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Fanorona is the national board game of Madagascar. The game’s complexity is approx-

imately the same as that of checkers. In this article we present a search-based approach

for weakly solving this game. It is a well-chosen combination of Proof-Number search and
endgame databases. Retrograde analysis is used to generate the endgame databases in

which every position with 7 or fewer pieces on the board has been solved. Then, a Proof-

Number search variant, PN2, exploits the databases to prove that the game-theoretical
value of the initial position is a draw. Future research should develop techniques for

strongly solving the game.
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1. Introduction

Already for half a century, building strong game-playing programs is one of the
main targets of Artificial-Intelligence researchers. The principal aim is to witness
the “intelligence” of computers. A second aim is to establish the game-theoretic
value of a game, i.e., the outcome of the game when all participants play optimally.
The game-theoretic value indicates whether a game is won, lost, or drawn from the
perspective of the player who has to move first.

Pursuing the second aim is an exciting task; there, game solvers are looking
for new techniques and new achievements in research. For solving a game, three
“layered” definitions exist.1

Ultra-weakly solved: For the initial position, the game-theoretic
value has been determined.

Weakly solved: For the initial position, a strategy has been deter-
mined to obtain at least the game-theoretic value of the game.

Strongly solved: For all legal positions, a strategy has been determined
to obtain the game-theoretic value of the position.

1
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In the last 20 years quite a number of games have been solved.2 Below we
provide examples for each definition. (1) The game of Hex is an instance of an
ultra-weakly solved game.3 The proof was published in 1953 by Shannon.4 (2) The
following games were weakly solved: Qubic,5,6 Go-Moku,1,7 Nine Men’s Morris,8

Domineering,9,10,11 and Renju.12 Checkers is the latest addition to this list.13,14 (3)
Recently, we saw considerable development in “layer” three: the games Connect-
Four,15 Kalah,16 and Awari17 were strongly solved.

Here we remark that different methods are used for solving games. We divide
these methods into three classes: knowledge methods, special search methods and
endgame databases.

(1) Knowledge methods are used to prune the search tree. Uiterwijk et al.18

introduced rules in Connect-Four which made it possible to determine the game-
theoretic value for non-terminal positions. Using these rules the game of Connect-
Four has been solved.

(2) Special search methods (Mate-Solvers) are used to search the space effi-
ciently. For instance, Threat-Space Search19 was introduced in Go-Moku. This tech-
nique searches as if the opponent is allowed to play all counter moves to a threat
at once. Using this technique, a series of threat sequences to win the game can be
established in such a way that it is indifferent what the opponent plays. The tech-
nique reduces the size of the search tree significantly. So, it was possible to solve
the game.7

(3) Endgame databases are used to store the game-theoretical value of each
possible endgame position. Retrograde analysis20 is a method to solve endgame
positions iteratively, starting with the terminal ones. Romein and Bal17 were able
to solve every possible Awari position using parallel retrograde analysis, thus solving
the game strongly.

Below, we describe how we weakly solved the game of Fanorona. From the
starting position, we have a computational proof that Fanorona is a draw, assuming
optimal play by both sides. In the article we explain our domain-dependent search-
based approach that establishes the game-theoretic value of Fanorona. We are also
able to compute the results for all smaller boards. The search-based approach is
a combination of a mate solver (Proof-Number (PN) search) and pre-constructed
endgame databases.

The paper is organized as follows. Section 2 provides background information
on the game of Fanorona and on the rules to play this game legitimately. Section
3 presents various characteristics of the game. Section 4 explains the outcome of
a retrograde analysis and shows the results in Fanorona. The proof-number search
variant, PN2, is explained in Section 5. Section 6 presents the results of a nicely
tuned combination of PN2 search and the corresponding databases. Section 7 de-
scribes the verification of the results. Finally, Section 8 provides the conclusions and
lists future research topics.
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2. Fanorona

Fanorona is a board game with its roots in Madagascar. It is derived from the game
“Alquerque” which might be over 3000 years old. Below we explain the rules of
Fanorona. The explanation is based on the rules given in Bell,21 and in Chauvicourt
and Chauvicourt.22 There exist some variations on the rules, but we will focus on
the most common variant. The goal of the game is to capture all opponent pieces.
The game is a draw if neither player succeeds. Fanorona has three standard versions:
Fanoron-Telo, Fanoron-Dimyand, and Fanoron-Tsivy. The difference between these
versions is the board size. Fanoron-Telo is played on a 3×3 board and the difficulty
of this game can be compared to that of Tic-Tac-Toe. Fanoron-Dimyand is played
on a 5×5 board and Fanoron-Tsivy is played on a 5×9 board. We will call Fanoron-
Tsivy from now on Fanorona, because it is the best-known board size and the main
subject of this article.

