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ABSTRACT

In 2003, the solution for the 5×5 Go board was published in this journal. The current article presents
the game-theoretic values for rectangular boards up to a surface of 30 intersections under Chinese
rules. The result was achieved by improving the αβ-based solver MIGOS. Moreover, the article
identifies errors in published human solutions by comparing them with our computer solutions.

1. INTRODUCTION

Already for fifty years, building strong game-playing programs is one of the main targets of AI researchers. The
principal aim is to witness the “intelligence” of computers. In the last twenty years a second aim has emerged:
establishing the game-theoretic value of a game (van den Herik, Uiterwijk, and van Rijswijck, 2002). The game-
theoretic value indicates whether a game is won, lost, or drawn when both players play optimally. In Go it also
provides the amount of points by which a game is won (or lost), which is important because the second player
normally receives komi points to compensate the advantage of the initiative (Uiterwijk and van den Herik, 2000).
For solving a game, three “layered” definitions exist (Allis, 1994).

Ultra-weakly solved. For the initial position, the game-theoretic value has been determined. The game of Hex
is an instance of an ultra-weakly solved game (Nash, 1952).

Weakly solved. For the initial position, a strategy has been determined to obtain at least the game-theoretic value
of the game. The following games were weakly solved: Go-Moku, (Allis, van den Herik, and Huntjens,
1996), Nine Men’s Morris (Gasser, 1996), Renju (Wágner and Virág, 2001), Checkers (Schaeffer et al.,
2007), and Fanorona (Schadd et al., 2008).

Strongly solved. For all legal positions, a strategy has been determined to obtain the game-theoretic value of the
position. Examples are Kalah (Irving, Donkers, and Uiterwijk, 2000), Awari (Romein and Bal, 2003), and
Connect-Four (Tromp, 2008).

When solving a game is intractable with current hardware means, researchers have tried solving the smaller
variants. For instance, the 8×8 variant of Hex (Henderson, Arneson, and Hayward, 2009) and the 6×6 variant
of LOA (Winands, 2008a) have been solved recently. Solving smaller variants is relevant for the following three
reasons. (1) Solving smaller variants may function as a pre-study for solving the regular variant. (2) The smaller
variants are studied by humans who are curious for the results (e.g., as for 5 × 5 Go, Davies, 1994). (3) The
results can be used for subgames when playing a game at the regular board size (Müller, 1995).

Solving small Go boards has also been a popular topic of research. The earliest computer analysis for Go on
smaller boards were reported by Thorp and Walden (1972). The largest boards investigated by them were 1×5,
2×4, and 3×4. In the following years more computer proofs were established (e.g., 4×4 by Sei and Kawashima,
2000). Up to now, the largest square board for which a computer proof has been published is 5×5 by van der
Werf, van den Herik, and Uiterwijk (2003). It is a full-board win for the first player (Black).
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For the bigger rectangular boards (e.g., 4×7, 3×8, 5×6), the published (numeric) results are human solutions. A
complication is that the rule set used is not consistent and sometimes even unspecified. For some boards Chinese
rules are used, for others New Zealand or American rules are applied. But the biggest problem is that these
solutions, as for instance the ones reported in van den Herik et al. (2002) and Drange (2002), contain several
errors irrespective of the rules used.

This article presents a search-based approach of weakly solving rectangular boards up to a surface of 30 in-
tersections. The search method is the well-known αβ framework extended with several domain-dependent and
domain-independent search enhancements. The program is called MIGOS II, an improved version of the one that
solved 5×5 Go. Moreover, in this article we perform together with Ted Drange (2009) a detailed comparison
with a selected number of human solutions.

The article is organized as follows. Section 2 briefly provides details of the rule set used. Section 3 describes
the new enhancements in MIGOS. The results of rectangular boards with sizes up to 30 intersections are given
in Section 4. Subsequently, Section 5 identifies the errors in the human solutions by comparing them with the
computer solutions. Finally, Section 6 gives conclusions and an outlook.

2. GO RULES

This section briefly describes the rules used in the program MIGOS. It is beyond the scope of this article to
explain all rules in detail. For a more elaborate introduction we refer to van der Werf (2004).

Many rule sets exist for the game of Go (e.g., Chinese, Japanese, American, SST (Ing), New Zealand). Although
all major rule sets agree on the same general idea of how the game is to be played, there exist several subtle
differences. These differences mainly deal with repetition (the ko rule), life and death, suicide, and the scoring
method at the end of the game.

The primary difference between rule sets is the scoring method. The two main scoring methods are: (1) area
scoring, which counts intersections on the board that are occupied or controlled by one colour, and (2) territory
scoring, which counts intersections surrounded by living stones plus prisoners (dead/captured opponent stones).
In practice, it is rare to observe more than a one-point difference between scoring methods. However, the typical
one-point difference may appear in roughly 50% of the games.

