
Using Monte Carlo Techniques in the Game Ataxx

Evert Cuppen

June 22, 2007

Abstract

In this paper we will report research on an AI
player for the game Ataxx. We will imple-
ment a player that uses Monte Carlo search, im-
proved with domain knowledge and a structural
enhancement. We will test this player against a
player that uses the αβ-algorithm, which is the
standard implemented algorithm for this game.

1 Introduction
In recent years, the computer has become a serious op-
ponent for humans in many games. A very widely known
example is the game of chess. In this field, the computer
is able to challenge the best players in the world [4]. In
other games however, the computer has never been a
real threat to most human players. An example is the
game Ataxx, because of the high complexity [1, 7]. It is
a relatively unknown game and little research has been
done so far. However, some methods have already been
proposed to make the computer able to play the game
[1]. These methods are mostly the minimax and alpha-
beta algorithm. These algorithms look for the best move
from all possible moves in a depth of n moves, where n
is the number of moves you want to look ahead. Also,
some simple heuristics have been used to decide the com-
puter’s move.

One new approach though is an AI using Monte Carlo
techniques. Monte Carlo techniques have proven to be
very useful in all kinds of other domains, including games
like Go [2]. It was found that such techniques are espe-
cially worthwhile when not much domain knowledge is
available. The Ataxx game also belongs to that domain,
so researching Monte Carlo techniques will be very inter-
esting. This brings us to the following research question:
“Can we build a strong AI player for the game Ataxx us-
ing Monte Carlo techniques?”

The remainder of the paper is structured as follows.
First, we will explain the rules of the game in section 2.
In this section we will also discuss some properties of the
game. In section 3 we will explain the different stages of
creating and improving the Monte Carlo AI. In section
4, we will explain all the algorithms we have used for
comparison, explain the setup of the experiments and

show the results. Then in section 5, we will give our
conclusions and give suggestions for future research.

2 The game Ataxx
The name of the game of Ataxx comes from the word
‘attack’, because each player must play very aggressively
to be able to win. Its origin is not known, but it seems to
have been developed near 1990. It is also known by other
names, like Spot, Infection, Microscope, SlimeWars and
Frog Cloning [1, 7].

2.1 Rules of the game

The game Ataxx is played by 2 players, Red and Blue, on
a 7×7 game board. In all the figures in this paper, we use
white and black stones for visibility. White represents
the Red player, Black represents the Blue player. Both
players move alternatively. In the starting position (see
figure 1), both players have 2 stones. White plays the
first move. The goal of the game is to have more stones
than your opponent when the game ends.

Figure 1: The starting position.

Playing a move
At each turn, a player plays a move if possible. For this,
you have two options. You can choose to copy a stone,
or to jump with a stone. Both types of moves are only
possible when moving to an empty square. When you
copy your stone, you can move to all empty adjacent
squares (the white squares for the upper left stone in



Evert Cuppen Using Monte Carlo Techniques in the Game Ataxx

figure 2). When you jump, your stone is not copied, and
the stone will be moved to an empty square adjacent
to the copying squares (the black squares for the upper
left stone in figure 2). When you jump, you can cross a
greater distance, but the stone will not copy.

Figure 2: Possible moves for the upper left stone.

Furthermore, with both types of moves, you will take
over any stones that are adjacent to the square you are
moving to. In other words, all these stones will change
to your color. This is illustrated in figures 3 and 4.

Figure 3: Copying a stone.

Figure 4: Jumping with a stone.

End of the game
The game ends when all of the 49 squares are filled with
stones. The player with the most stones will win the

game. The game also ends if one of the players has no
stones left. He will lose then.

It can happen that one player has no legal moves,
because none of his stones can reach an empty square.
If that happens, his turn is skipped and the other player
can play another move. This continues until the board
is full or until the player gets a legal move again.

Sometimes there is another special rule. In theory, it
can happen that the game goes on forever if both play-
ers jump all the times and the game gets in some kind
of deadlock. There are rules to prevent this. However,
there is no fixed rule for the game. In some game imple-
mentations, none exists at all. Even though a deadlock
does not occur very often, we have encountered some
in our tests. Therefore we have implemented the rule
that if a board position is encountered for the third time
with the same player to move, the game ends and the
player with the most stones wins. It can also be a draw
if both players have the same amount of stones on the
board. It can be argued that declaring a draw when this
rule applies (like in chess) is better. We have used the
first version of the rule though. This does not influence
the test results much, because this situtation occurs very
rarely.