2.1. Board

The Fanorona board consists of lines and intersections. A line represents the path
along which a piece can move during the game. There are weak and strong inter-
sections. On a weak intersection it is only possible to move a piece horizontally and
vertically, while on a strong intersection it is also possible to move a piece diago-
nally. Figure 1 shows a weak intersection at e2 and a strong intersection at e3. A
piece can only move from one intersection to an adjacent intersection.

In the initial position each player has 22 pieces. They are placed as shown in
Figure 1. Players move alternately; White plays first.

Fig. 1. The initial position of a Fanorona game.
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Figure 2 shows two non-standard board sizes, the 5×7 and the 7×5 board. Please
note that a game played on the 7×5 board is totally different from a game played
on a 5×7 board. Rotating the 7×5 board to a 5×7 board creates a Fanorona game
with a different 5×7 initial position (e.g., left Black, right White). It is standard in
Fanorona that the white pieces are below the black pieces.

(a) 5x7: Initial position (b) 7x5: Initial position

Fig. 2. Initial positions on a smaller board.

2.2. Movement

We distinguish two kinds of moves, capturing and non-capturing moves. Capturing
moves are obliged and have to be played, if possible, above non-capturing (paika)
moves. We start explaining capturing moves because thereafter describing paika
moves is straightforward.

Capturing implies removing one or more pieces of the opponent. It can be done in
two different ways, either (1) by approach or (2) by withdrawal. An approach is the
movement of the capturing piece to an intersection adjacent to an opponent piece
provided that the opponent piece is situated on the continuation of the capturing
piece’s movement line. A withdrawal works analogously as an approach but the
difference is that the movement is away from the opponent piece. When an opponent
piece is captured, all opponent pieces in line with that piece and directly behind
that piece (i.e., there is no interruption by an empty intersection or an own piece)
are captured as well.

Figure 3 shows how the capturing mechanism works. We start with a straight-
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forward capturing move. In the given position White can capture Black’s piece on
d2 by moving hisa white piece from b2 to c2. By this move Black’s piece on e2 will
be captured as well. g2 will not be captured because there is no black piece on f2.
This is called capturing by approach since White moves his piece towards Black’s
piece on d2.

White can also capture by withdrawal if he moves his white piece from f4 to e4
because now he is moving away from Black’s piece on g4. The piece on i4 will not
be captured since there is a white piece on h4 interrupting the line.

White cannot capture c4 with f4 because for a capturing move the own piece
has to be next to the one captured after movement and f4 is too far away to capture
c4. In order to allow capturing the piece has to be moved to an intersection adjacent
to the captured piece, if it is approached.

White also cannot capture c4 with b2 (moving diagonally) because c4 is not on
the extension of a movement line from b2. Only pieces can be captured which are
located in the extension of the movement line of the capturing piece. Thus capturing
“around a corner” is not allowed.

Fig. 3. An example position during a Fanorona game.

To describe a capturing by approach we define the following notation: b2-c2A
meaning that the piece on b2 moves to c2 and approaches (A) the piece on d2.
For a withdrawal the letter “W” is used. If a piece is moved without capturing any
opponent piece then no letter “A” or “W” is used.

aFor brevity, we use ‘he’ and ‘his’ when ‘he or she’ and ‘his or her’ are meant.
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As in checkers it is allowed to continue capturing with the same piece as long as
possible. We call this extended capturing. Figure 3 shows that White can capture
c4 with the move: b2-c2A-c3A. (Even if a move consists of multiple movements
of one single piece it still counts as a single move.) Although a player is obliged to
play a capturing move above a non-capturing move, the player may stop capturing
after any number of opponent pieces are captured. This rule is different from the
checkers rule where stopping a capturing sequence is not permitted. For instance,
in Figure 3 White is allowed to stop early and plays only b2-c2A.

There are three more rules concerning capturing pieces. (1) It is not allowed
to capture by approach and withdrawal at the same time. This is the case at the
initial position shown in Figure 1 where White could play d3-e3 as an approach
or a withdrawal. In such a situation the player has to choose whether the current
move is an approach or a withdrawal. (2) It is not allowed to make a capturing move
in the same direction as the capturing move directly before. We illustrate this rule
by referring to Figure 3. White is not allowed to play: f4-e4W-d4A because his
piece would move twice in a row in the same direction. A player is allowed to play
a capturing sequence two times into the same direction if a capturing movement in
another direction is done in between. The last movement direction of the capturing
move in the previous turn (i.e., before the last opponent move) does not influence
possible capturing directions in the current turn. (3) The current capturing piece is
not allowed to arrive on the same intersection twice during a capturing sequence.
In Figure 3 White is not allowed to play f4-e4W-e3A-f4W because of this rule.