The scores under Japanese rules (using territory scoring) come from a fine-grained distribution (taking steps of
one point). The scores under Chinese rules (using area scoring) are more sparse (they are peaked in steps of two
points because one-point steps under area scoring require neutral intersections, which are rare). As a consequence
one may argue that the Japanese rules are slightly more interesting than the Chinese rules. However, it is well
known that Japanese rules are extremely difficult (and by some even considered impossible) to implement in
a program due to ambiguities and inconsistencies in the official texts. Chinese rules also suffer from some
ambiguity, but to a much lesser extent. Therefore, it is the natural choice for Go programmers to prefer Chinese
rules.

The rules implemented in the program MIGOS are a formalization of the official Chinese rules (Davies, 2001).
Most notably, the game rules in MIGOS have a long-cycle rule that is consistent with all the ad-hoc examples
presented in Chapter 3 (“Rules for the Referee”) section 20 (“Reappearance of the same board position”) of the
Chinese rules. For details about the MIGOS rules the reader is referred to van der Werf (2004).

Several rule details are configurable in MIGOS. In nearly all cases these details do not affect the game-theoretic
value of the empty board. However, in case of doubt, we always try different configurations to ensure that the
first player score is not affected. If the score is affected we will report it and its cause in this article.

3. MIGOS II

In this section we describe MIGOS II, the program that solves rectangular Go boards with different dimensions.
First, in Subsection 3.1 we briefly give an overview of MIGOS 2003, the program that serves as a foundation
for the current solver. Next, in Subsection 3.2 we explain the enhancements made to the evaluation function.
Subsequently, Subsection 3.3 presents enhancements regarding the transposition table, and discusses potential
problems caused by hash collisions. Finally, other (possible) improvements are discussed in Subsection 3.4.
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3.1 MIGOS 2003

The program MIGOS (MIni GO Solver) performs an αβ depth-first iterative-deepening search in the PVS frame-
work (Marsland, 1986). A transposition table (Nelson, 1985) is applied to prune subtrees, narrow the αβ window,
and improve move ordering. At all interior nodes that are more than 3 ply away from the leaves, it generates all
moves to perform Enhanced Transposition Cutoffs (Schaeffer and Plaat, 1996). The effect of using a transposition
table is further enhanced by looking for symmetrical positions that have already been searched. On rectangular
boards these symmetries typically reduce the state space by a factor approaching 4 (non-square board dimensions
break one symmetry, and the colour symmetry is not used).

MIGOS is equipped with a method for early detection of sure bounds on the final score by recognizing uncondi-
tional life (Benson, 1976; Müller, 1997) and unconditional territory (van der Werf et al., 2003). It is not only used
at leaf nodes but also at internal nodes in order to improve the efficiency of the search. Lower and upper bounds
can be computed that either generate a direct cutoff or narrow the alpha-beta window. Unconditional territory
is further used for reducing the branching factor. By taking care of a few exceptions, moves that reside inside
unconditional territory are not examined since they cannot change the outcome of the game.

Subsequently, the move ordering of MIGOS works as follows: first the transposition move, second the first move
sorted by the history heuristic (Schaeffer, 1983), third the first killer move (Akl and Newborn, 1977), fourth the
second move sorted by the history heuristic, fifth the second killer move, and finally the remainder of the moves
sorted by the history heuristic. In positions that are searched sufficiently deep (at least 5 plies away from the
leaves) the move ordering is interleaved with sibling promotion (Dyer, 1995).

Finally, we remark that MIGOS is entirely written in C. More information about MIGOS’ search and evaluation
function for scoring Go positions can be found in van der Werf (2004).

3.2 Evaluation

Two minor changes were made to the evaluation function. The first change is that at the end of the game stones
with solely one liberty are only considered dead (and consequently removed before counting the final score) if
the opponent does not have such stones. This change prevents the program from returning a non-conventional
score in final positions where both sides have stones that can be captured in one move; even though either side
would lose from making the actual capture.3 MIGOS 2003 removed all stones with one liberty before counting
the score. As before, the program can also be configured to treat all stones as alive. However, we only use this
option in case of doubt because it is rather inefficient.

The second change is that MIGOS II (optionally) distinguishes between normal scores (obtained from the ordinary
counting procedure after consecutive passes) and exceptional scores (used to assign a value for termination by
long-cycle repetition). In practice, the most important application of this change is to distinguish long-cycle ties
from ordinary ties. This facilitates analysis because we can, e.g., configure White to win in the case of an ordinary
tie (where both sides control an equal number of board points) while Black wins in case of a balanced long-cycle
repetition.

3.3 Transposition Table

The transposition table implementation was improved in a number of ways. Most notably, MIGOS’ original
TWODEEP replacement scheme (cf. Breuker, Uiterwijk, and van den Herik, 1996) was replaced by a sequential
multi-probe replacement scheme similar to the one suggested by Beal and Smith (1996). Experiments in MIGOS
confirmed their results that the sequential multi-probe replacement scheme is more efficient than TWODEEP. Our
multi-probe scheme searches four consecutive entries and always replaces the one representing the shallowest
sub-tree. This is slightly different from Beal’s implementation which only replaces an entry if the new result has
a higher priority (deeper sub-tree). Our implementation of always storing the new results turns out to be more
efficient. This is probably because it improves the efficiency of re-searches (which occur frequently in PVS).
Moreover, we have tested searching more than four consecutive entries, and have confirmed Beal’s result that

3An example of such a position is the extremely rare hanezeki.
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this reduces the node counts even further. However, due to a slow-down of our search in nodes-per-second, the
reduction in node-counts usually does not provide a significant effective speedup.