3 Implementing Monte Carlo
techniques

In this section we discuss the different stages of creating
an AI that uses Monte Carlo techniques. The goal for
each AI is to select a move as good as possible in a given
position, if possible the best move. First, we discuss
the basic algorithm. Second, we explain how domain
knowledge can be used to increase the performance of
the basic algorithm. In the final subsection, we describe
a structural enhancement that has been made for even
further improvement.

3.1 Basic Monte Carlo algorithm

The basic idea of the Monte Carlo algorithm is to give
each possible move in a given position some kind of score
or evaluation to indicate the quality of the move. To
do this, the Monte Carlo algorithm plays a number of
random games for each first move. With a random game
we mean that at each turn a random move is chosen from
all possible moves. The algorithm plays until the game
ends and then evaluates the final score. This is done by
an evaluation function, like for example the number of
stones or just win, loss or draw. To give a score to each
first move possible in the original position, an average
of all simulations with that first move is computed. The
move with the best average is then chosen.

The choice of the evaluation function can influence
the results. If we would choose to evaluate only win, loss

(v. June 22, 2007, p.2)



Using Monte Carlo Techniques in the Game Ataxx Evert Cuppen

or draw, then the weakness is that it does not matter for
the function whether you win with an overwhelming ma-
jority or wether you win just with a 1-stone difference.
This means there will be no distinction between two win-
ning moves, although one can be a very good move and
the other just an average move.

Now, if we choose to evaluate the number of own
stones minus the number of the opponent’s stones, we
will have another weakness. Suppose the game is almost
finished and still has 1 or 2 empty squares available. If
both players are balanced, this function will evaluate a
board position with 25 vs 24 stones almost the same as
one with 24 vs 25 stones. However, this is the difference
between winning and losing the game. In this case the
difference between these two should be larger.

Therefore, we will use an evaluation function that
uses both of these principles. Points are rewarded for
winning, and the more stones you have the more points
you will get. The details of the evaluation function we
use are discussed in section 4

3.2 Using domain knowledge

The basic Monte Carlo algorithm still plays seemingly
randomly and needs improvements. One of the most
important issues here is the amount of legal moves that
are possible in each position. Most of the times there
are more than 50 moves possible (except in the begin-
ning). A game lasts for at least 45 moves if no jump
move is executed in the entire game (and if we assume
that no player loses all of his stones before the end of
the game). In practise, a game will last at least for 50
moves. Even with this lowly estimated amount of moves,
the amount of possible games that can be played will be
larger than 5050 ≈ 8.9 · 1084. A Monte Carlo simula-
tion of 1000 games needs a few seconds to be calculated
in the beginning of the game, but 1000 simulations on
8.9 ·1084 possibilities is just a tiny fraction of all possible
games that can be played. Although Monte Carlo always
simulates a small fraction of all possibilities, we should
improve its efficiency. We do this by decreasing the num-
ber of moves that this algorithm looks at to increase the
number of simulations done for the best possible moves.

To do this, we will implement domain knowledge into
the algorithm. For example, jumping to a square with
no surrounding stones is a move you do not want to con-
sider. However, we have to be careful with the process of
eliminating ‘bad’ moves, because they might seem bad
at first, but might be very good when you look deeper.
Also, we have to find a balance between the amount of
heuristics to evaluate a move and the time needed to cal-
culate them. In general, simulation time should be spent
on the best moves as much as possible, but also as many
simulations as possible have to be done.

Implemented domain knowledge

Here we will explain how we used domain knowledge
in the game to improve the Monte Carlo algorithm.
To implement knowledge, we will give a score to each
possible move. This is done with the following heuristic:

The score Si for each move mi starts with value
0, and is modified by the following:
+s1 for each enemy stone taken over
+s2 for each own stone around target
+s3 if move is not a jump move
−s4 for each own stone around the source square (if the
move is a jump move)

If Si < 0, then we set Si = 0.

In our program we use s1 = 1, s2 = 0.4, s3 = 0.7, s4 =
0.4. The chosen values have been experimentally
determined.