If no capturing move can be played, a non-capturing move is allowed. This is
called a paika move and consists of moving one piece along a line to an adjacent
intersection. White is not allowed to play the paika move b2-b1 in the position
depicted in Figure 3 because capturing is possible.

2.3. End of the game

The player who first captures all opponent pieces wins the game. The game is a
draw if no player is able to win. In practice this is achieved by repetition of the
same position with the same player to move.23

There does not exist any documentation stating what the outcome of the game
would be if a player is not able to move. If this occurs during a game we define that
a player who is not able to move forfeits the game. However, this situation rarely
occurs and it is unlikely that the game-theoretical value would change if another
outcome would be defined in this situation. It has still to be determined whether
such situations can be reached legally.

3. Analyzing Fanorona

Two important indicators for establishing the questions (a) whether games can be
solved and (b) which methods may be successful are (1) the game-tree complexity
and (2) the state-space complexity.
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An approximation for the game-tree complexity can be computed by performing
a simulation. 10,000 games were played by two alpha-beta players, which performed
a 4-ply deep search with a greedy evaluation function. The evaluation function
consists of material difference and a random factor. We determined that the average
game length of Fanorona is 43.81 moves (i.e., plies) and the average branching factor
is 11.19 moves. This gives us a game-tree complexity of approximately 1046. The
state-space complexity has been computed as 1021 by using Eq. 4.1 (explained in
the next section). These values are comparable to those of checkers, which has a
game-tree complexity and state-space complexity of 1031 and 1020, respectively. 1,13

A typical game of Fanorona can be divided into two parts. In the first part
of the game mostly capturing moves are played until most pieces are captured. In
the second part, the endgame, mainly paika moves are played. Figure 4 shows the
relation between capturing moves and paika moves as a function of the number of
pieces on the board. This figure is based on 10,000 games played by alpha-beta
players. In the initial position 44 pieces are on the board.

Fig. 4. Relation between capturing moves and paika moves.

Figure 4 shows that with 19 or more pieces on the board a capturing move is
to be expected. We define the endgame as the part of the game where more paika
than capturing moves are played. Figure 4 indicates that the endgame starts when
there are fewer than 13 pieces on the board.

Figure 5 shows the average branching factor as a function of the number of pieces
on the board, based on the same 10,000 games. We see in the figure that when the
game enters the endgame the branching factor increases again. The reason for the
increase of the average number of possible moves in the endgame is the occurrence
of paika moves. The combination of a long endgame and a local maximum of the
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branching factor results in a huge solution tree.

Fig. 5. The average branching factor as a function of the number of pieces on the board.

In order to cope well with the differences between both parts, different methods
have been selected. For the endgame part, retrograde analysis has been selected
to create endgame databases. There are three reasons, why endgame databases are
a valuable tool for solving Fanorona. (1) Fanorona is a converging game.2 (2) A
large part of the game consists of positions with only a few pieces on the board.
Fanorona has an average game length of 44 plies. But already after 21 plies there
are on average fewer than 8 pieces on the board. (3) The endgame is not trivial.
The branching factor has a local maximum in the endgame (see Figure 5) and there
the game is converging more slowly.

Because of a large endgame where mostly paika moves are played, one would
expect that an endgame database would decrease the size of the solution tree sub-
stantially. The expectation can be tested by doing a simulation. This was done in
the following way.

A virtual database was used to finish a game early. For instance, if we assume
that a 2-piece database is available, the game is stopped when a position with
two pieces is reached. This is a terminal node because the outcome of the game
can be retrieved from the virtual database. Using this approach we can estimate
the change of both the average game length and the branching factor as a direct
consequence of using larger databases. Table 1 shows that the virtual database was
able to reduce the game-tree complexity substantially. In this experiment we see
that the game-tree complexity decreases by a factor of more than 100 on average
when the database size increases by one piece.

Because of the large amount of positions it is not possible to make an endgame
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Table 1. Estimated complexities with increasing database size.