Other changes include setting some flags to make more efficient use of previous proofs, using packed structures
to increase the maximum transposition table size, and a slightly more efficient use of Enhanced Transposition
Cutoffs (cf. Schaeffer and Plaat, 1996). Below we provide some details on preventing transposition table prob-
lems.

3.3.1 Preventing Transposition Table Problems

The transposition table implemented in MIGOS II uses Zobrist hashing (Zobrist, 1970) to identify board situa-
tions. Problems may occur when two distinctly different board situations are mapped to the same hash value,
which is commonly referred to as a hash collision.

There are two problems causing potential hash collisions. The first is a fundamental limitation of hashing, the
second is implementation dependent and lies in the willful omission of potentially relevant properties of the game
state from the hash. Both will be discussed in the following paragraphs.

The fundamental problem is that the hash may be imperfect, i.e., when the number of properties potentially
included in the hash is larger than the number of available bits some information may be lost. Consequently,
there may be a small but non-zero probability that two investigated states are mapped to the same hash value. The
probability of such an event may be estimated using the following formula

P (errors) ≈ M2

2N
(1)

where M is the number of unique positions and N the number of possible hash values, assuming M is sufficiently
large and small compared to N (Breuker, 1998). For a search of 500G unique nodes with a Zobrist hash of
effectively 88 bits (26 address, 64 lock, 2 bits lost to sequential multi-probe search), the probability of at least
one error is 4× 10−4, which is acceptable for our purposes. Nevertheless, as an extra precaution MIGOS II also
tests the legality of moves proposed by the transposition table. Consequently, if such an error would ever start to
occur frequently it would show up in the logs (none were observed in our experiments). To overcome the problem
altogether one could also try to store the complete game state. However, since this is only feasible under some
rules settings and does not scale up to larger boards it is not used in MIGOS II.

The second problem is that collisions may also occur when relevant properties are omitted from the hash value.
Problems typically arise when history is ignored. Depending on the history, a board situation may have a certain
value. If this information is ignored a node may receive an incorrect value. This is called the graph-history
interaction problem (GHI) (Campbell, 1985; Kishimoto and Müller, 2005). The relevant properties to include
in the hash are determined by the specific Go rules used. It is generally considered impractical to include the
complete game history (i.e., all previous board positions), even when the rules dictate that it may be relevant (i.e.,
superko rules). Most Go programmers therefore choose to omit this information, and accept the rare errors that
this may cause. Although MIGOS II can be compiled to account for previous boards in the hash, it is generally
not used because it is too inefficient. Fortunately, all this is much less a problem under traditional Go rules.

In the design of MIGOS II and its preferred rule set considerable care was taken to make it feasible to include all
relevant properties of a board situation in the hash, which happens to coincide well with traditional rules. Conse-
quently, correctness can be guaranteed at the expense of only a relatively minor performance penalty (compared
to simply ignoring properties that are unlikely to make a difference).

Situational properties typically included in the hash of MIGOS II are:

• player to move

• basic ko

• number of consecutive passes

• last play was basic ko capture (before passing started)

• last two plays were basic ko captures

• number of Black/White captures

• number of Black/White passes (not necessarily consecutive)
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A drawback of including all potentially relevant situational information in the hash is that it reduces the ability
to generalize over previously encountered positions that are nearly identical (i.e., same configuration of stones
on the board, same player to move, same set of legal moves), thus reducing search efficiency. Consequently, for
analysis we may at times choose to omit some properties just to obtain initial results faster.

Probably the most significant change, compared to MIGOS 2003, is that the option to include the numbers of
captures and passes in the hash is now used less frequently (it was originally introduced to solve the problem of
depth-shifted transpositions and distinguish situations in cycles, see van der Werf (2004) for details). Instead the
default setting is now to accept depth-shifted transpositions for heuristic results (which occasionally enables the
search to look beyond the horizon). Depth-shifted proofs (originating further from the root) are still not accepted.
However, instead of completely discarding such proofs they are now converted to extreme heuristic results (their
values are adjusted just enough to move them into the heuristic range), forcing the search to verify while still
providing useful information for move ordering. Other minor changes regarding the situational properties in the
hash mainly deal with optional settings to experiment with different game-end criteria.