The formula rewards a move that captures a lot of
enemy stones. Also, you get points for own stones sur-
rounding the target, since this decreases your vulnera-
bility. Copying is preferred, since this gives you an extra
stone. Finally, if a jump move is executed, you get a
penalty for each own stone surrounding the origin of the
move, since this creates a vulnerable spot.

Note that this heuristic does not evaluate a given
position, but only the effect of a given move. The rea-
son for doing this is twofold. First, very little domain
knowledge is known and it is therefore not yet possible
to write a decent evaluation function that can be used
for each and every move. Something like the number of
own stones is by far not good enough, since the amount
of stones that can be taken over by a single move can
be 8. Second, by looking only at the direct impact of a
move the calculation time is decreased dramatically. In-
stead of looking at the entire board (49 positions), you
only look at 2 positions (the origin and destination of a
move). This means that more simulations can be done.

With the calculated score Si we can direct the
Monte Carlo simulations. Without domain knowledge,
each possible move in a given position is chosen with an
equal chance (uniform distribution). With the domain
knowledge, a move with a larger Si is chosen more of-
ten. The chance P (mi) for each move mi to be chosen is:

P (mi) = S2
i∑M

j=1
S2

j

where m1,m2, ...,mM are all legal moves and
S1, S2, ..., SM are their scores. It can happen that
a move scores terribly on the heuristic and has a score
of 0. If this happens, then P (mi) = 0 and the move is
ignored.

(v. June 22, 2007, p.3)



Evert Cuppen Using Monte Carlo Techniques in the Game Ataxx

3.3 Structural enhancement

As a structural enhancement for the Monte Carlo algo-
rithm we have implemented the idea of playing a tourna-
ment of three rounds. In the first round, the simulation
is done as usual. This gives a score to each possible move,
some of them simulated more often than others. Next,
the best 5 moves with the highest score are selected and
go to the second round, where more simulations are run
on those 5 moves. Finally, the 3 best moves of those 5
moves are chosen for the grand finale, where they are
simulated even more. The best of those 3 moves after all
simulations are done is chosen as the move to be played.

4 Experiments
In this section we will explain the algorithms and the
variations we tested and show the test results. Our
main focus will be the Monte Carlo player (MC) and
the Monte Carlo player which uses domain knowledge
(MCD). They will play against the alpha-beta player
(AB) for comparison.

The alpha-beta algorithm (αβ) is one of the basic
algorithms used to search a tree in a depth of n. In our
case, it searches all possible move variants up to a depth
of n and selects the move with the best score. This score
is given by an evaluation function that evaluates all tree
leaves. If there are multiple moves with the same best
score, than the first best move encountered is chosen as
the best move. We can also choose to select a random
move among the best moves by adding a small random
factor to the evaluation. In each position we also sort the
possible moves. They are sorted according to the number
of stones that are taken over. This sorting decreases the
calculation time in some positions with a factor 20. For
more information and implementation details on alpha-
beta, we refer to [6].

4.1 Set-up

We use the same evaluation function for both αβ and
the Monte Carlo algorithm. For αβ this evaluation is
done for the position after n moves. For the Monte
Carlo algorithm, this evaluation is done after the game
is finished. The evaluation score E of a position p is the
following:

E(p) = Nown −Nopp

where Nown is the number of own stones and Nopp the
number of stones from your opponent. If the game
is finished, then E(p) = E(p) + 50 if you win, or
E(p) = E(p) − 50 if you lose. If a game is finished
before the board is filled, then an extra penalty is given.
This means that E(p) = E(p) + 500 if you win, or
E(p) = E(p)− 500 if you lose.

We have a number of options we can vary in our tests
with MC. We can choose whether to use domain knowl-
edge and whether to play a tournament. In addition, we
can also use the option to vary the amount of simula-
tions depending on the number of empty squares left in
the game. If we vary the amount of simulations, the al-
gorithm runs more simulations when the board gets filled
with stones. This is possible since the number of moves
needed to end the game will be less and more simulations
can be done in the same time. The amount of simula-
tions run on a position is Stotal = Sbasic ·(1+0.1·nfilled),
where Sbasic is the basic amount of simulations done with
an empty board and nfilled is the total number of stones
on the board.

Finally, we can also vary the number of basic simula-
tions (Sbasic). You can set the basic amount of simula-
tions for each round of the tournament. A setting with
basic simulations 600, 600 and 300 means that 600 basic
simulations are done for the first round, divided over all
possible moves as explained in subsection 3.2. For the
second round, 600 simulations are done for the best 5
moves. Finally, in the last round, 300 simulations are
done for the best 3 moves.