Database size 0 2 3 4 5

Average Game Length 43.81 42.60 40.23 36.23 31.62
Average Branching Factor 11.19 11.37 11.63 11.98 12.31
Log Game-Tree Complexity 45.96 44.97 42.88 39.07 34.48

Database size 6 7 8 9 10

Average Game Length 26.99 22.98 19.74 17.27 15.44
Average Branching Factor 12.59 12.82 13.02 13.26 13.53
Log Game-Tree Complexity 29.70 25.45 22.01 19.39 17.47

database up to the initial position. Therefore, for the first part of the game, a
dedicated search method is needed. PN search has been chosen because the method
is efficient for non-uniform trees. A non-uniform tree can be the result of many forced
moves (e.g., capturing in Fanorona). Moreover, the use of an endgame database in
the search tree makes the search tree non-uniform.

During the search the most-promising lines in the tree (i.e., lines where relatively
the weakest resistance is expected) will be examined first because PN search uses
a best-first tree traversal to find the solution tree. The combination of endgame
databases and the fact that Fanorona converges fast may make PN search an efficient
technique for this game. In the next two sections we will describe the two methods,
retrograde analysis and PN search, in detail.

4. Retrograde Analysis

Retrograde analysis is a method to create omniscient endgame databases for board
games.24,20 Such endgame databases have proved to be vital to the strength of
computer programs in quite a number of games.25,26 For instance, in the game of
checkers endgame databases have been built for up to 10 pieces remaining on the
board.27 The more board positions are stored in the endgame database, the earlier
the search process can be terminated. Moreover, the method makes a deeper search
possible in the middle game. Besides improving the playing strength of a program
in the middle game, endgame databases can be used to solve a game as well. For
instance, Romein and Bal17 solved the game of Awari by storing the complete state
space in a database.

A requirement for retrograde analysis is an index function. This function has
to be a one-to-one mapping. Making such a function efficient can save a significant
amount of space in the database.28,29 The function we used consists of two parts:
(1) a function to transform the pieces on the board to a number, independent of
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the color of a piece and (2) a function to convert the order of black and white
pieces to a number. The combined index function identifies uniquely all possible
board positions disregarding symmetry. Such an index function is called gap-less. A
gap-less function uses each index between the minimum and the maximum index.
It is also invertible so that given an index, the corresponding board position can be
computed.

Eq. 4.1 shows the index function used. We denote the total number of pieces on
the board by M and the position of a piece i by Si (which is a number between 0
and 44). We define W as the total number of white pieces and Wi is the place of
white piece i in the sequence of white and black pieces on the board.

index =
M∑
i=1

(Si
i ) +

(
45
M

)
×

W∑
i=1

(Wi
i ) (4.1)

Table 2 shows the size of each database if the above index function is used.
Moreover, each position uses 2 bits of space on the hard disk, indicating that the
position is a win, draw, or loss. So, for instance, we may state that the computation
of the 9-piece database would be feasible on a regular desktop machine, where a
total of 119.3 GB of hard disk space would be needed.

Table 2. Theoretical database size for up to 15 pieces.

# of Pieces # of Positions
1 90
2 1,980
3 85,140
4 2,085,930
5 36,652,770
6 504,993,720
7 5,717,832,120
8 54,750,511,530
9 451,943,198,850

10 3,260,371,406,292
11 20,768,119,231,860
12 117,743,529,024,030
13 597,920,852,078,550
14 2,733,686,209,314,720
15 11,299,926,066,685,300

For speeding up the creation process paging was implemented. Paging29 is a
technique which stores frequently used parts of the database in the memory without
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Table 3. Number of won, drawn, and lost positions in the databases for the 5×9 board. a-b indicates

that the player with a stones is to move.

Db. 1-1 2-1 1-2 3-1 2-2 1-3

Win 158 10,366 717 149,458 127,756 4,188
Draw 334 398 3,231 91 79012 15,875
Loss 26 6 6,822 1 17,386 129,487

Db. 4-1 3-2 2-3 1-4

Win 1,529,142 2,711,327 774,043 19,814
Draw 12 327,836 1,252,162 88,187
Loss 0 18,297 1,031,255 1,421,153

Db. 5-1 4-2 3-3 2-4 1-5

Win 12,223,788 30,095,407 24,137,779 4,180,200 81,728
Draw 0 426,350 13,955,354 7,926,733 391,405
Loss 0 32,491 2,644,731 18,447,315 11,750,655

Db. 6-1 5-2 4-3 3-4 2-5 1-6

Win 79,431,164 237,393,018 344,370,238 145,408,435 18,659,090 302,021
Draw 0 774,868 46,020,564 170,633,688 41,896,491 1,509,775
Loss 0 108,614 6,724,158 81,072,837 177,720,919 77,619,368

writing them to the hard disk. When data from a page is needed the information
can be retrieved from memory and no hard-disk access is needed.

During this research all databases with 7 or fewer pieces were computed for
Fanorona. The computation was done by using a regular desktop pc with a Pentium
IV 3.0 GHz processor and 256 MB RAM and took multiple months.