Although most potential GHI problems are solved in MIGOS II one potential problem remains. Since superko is
not used, balanced long-cycle repetition (where both sides capture an equal number of stones in each cycle) is
scored as a long-cycle-tie. Normally, there is no need to distinguishing long-cycle-ties from heuristic scores, so
MIGOS II simply assigns a value in the heuristic range (typically 0). However, when optimal play leads to a long-
cycle-tie this setting prevents the search from returning a proof. Alternatively, the long-cycle-tie can be assigned
a value corresponding to a minimal proven win, for either Black or White, but this then becomes prone to the
ordinary GHI problems normally observed only under superko rules (so occasionally some additional situational
properties have to be included in the hash, which reduces efficiency).

3.4 Other (Possible) Improvements

MIGOS II is equipped with two (safe) forward pruning methods, null move (cf. Donninger, 1993) and late-move
reductions (cf. Romstad, 2006). Although they were sometimes able to find a proof faster, most of the time
several extra plies had to be searched to find the proof due to a missed line. It was unclear whether forward
pruning would decrease the search effort. They were therefore not used for the experiments.

4. RESULTS FOR RECTANGULAR BOARDS

MIGOS II was used to compute the values for the rectangular boards up to a surface of 30 intersections. Initially,
several different machines were used to solve various boards in parallel. To make the results comparable, and for
verification, the experiments were repeated on an Intel Core2 3GHz (single thread) machine using a transposition
table of 0.94 Gb. (226 entries, 15 bytes per entry). Only for the largest boards the experiments were not repeated
on this default machine because that would have been too time consuming; these results are therefore marked by
the comment non-default. In Table 1 the results are given together with their search depth, nodes investigated,4

and best move for the initial position.

All boards were first searched with a fractional komi just below the expected game-theoretic value, which is
equivalent to searching with the expected game-theoretic value as komi and assigning ties to the first player (find-
ing a first-player win then proves a lower bound on the score). We remark that in MIGOS II searching close to the
correct komi is generally more efficient than simply searching with komi at zero because the heuristic range of
the evaluations is used more effectively. Boards that did not get a maximal score (e.g., 4×6), could in principle
contain an undetected deep variant that might raise the score further. To rule out the possibility of a higher score
such boards were searched again with komi just above the expected game-theoretic value (equivalent to search-
ing with integer komi and assigning ties to the second player). Finding the second-player win then established
both the lower and the upper bound on the score, thus confirming that they are indeed correct. So, when two
values are shown in Table 1 for depth/nodes/time, the first and second refer to the lower and upper bound proofs,
respectively. For full-board wins only one value is shown because a single proof suffices.

4In iterative deepening PVS the same node is usually investigated multiple times; we count each visit. The reported node-counts are
therefore upper bounds on the size of the minimal proof-graph.
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Surface Board Result Depth Nodes Time First move comments
30 3×10 ≥6 29– 1.31T– 30.8(d)– central non-default 5

30 5×6 4 27–38 214G– 4.5(d) – central non-default 6

28 4×7 28 37 363G 10.6(d) central non-default 7

27 3×9 5 29–30 289–294G 4.3(d) centre non-default
25 5×5 25 23 603M 14.3(m) centre
24 3×8 24 37 120G 1.86(d) central
24 4×6 8 29–34 3.13–13.2G 1.26–5.41(h) central
22 2×11 6 31–24 281G–18.3G 7.77(d)–12.2(h) central non-default
21 3×7 21 39 356M 7.87(m) centre
20 2×10 4 23–24 725–942M 14.1–25.9(m) central
20 4×5 20 21 20.3M 29.6(s) central
18 2×9 18 33 136M 2.76(m) central
18 3×6 18 17 2.74M 3.22(s) central
16 2×8 16 21 9.92M 10.2(s) central
16 4×4 2 21–23 695–826k 1.09–1.73(s) central
15 3×5 15 13 274k 276(ms) centre
14 2×7 14 15 705k 576(ms) central
12 1×12 2 53–48 1.07G–679M 18.7–11.5(m) 2,4 8

12 2×6 12 13 89.5k 66.2(ms) central
12 3×4 4 13–23 40.4–85.8k 41.4–86.4(ms) central
11 1×11 2 27–39 534k–9.11M 538(ms)–5.39(s) 2,4,6
10 1×10 1 28–28 256–360k 224–272(ms) 2
10 2×5 10 9 7.32k 5.55(ms) central
9 1×9 0 17–24 32.8–58.9k 23.7–43.3(ms) 2,4,5
9 3×3 9 11 2.61k 2.13(ms) centre
8 1×8 3 15–30 10.6–57.1k 7.45–33.8(ms) 2
8 2×4 8 9 2.05k 1.37(ms) central
7 1×7 2 9–22 1.97–5.84k 2.19–4.78(ms) 2,4
6 1×6 1 9–18 1.09–2.12k 0.949–2.06(ms) 2
6 2×3 0 16–25 1.57–5.88k 1.57–6.89(ms) central 9

5 1×5 0 9–8 410–450 0.55–0.54(ms) 2,3
4 1×4 4 7 131 0.327(ms) central
4 2×2 0 10–11 391–350 0.59–0.90(ms) any 10

3 1×3 3 1 6 0.119(ms) centre
2 1×2 0 8–8 128–81 0.462(ms) any

Table 1: Detailed results.