We can also choose to vary the amount of moves
looked ahead with αβ. This is done because αβ needs
less calculation time in the endgame. αβ looks 4 moves
ahead by default. If we use this option it looks ahead 5
moves when there are 5 empty squares left and 6 moves
ahead when there are 2 empty squares left.

4.2 Results

In order to test the performance of the Monte Carlo play-
ers, we will let them play against AB and compare the
percentage of games won.

One problem arises here. In early tests, it was noti-
cable that it is pointless to test entire games. AB always
wins from every variation of Monte Carlo. Even with
a lot of simulations it gets beaten easily by AB. The
basic MC algorithm is often beaten after only 10 moves.
The number of simulations does not even seem to matter
much.

If we look at MCD, the results are a bit similar. The
same happens as with MC. MCD plays too weak in the
beginning of the game and is therefore beaten in every
setting we tried. The big difference however is that the
MCD plays much better and does not get beaten early
on. It plays weak but gets stronger each time the board
gets more filled with stones. In the endgame it seems to
play pretty strong, but it never wins from AB because
it played bad moves in the opening.

Even though MCD cannot win from AB, it is no-
ticeable that it plays stronger in endgames. Therefore,
we will test different positions with a varying number
of stones on the board (and thus a varying amount of

(v. June 22, 2007, p.4)



Using Monte Carlo Techniques in the Game Ataxx Evert Cuppen

empty squares remaining). We can test when and how
MCD can play stronger, because it does not suffer from
a bad opening this way. We test this in two different
ways. First, we use a combination of an AB player and
an MCD player (AB+MCD). This player uses αβ until
there are nempty empty squares left. From that point on
in the game, the player will use the Monte Carlo algo-
rithm with domain knowlegde. We vary nempty from 31
to 49. Second, we test with a selection of saved board
positions (see appendix A) from real games played by a
human player on the internet, with a given number of
empty squares.1 We wil play games with AB+MCD vs
AB and vice versa.

MCD vs AB and MCD vs Human
First of all, we try some board positions and use MCD
vs AB, where both players play both sides a number
of times. We test the same for MCD vs Human. The
results are shown in table 4.2. For the positions tested,
see appendix A. In this table, H stands for the human
player. For the settings, we use tournament and varying
amount of simulations (with basic 600 for 1st round, 600
for 2nd round and 300 for the last round). AB looks 4
moves ahead and increases this near the end as described
earlier. The AB player does not play a random move yet
(from the best moves possible), but selects the first best
move it encounters. We let both algorithms play for
both sides to get a fair result. With MCD vs AB, 10
games are played for each position, divided equally over
both sides. In position 11, MCD played 3 games with
White (W) against the human player, and 3 games with
Black (B). AB played 2 games with each color against
the human player. In position 4, MCD played 3 games
with White and 4 games with Black against the human
player. The percentages shown in the table for each color
indicate the win percentage of the first algorithm with
that color against the second algorithm playing the other
color.
What we can see so far is that MCD seems to play better
than AB in these ending positions. We see a winning
rate of 100% for one color and 0% for the other color in
most positions. Both algorithms won every game with
the same color here, so it seems the position has a clear
winner. Noticable are the percentages in position 11
where MCD played against the human player. Here,
both players won 1 time with the losing side and made a
small error. Also, AB had no chance against the human
player in this position, but MCD did. Furthermore, in
position 4, MCD has a much higher winning rate than

1The human player was R. Cuppen, who is a regular player on
the internet site www.jijbent.nl with the nickname W84Me2Win.
See http://www.jijbent.nl/ratings.php for his Ataxx ranking. Be-
cause the game is relatively unknown and there are no clubs for
Ataxx, it is hard to indicate how well he plays, but his ranking on
the website indicates he certainly plays above average.

Empty MCD vs AB MCD vs H AB vs H
P3: 3 W: 100% – –

B: 0% – –
P1: 5 W: 0% – –

B: 100% – –
P11: 8 W: 100% W: 67% W: 0%

B: 0% B: 33% B: 0%
P4: 11 W: 80% W: 67% –

B: 100% B: 75% –
P14: 13 W: 0% – –

B: 100% – –

Table 1: Win percentage in different positions with a
different amount of empty squares for both algorithms.

