwapBot, depth: 3, absolute: 2, treshold:
0.05

103/220 97/220 200/440

OrderingAbsoluteSwapBot, depth: 3, absolute: 3, treshold: 0.05,
weigth absolute: 1, weigth order 5

130/220 109/220 229/440

ProportionalBot, depth: 1 133/220 129/220 262/440
ProportionalAbsoluteBot, depth: 3, absolute: 3 147/220 134/220 281/440
ProportionalAbsoluteBot, depth: 1, absolute: 3 173/220 110/220 283/440
ProportionalAbsoluteRandomBot, depth: 1, treshold: 0.05, abso-
lute: 2

174/220 124/220 298/440

OrderedAbsoluteSwapBot, depth: 1, absolute: 2, treshold: 0.05 178/220 121/220 299/440
ProportionalAbsoluteSwapBot, depth: 1, absolute: 2, treshold:
0.05

177/220 136/220 313/440

ProportionalBot depth: 3 187/220 132/220 319/440
OrderingAbsoluteSwapBot, depth: 1, absolute: 3, treshold: 0.05,
weigth absolute: 1, weigth order 5

189/220 170/220 359/440

ProportionalAbso- luteRandomBot, depth: 3, treshold: 0.05, ab-
solute: 2

189/220 173/220 362/440

OrderingBot, depth: 1 197/220 190/220 387/440
OrderingBot, depth: 3 196/220 207/220 403/440

Table 3: summary of final results for the 8x8 board

(v. June 20, 2012, p.8)



Florian van Daalen

Furthermore, the various AI’s seem to perform at
their best on shallow depths, with the exceptions of
depths that allow them to solve the remainder of the
game. If this also holds with the addition of non-
rectangular subgames this would be a significant advan-
tage given the exponential growth in time needed when
searching deeper.

In conclusion, as it stands now methods using the
knowledge about subgames are inferior to the simple
evaluation function. However with the possible addi-
tion of knowledge about differently shaped subgames,
more accurate knowledge provided by using combinato-
rial game theory to elaborate on the current values, and
the addition of knowledge about the amount of moves
required to win a subgame it is clear that there is room
for further improvement.

References
[1] Beal, D. and Smith, M.C. (1994). Random eval-

uations in chess. ICCA, Vol. 17, No. 1, pp. 3–9.

[2] Berlekamp, E.R., Conway, J.H., and Guy, R.K.
(2001-2004). Winning Ways for your Mathemat-
ical Plays, Vol. 1-4. A K Peters, Wellesley, MA.

[3] Breuker, D.M., Uiterwijk, J.W.H.M., and Herik,
H.J. van den (2000). Solving 8 x 8 domineering.
Theoretical Computer Science (Math Games),
Vol. 230, pp. 195–206.

[4] Bullock, N. (2002). Domineering: solving large
combinatorial search spaces. ICGA, Vol. 25,
No. 2, pp. 67–84.

[5] Conway, J.H. (2001). On Numbers and Games.
A K Peters, Natick, MA.

[6] Knuth, D.E. and Moore, R.W. (1975). An anal-
ysis of alphabeta pruning. Artificial Intelligence,
Vol. 6, No. 4, pp. 293–326.

[7] Herik, H.J. van den, Uiterwijk, J.W.H.M., and
Rijswijck, J. van (2002). Games solved: Now and
in the future. Artifical Intelligence, Vol. 134, pp.
277–311.

[8] Wolfe, D. (1993). Snakes in Domineering games.
Theoret. Comput. Sci. (Math Games), Vol. 119,
pp. 323–329.

(v. June 20, 2012, p.9)