In most experiments the game-theoretic values were already known from earlier experiments. However, in case
the game-theoretic value is unknown one may simply start at 0; then when a lower bound proof is found one starts
a search for the upper bound proof. In case this second search fails one automatically obtains a new lower bound
proof and the process repeats until either a full-board win or an upper bound proof is found.

Results for 1×n boards are included for completeness. However, due to some design constraints MIGOS II is
rather inefficient on 1×n boards. Consequently, comparison of search times with results on 2-dimensional boards
is not straightforward. Therefore, we stopped computing 1×n boards after the 1×12 board. Similar inefficiencies
also play a role on 2×n boards when n becomes greater than 10. Here we stopped after the 2×11 board.

All 1×n boards were analyzed with a rules setting that when the game ends (after consecutive passes) all stones
are assumed alive. This was done as a precaution because long-cycles occur frequently for 1×n boards. Other-

5Lower bound proof only, 2 months of search on a single CPU did not suffice to return an upper bound proof.
6Lower bound proof only, upper bound proof was manually distributed over multiple machines.
7First move selected manually to save time.
8Needs extra precautions against GHI. We ran into a rather extreme example on 1×12 with a long cycle of 38 ply occurring at depth 54!
9Sensitive to rules details, needed additional precautions against GHI.

10Sensitive to rules details. The result remains a tie as long as komi is in the range [-1,1] because either side can force a balanced long
cycle.
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wise it may happen that a capturable block becomes uncapturable because the capture might cause an undesired
long-cycle result. For other boards the reported results are “for the more efficient rules setting” that in a terminal
position all blocks with one liberty are assumed dead, unless when both sides have such block(s). We verified
that this setting had no impact on the reported first-player scores.

Table 1 confirms that without komi White never wins (which can easily be proved theoretically using a strategy
stealing argument). There are only ties for some instances of the 1×n and 2×n boards. In all other cases Black
wins. Moreover, we see that full-board wins not only occur for the smaller boards, but also for some bigger ones
(e.g., 3×8 and 4×7).

At equal surfaces, elongated boards are generally more difficult to solve than boards that are closer to a square
shape. Moreover, we observe that for the odd-surface boards the unique centre is usually the best opening move.
On even-surface boards, where there is no unique centre, the best opening move is on any of the 2 or 4 central
intersections. The only exception (so far), where the centre is inferior, is for some 1×n boards (the best opening
move on 1×n normally takes the second point to secure one end).

Table 1 shows us that by using one CPU most boards could be solved in approximately a week. Except for 5×6,
multiple CPUs had to be employed to establish the upper bound proof. Finally, we remark that 5×5, which took
2.7 hours to be solved in 2003 (cf. van der Werf et al., 2003), is nowadays cracked in less than 15 minutes. This
is not only thanks to new hardware. Due to improvements of the search engine the program investigates roughly
40% fewer nodes (when using identical komi, rules settings, and memory footprint).

5. SURPRISING RESULTS

For several boards we found different results from the solutions reported by Drange (2002) and van den Herik et al.
(2002). After some analysis over email between the first author and Ted Drange (2009) the human errors were
identified and our results confirmed. This section gives an overview.

5.1 3×7

The 3×7 board was believed to be a win by 5 points (Drange, 2002; van den Herik et al., 2002), but turns out to
be a win by 21 points. The optimal line of play, leading to a full-board win, is presented in Figure 1. Diagrams
a–c show one of the deepest variations. White has many alternatives, such as playing move 4 at c3 as shown in
Diagram d. However, without a Black mistake there is no variation that allows White to live on 3×7.

(a) Moves 1–20. (b) Moves 21–30. (c) Moves 31–39. (d) Variation.

Figure 1: Optimal play on 3×7.

Depending on the rule set Black may be tricked into a premature game-end. If the game ends by two consecutive
passes, or by superko rules, Black should be careful not to play 31 at a3 or b3 because that would enable White
to make moonshine life (White captures, Black has to pass, White passes as well and Black cannot recapture the
ko). If Black simply plays 31 as depicted in Figure 1c he11 avoids all difficulties.

The main problem with the human analysis of 3×7 was that it was simply not studied deep enough. To some
extent this is understandable. MIGOS II also finds the 5 point win quite quickly at depth 23. However, to obtain
more than 5 points requires another 16 ply of search with no intermediate improvements until the full board win
is found at depth 39 (which is remarkably deep for a board with only 21 intersections).

11For brevity, we use ‘he’ and ‘his’ when ‘he or she’ and ‘his or her’ are meant.
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5.2 4×6

The 4×6 board believed to be a win by 1 point (Drange, 2002; van den Herik et al., 2002) turns out to be a win by
8 points. Three variations for optimal play are shown in Figures 2a to 2c. Human analysis missed the key move
5 at b1 in Figure 2a.