AB and almost permanently wins the game with both
sides.

Next, we test more board positions. The number of
empty squares on the 21 different board positions we
used varies from 3 to 39. One important difference is
that the AB player now selects a random move from the
best moves. MCD uses tournament play and a varying
amount of simulations. We test all board positions with
3 different amounts of simulations for MCD. The results
obtained are shown in figure 5. In this figure, MCD
300 is the result of MCD with basic simulations 300,
300 and 150. MCD 600 is similar with basic simulations
600, 600 and 300. For each position and both MCD 300
and MCD 600, 10 games are played with MCD vs AB,
equally divided over both players.

Figure 5: Win percentages of MCD vs AB for different
board positions.

In these results we see the effect of the random move
used in AB. The positions that were tested earlier where
AB did not play a random move yet were a subset of the
tested positions here. For all positions that were also

(v. June 22, 2007, p.5)



Evert Cuppen Using Monte Carlo Techniques in the Game Ataxx

tested earlier, MCD has a lower winning rate in these
new tests with a random move for AB.

We also see in these results that MCD has a win
percentage of about 50 percent in positions with a low
amount of empty squares. However, we see a drop in win
percentage as the number of empty squares increases.
The difference between the amount of simulations is not
much, although we notice that MCD 600 wins a bit more
often with more empty squares.

AB+MCD vs AB
Next, we test AB+MCD vs AB. We vary nempty from 31
to 49. These results are shown in figure 6. In this figure,
MCD 300 is the result of MCD with basic simulations
300, 300 and 150. MCD 600 is the same with basic sim-
ulations 600, 600 and 300, and MCD 1200 is the same
with basic simulations 1200, 1200 and 600. The calcula-
tion time of MCD 1200 is already quite high compared
to AB. That is why we do not test with more simula-
tions. For each value of nempty and each of the three
simulation settings, 10 games are played with MCD vs
AB, equally divided over both players.

Figure 6: Win percentages of AB+MCD vs AB for dif-
ferent numbers of empty squares (nempty).

Here we see a similar result as with the tested po-
sitions. The win percentage is about 50 percent if the
switch of AB+MCD from AB to MCD happens later in
the game (with less empty fields). This is because with
nempty = 49, the players are both AB in practise. With
nempty = 48, only the last or the last few moves are
chosen by an MCD player. We see a slow decrease with
an increase of empty fields. The more the MCD player
plays in the endgame, the lower the win percentage gets.

What we can see clearly in this figure is a higher win
percentage for a higher amount of simulations. Espe-
cially between nempty = 30 and nempty = 40 MCD 1200
wins more often than both of the others.

5 Conclusions
In this paper we have implemented and tested a Monte
Carlo player for the game Ataxx. We have implemented
different levels of enhancement of Monte Carlo. In early
tests, it was obvious that the simple Monte Carlo player
lost every game against the Alpha-Beta player (AB).
Therefore, we compared the best version that uses do-
main knowledge and tournament play, the Monte Carlo
Domain Player (MCD), with AB. Even here, it was ob-
vious that the MCD-player could not win from AB, be-
cause it plays bad moves in the opening. Therefore, we
tested MCD against AB in real game positions in a later
stage of the game. We also combined MCD with AB
to test the effectiveness of MCD in later stages of the
game. The results showed that MCD plays stronger in
the endgame and also a bit stronger with more simula-
tions, but never obtains a win percentage above 50%. It
does not play stronger than AB.

This also gives us the answer to our research ques-
tion: “Can we build a strong AI player for the game
Ataxx using Monte Carlo techniques?”. MCD has se-
vere weaknesses and is not a very good player in itself.
For example, the MCD plays inpredictable, especially in
the opening. Sometimes it plays very well, but other
times it plays badly. Especially in the opening of the
game MCD does not play good moves.

However, in the endgame it shows some stronger
points and possibilities. In the endgame less moves are
possible and MCD can simulate a larger part of all pos-
sible games. Moves are chosen more accurately and less
unpredictable, which means the MCD player plays bet-
ter.