There are a few interesting suboptimal lines as well. For example, if Black plays move 5 at b2 or c1, he only
achieves a 2-point win, as shown in Figures 2d, f, and g. If Black plays 15 at 18 in Figure 2g, he achieves the
even more inferior 1-point result as depicted in Figure 2h.

(a) Optimal (B+8). (b) Variation (B+8). (c) Variation (B+8). (d) Suboptimal (B+2).

(e) Strange seki (B+1). (f) Suboptimal (B+2). (g) Suboptimal (B+2). (h) Suboptimal (B+1).

Figure 2: 4×6 variations.

5.2.1 Raising the Dead

If Black plays suboptimal twice with move 5 at b2 and move 7 at b3, then the final position becomes a very
special seki as shown in Figure 2e.

The position is seki because if Black would play a4 (or a1) – in order to attempt to capture the White group with
one eye – play continues as shown in Figure 3a. After Black throws in at A, to keep the white group at one eye,
White starts a ko with move 4. Black has to respond with move 5 and White has now a ko-threat at B that Black
must ignore (or he will lose his right group and as consequence the full board). After move 8 at C both sides have
12 points and the result is a tie, which is one point worse for Black than the original seki position.

(a) Why seki? (b) Global seki. (c) Irremovable potential ko.

Figure 3: Seki positions.

Black also cannot start the ko himself (he has no ko-threats) or play e4 (he would lose the capturing race). White
has to be careful not to play 20 f4 (which would guarantee a local seki by removing the potential for ko) because
in this position it would kill the surrounding white group and hence give the full board to Black.

It is interesting that the seki would remain even when the configurations of the left half and the right half of the
board are non-adjacent as shown in Figure 3b. Generalizing further; if a configuration such as shown in Figure
3c would be present in any final position (after both players pass) White could claim life in seki for a variety of
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one-eyed groups that would normally be dead inside the opponent’s territory. Whether such a claim would be
granted under traditional rules that attempt to localize shapes in the scoring procedure is doubtful. However, it is
clear that this position is an interesting phenomenon, and to our knowledge may even be a new discovery.

5.3 4×7

The 4×7 board was believed to be a win by 4 points (Drange, 2002), but is a full-board win of 28 points. The
optimal play for 4×7 is shown in Figures 4a and b. The key move is 7; it is rather similar to the key move on
4×6. Human analysis missed this move for the 4×7 board as well. If Black plays move 7 anywhere else, such as
e1, f2, f3, e4, or even on the opposite side at f4, then White can live. White can play many other variations, such
as the one shown in Figures 4c, but this generally leads to an even quicker loss. Black does not have much choice
on 4×7. Most deviations directly give White the opportunity to live. An example of such a mistake is shown in
Figure 4d where splitting White’s group costs Black 16 points.

(a) Optimal 1–20 (B+28). (b) Continuation. (c) Simpler variation. (d) Mistake at 23.

Figure 4: 4×7 variations.

5.4 5×6

Human analysis in the literature did not agree on what the game-theoretic value was for the 5×6 board. Van den
Herik et al. (2002) report it as a tie whereas Drange (2002) was convinced that it was a win by 2 points. Our
computational proof reveals that this board is a win by 4 points (Black obtains 17 points and White 13 points).
Figure 5a shows the first 12 moves. Playing move 3 at 4, or 7 at 9, would be a mistake. The keys to the 4-point
win are moves 5 and 7.

(a) Moves 1–12. (b) Suboptimal. (c) Continuation A. (d) Continuation B.

Figure 5: 5×6.

Human analysis discarded playing move 5 at d4, most likely because they missed the key move at 7, and focussed
mainly on the (suboptimal) continuation as shown in Figure 5b. If Black plays as in Figure 5b, at move 12 White
can choose a3, a4, or b4 which all lead to at a win by only 2 points for Black. One might think that by playing
a4, and following a mirror strategy, the game could even become a tie. However, Black can force White to break
symmetry and win by 2 points.

After the first 12 moves (as depicted in Figure 5a) Black can choose to play either at A or at B. Possible continu-
ations are shown in Figures 5c and 5d, both leading to a 4-point win. For continuation A, White can also play 14
at 15 or 18, which leads to an equivalent result. If Black selects continuation B, White can answer passively at
15. However, if White plays the atari at 14 Black has to be careful not to capture directly, which would cost him
2 points.
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6. CONCLUSIONS AND OUTLOOK

The main result of this article is that most rectangular Go boards up to a surface of 30 intersections have been
(weakly) solved. This result was achieved by using an improved version of the Go solver MIGOS, called MIGOS
II. An overview of the game-theoretic results is given in Table 2. The table indicates that, except for a few
instances of 1×n and 2×n boards, all are a first-player win. Moreover, the computer proofs identified several
errors in human solutions. The noticeable differences were unexpected full-board wins for 3×7 and 4×7, an
8-point win for 4×6, and a 4-point win for 5×6.

m\n 1 2 3 4 5 6 7 8 9 10 11 12
1 0 0 3 4 0 1 2 3 0 1 2 2
2 0 0 0 8 10 12 14 16 18 4 6
3 3 0 9 4 15 18 21 24 5 ≥6
4 4 8 4 2 20 8 28
5 0 10 15 20 25 4

Table 2: First player scores on m× n boards.