For future research, the MCD player can be im-
proved. One major disadvantage at this moment is the
shortage of domain knowledge for this game. With more
domain knowledge, the quality of the evaluation of a
move or position can be improved and the simulations
can be run more accurately and efficiently. It might
be possible to decrease the complexity of the game by
efficiently eliminating moves that are classified as bad
moves. Furthermore, more structural enhancements are
possible. In our paper we only implemented tournament
play, but there are some more, like Monte Carlo tree
search [3] or UCT [5], that can be implemented.

Another option is to do more tests. Testing games
with MCD takes much time and due to time restric-
tions and other circumstances less tests are done than
desired. With more testing, more accurate results can
be obtained. Variations in the evaluation function and
the implemented domain knowledge can be tested to im-
prove MCD. Also, we used only a small amount of test
positions. It is possible that these game positions have
certain properties which cause MCD to play relatively
weak or strong. Using a larger, more representational,

(v. June 22, 2007, p.6)



Using Monte Carlo Techniques in the Game Ataxx Evert Cuppen

test set would give a more accurate indication of the
overall game performance of MCD.

With these improvements, a Monte Carlo player
might be able to play stronger in the opening and ac-
tually become a challenge to the Alpha-Beta player over
the entire game.

References
[1] Alain Beyrand (2005). Ataxx !!

www.pressibus.org/ataxx/indexgb.html.

[2] Bouzy, Bruno (2005). Associating domain-
dependent knowledge and Monte Carlo ap-
proaches within a Go program. Information
Sciences, Heuristic Search and Computer Game
Playing IV, Vol. 175(4), pp. 247–257.

[3] G. Chaslot, B. Bouzy J.W.H.M. Uiterwijk,
J.-T. Saito and Herik, H.J. van den (2006).
Monte-Carlo Strategies for Computer Go.
BNAIC’06: Proceedings of the 18th Belgium-
Netherlands Conference on Artificial Intelli-
gence (eds. W. Vanhoof P.Y. Schobbens and
G. Schwanen), pp. 83–90, University of Namur,
Namur, Belgium.

[4] IBM (2007). Ibm research. www.research.
ibm.com/deepblue/home/html/b.html.

[5] Kocsis, L. and Szepesvri, C. (2006). Bandit based
Monte-Carlo planning. European Conference on
Machine Learning, pp. 282–293.

[6] Stuart Russell, Peter Norvig (2003). Artificial In-
telligence, A Modern Approach, Second Edition.
Prentice Hall, New Jersey.

[7] Wikipedia (2007). Wikipedia, the free encyclope-
dia. en.wikipedia.org/wiki/Ataxx.

A Test positions
In this appendix we will give the 22 test positions we
used in our tests.

Figure 7: Position 1 with 5 empty sq., White’s turn.

Figure 8: Position 2 with 29 empty sq., Black’s turn.

Figure 9: Position 3 with 3 empty sq., White’s turn.

Figure 10: Position 4 with 11 empty sq., White’s turn.

Figure 11: Position 5 with 22 empty sq., White’s turn.

Figure 12: Position 6 with 14 empty sq., Black’s turn.

(v. June 22, 2007, p.7)



Evert Cuppen Using Monte Carlo Techniques in the Game Ataxx

Figure 13: Position 7 with 19 empty sq., Black’s turn.

Figure 14: Position 8 with 32 empty sq., Black’s turn.

Figure 15: Position 9 with 37 empty sq., Black’s turn.

Figure 16: Position 10 with 23 empty sq., White’s turn.

Figure 17: Position 11 with 8 empty sq., White’s turn.

Figure 18: Position 12 with 24 empty sq., White’s turn.

Figure 19: Position 13 with 19 empty sq., Black’s turn.

Figure 20: Position 14 with 13 empty sq., Black’s turn.

Figure 21: Position 15 with 22 empty sq., White’s turn.

Figure 22: Position 16 with 30 empty sq., White’s turn.

(v. June 22, 2007, p.8)



Using Monte Carlo Techniques in the Game Ataxx Evert Cuppen

Figure 23: Position 17 with 39 empty sq., White’s turn.

Figure 24: Position 18 with 7 empty sq., White’s turn.

Figure 25: Position 19 with 15 empty sq., White’s turn.

Figure 26: Position 20 with 19 empty sq., White’s turn.

Figure 27: Position 21 with 28 empty sq., White’s turn.

Figure 28: Position 22 with 26 empty sq., White’s turn.

(v. June 22, 2007, p.9)