The question now is when would 6×6 be solved? In 6 years time we went from a surface of 25 (i.e., 5×5) to
a surface of 30 (i.e., 5×6) of solved Go boards. This was not only because of better hardware but also due to a
better search engine.

We can try to predict when MIGOS II would be able to solve 6×6 in a reasonable amount of time by extrapolating
the current results. Based on the results of Table 1, Figures 6 and 7 show how the complexity in terms of nodes
and time respectively scale with the surface of the board.
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Figure 6: Board surface vs Nodes.
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Figure 7: Board surface vs Time.

An optimistic extrapolation suggests that on current hardware MIGOS II would require a few years to solve 6×6.
However, we could easily be underestimating by a factor of 100. Nevertheless, we believe that with some effort
αβ-based solvers, such as MIGOS II, should be able to solve 6×6 within the next 5 years, especially because
significant improvements in the evaluation function are still possible.

Other approaches are possible as well. Already now, modern Go programs using MCTS (Coulom, 2007) appear to
play rather close to optimal on small boards such as 6×6 and 7×7. Even on 9×9 they are challenging opponents
for professional players. MCTS programs play really strong due to heuristics. However, for solving a board
this does not suffice because one has to deal with a voluminous proof tree that (at least for one side) includes
even the most unlikely lines of play. Integrating minimax proving capabilities into MCTS programs as done in
MCTS-Solver (Winands, Björnsson, and Saito, 2008b) appears to be a promising alternative strategy.



Solving Go for Rectangular Boards 87

Acknowledgements

We are grateful to Ted Drange for his analysis, and to Jahn-Takeshi Saito and Peter Geurtz for their technical
assistance.

7. REFERENCES

Akl, S. G. and Newborn, M. M. (1977). The principal continuation and the killer heuristic. 1977 ACM Annual
Conference Proceedings, pp. 466–473, ACM Press, New York, NY.

Allis, L. V. (1994). Searching for Solutions in Games and Artificial Intelligence. Ph.D. thesis, Rijksuniversiteit
Limburg, Maastricht, The Netherlands.

Allis, L. V., Herik, H. J. van den, and Huntjens, M. P. H. (1996). Go-Moku Solved by New Search Techniques.
Computational Intelligence, Vol. 12, No. 1, pp. 7–24.

Beal, D. F. and Smith, M. C. (1996). Multiple probes of transposition tables. ICCA Journal, Vol. 19, No. 4, pp.
227–233.

Benson, D. B. (1976). Life in the game of Go. Information Sciences, Vol. 10, No. 2, pp. 17–29. ISBN 0–
387–96609–9, ISSN 0020–0255. Reprinted in D. N. L Levy, editor, Computer Games, Vol. II, pages 203–213,
Springer-Verlag, New York, 1988.

Breuker, D. M. (1998). Memory versus Search in Games. Ph.D. thesis, Universiteit Maastricht, Maastricht, The
Netherlands.

Breuker, D. M., Uiterwijk, J. W. H. M., and Herik, H. J. van den (1996). Replacement schemes and two-level
tables. ICCA Journal, Vol. 19, No. 3, pp. 175–180.

Campbell, M. (1985). The graph-history interaction: on ignoring position history. Proceedings of the 1985 ACM
Annual Conference on the Range of Computing: Mid-80’s Perspective, pp. 278–280, ACM Press, New York,
NY.

Coulom, R. (2007). Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search. Computers and
Games (CG 2006) (eds. H. J. van den Herik, P. Ciancarini, and H. H. L. M. Donkers), Vol. 4630 of Lecture Notes
in Computer Science (LNCS), pp. 72–83, Springer-Verlag, Heidelberg, Germany.

Davies, J. (1994). 5×5 Go. American Go Journal, Vol. 28, No. 2, pp. 9–12.

Davies, J. (2001). The rules of Go. The Go Player’s Almanac 2001 (ed. R. Bozulich), pp. 191–194, Kiseido
Publishing Company. ISBN 4–906574–40–8.

Donninger, C. (1993). Null move and deep search. ICCA Journal, Vol. 16, No. 3, pp. 137–143.

Drange, T. (2002). Mini-Go. http://www.mathpuzzle.com/go.html.

Drange, T. (2009). Personal communication.

Dyer, D. (1995). Searches, tree pruning and tree ordering in Go. Proceedings of the Game Program-
ming Workshop in Japan ’95 (ed. H. Matsubara), pp. 207–216, Computer Shogi Association, Tokyo. http://
www.andromeda.com/people/ddyer/go/search.html.

Gasser, R. (1996). Solving Nine Men’s Morris. Computational Intelligence, Vol. 12, pp. 24–41.

Henderson, P., Arneson, B., and Hayward, R. B. (2009). Solving 8×8 Hex. Proceedings of IJCAI 2009, pp.
505–510.

Herik, H. J. van den, Uiterwijk, J. W. H. M., and Rijswijck, J. van (2002). Games solved: Now and in the future.
Artificial Intelligence, Vol. 134, Nos. 1–2, pp. 277–311. ISSN 0004–3702.

Irving, G., Donkers, H. H. L. M., and Uiterwijk, J. W. H. M. (2000). Solving Kalah. ICGA Journal, Vol. 23,
No. 3, pp. 139–148.



88 ICGA Journal June 2009

Kishimoto, A. and Müller, M. (2005). A Solution to the GHI Problem for Depth-First Proof-Number Search.
Information Sciences, Vol. 175, No. 4, pp. 296–314.

Marsland, T. A. (1986). A review of game-tree pruning. ICCA Journal, Vol. 9, No. 1, pp. 3–19.

Müller, M. (1995). Computer Go as a Sum of Local Games: An Application of Combinatorial Game Theory.
Ph.D. thesis, ETH Zürich, Zürich, Switzerland.

Müller, M. (1997). Playing it safe: Recognizing secure territories in computer Go by using static rules and search.
Proceedings of the Game Programming Workshop in Japan ’97 (ed. H. Matsubara), pp. 80–86, Computer Shogi
Association, Tokyo.

Nash, J. (1952). Some Games and Machines for Playing Them. Technical Report D-1164, Rand Corp.

Nelson, H. L. (1985). Hash tables in Cray Blitz. ICCA Journal, Vol. 8, No. 1, pp. 3–13.

Romein, J. W. and Bal, H. E. (2003). Solving the Game of Awari using Parallel Retrograde Analysis. IEEE
Computer, Vol. 36, No. 10, pp. 26–33.

Romstad, T. (2006). An Introduction to Late Move Reductions. http://www.glaurungchess.com/lmr.html.

Schadd, M. P. D., Winands, M. H. M., Uiterwijk, J. W. H. M., Herik, H. J. van den, and Bergsma, M. H. J. (2008).
Best Play in Fanorona Leads to Draw. New Mathematics and Natural Computation, Vol. 4, No. 3, pp. 369–387.

Schaeffer, J. (1983). The history heuristic. ICCA Journal, Vol. 6, No. 3, pp. 16–19.

Schaeffer, J., Burch, N., Björnsson, Y., Kishimoto, A., Müller, M., Lake, R., Lu, P., and Sutphen, S. (2007).
Checkers is Solved. Science, Vol. 317, No. 5844, pp. 1518–1522.

Schaeffer, J. and Plaat, A. (1996). New Advances in Alpha-Beta Searching. Proceedings of the 1996 ACM 24th
Annual Conference on Computer Science, pp. 124–130. ACM Press, New York, NY, USA.

Sei, S. and Kawashima, T. (2000). A solution of Go on 4×4 board by game tree search program. The
4th Game Informatics Group Meeting in IPS Japan, pp. 69–76 (in Japanese). Translation available at http://
homepage1.nifty.com/Ike/katsunari/paper/4x4e.txt.

Thorp, E. and Walden, W. E. (1972). A computer-assisted study of Go on M × N boards. Information Sciences,
Vol. 4, No. 1, pp. 1–33.

Tromp, J. (2008). Solving Connect-4 on Medium Board Sizes. ICGA Journal, Vol. 31, No. 2, pp. 110–112.

Uiterwijk, J. W. H. M. and Herik, H. J. van den (2000). The advantage of the initiative. Information Sciences,
Vol. 122, No. 1, pp. 43–58.

Wágner, J. and Virág, I. (2001). Solving Renju. ICGA Journal, Vol. 24, No. 1, pp. 30–34.

Werf, E. C. D. van der (2004). AI techniques for the game of Go. Ph.D. thesis, Maastricht University, Maastricht,
The Netherlands. ISBN 90 5278 445 0.

Werf, E. C. D. van der, Herik, H. J. van den, and Uiterwijk, J. W. H. M. (2003). Solving Go on Small Boards.
ICGA Journal, Vol. 26, No. 2, pp. 92–107.

Winands, M. H. M. (2008a). 6×6 LOA is solved. ICGA Journal, Vol. 31, No. 4, pp. 234–238.

Winands, M. H. M., Björnsson, Y., and Saito, J.-T. (2008b). Monte-Carlo Tree Search Solver. Computers and
Games (CG 2008) (eds. H. J. van den Herik, X. Xu, Z. Ma, and M. H. M. Winands), Vol. 5131 of Lecture Notes
in Computer Science (LNCS), pp. 25–36, Springer-Verlag, Heidelberg, Germany.

Zobrist, A. L. (1970). A New Hashing Method with Application for Game Playing. Technical Report 88,
Computer Science Department, University of Wisconsin, Madison, WI. Reprinted (1990) in ICCA Journal, Vol.
13, No. 2, pp. 69–73.