Table 3 shows the number of wins, draws, and losses in the databases for the
5×9 variant. Symmetric positions have been removed. a-b denotes that the player
to move has a pieces and its opponent b pieces.

Table 3 indicates that the player to move has an advantage. One might suspect
that a player who is to move and has more pieces than the opponent would win the
game. The results are that (1) in the 4-1 database the player to move cannot lose
any position, (2) in the 5-1 and 6-1 databases the player to move can win every
position. So, an advantage of more than three pieces is needed for a forced win.

As an aside, we have created databases for the smaller Fanorona boards. We
have computed (1) all endgame databases up to 7 pieces for the 5×7 board, (2) all
endgame databases up to 9 pieces for the 5×5 board, and (3) all endgame databases
up to 7 pieces for the 3×9 board.
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5. Proof-Number Search

This section discusses the search procedure applied for weakly solving the game.
The method used is Proof-Number (PN) search; it is briefly described in Subsection
5.1. A variant of PN search, called PN2, is explained in Subsection 5.2.

5.1. PN search

PN search is a best-first search algorithm especially suited for finding the game-
theoretical value of a game.30 Its aim is to prove the true value of the root of a tree.
A tree can have three values: true, false, or unknown. In the case of a forced win,
the tree is proved and its value is true. In the case of a forced loss or draw, the tree
is disproved and its value is false. Otherwise the value of the tree is unknown. In
contrast to other best-first algorithms PN search does not need a domain-dependent
heuristic evaluation function to determine the most-promising node to be expanded
next. In PN search this node is usually called the most-proving node. PN search
selects the most-proving node using two criteria: (1) the shape of the search tree
(the branching factor of every internal node) and (2) the values of the leaves. These
two criteria enable PN search to treat game trees with a non-uniform branching
factor efficiently.30

5.2. PN2

A disadvantage of PN search is that the whole search tree has to be stored in
memory. Therefore, we use PN2 as an algorithm to reduce memory requirements
in PN search.1,31 PN2 consists of two levels of PN search. The first level consists
of a PN search (pn1), which calls a PN search at the second level (pn2) for an
evaluation of the most-proving node of the pn1-search tree. This pn2 search is bound
by a maximum number of nodes N to be stored in memory. In our implementation
(analogously to Allis1), N is equal to the size of the pn1 tree. The pn2 search is
stopped when the number of nodes stored in memory exceeds N or the subtree
is (dis)proved. After completion of the pn2 search, the children of the root of the
pn2-search tree are preserved, but subtrees are removed from memory.b

The maximum size of the subtree for determining the PN numbers is an impor-
tant factor for PN2 search. With a larger tree the search would be more directed
but would take more time to compute. Allis1 proposed a variable size for the pn2

tree which is dependent on the size of the pn1 tree. Breuker et al.31 used a fraction
function to determine the size of the pn2 tree. We did not use the latter approach
because the fraction function is not efficient for large problems. We initialized the
maximum size of the pn2 tree equal to the size of the pn1 tree.

bThis only holds if the root is not proved or disproved.
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Table 4. The game-theoretic values for different board sizes.

Board Size Winner DB Size (Pieces) Nodes

3×3 White 0 122
3×5 White 0 2,490
5×3 White 0 1,491
3×7 White 0 87,210
7×3 White 0 172,101
5×5 Draw 9 108,593
3×9 White 5 209,409
9×3 White 5 262,217,017
5×7 Black 7 72,826,963
7×5 White 7 1,053,126
5×9 Draw 7 130,820,097,938

6. Results

This section presents the results obtained during our research. In Section 6.1 the
game-theoretic values of Fanorona and its smaller board variants are given and the
optimal solution for the 3×3 board is presented. Section 6.2 discusses an interesting
observation regarding the behavior of the proof and disproof numbers.

6.1. Solving Fanorona and its Board Variants

PN2 search is used in combination with endgame databases to compute the game-
theoretic value of Fanorona and its smaller variants. After some tuning we arrived at
the “ideal” combination for this configuration (i.e., 5×9 board on current hardware)
viz. PN2 with all databases including 7 or fewer pieces. By doing so, we were able
to prove that Fanorona is a draw. For proving this, a total of 130,820,097,938 nodes
were created during the search. Solving the initial position of Fanorona took more
than a week when using our search-based approach on a computer with an AMD
Opteron 2.6 GHz processor and 32 GB of RAM. Moreover, it has been proved that
both the move f2-e3A and d3-e3A lead to a draw. Preliminary results suggest
that by optimal play of both sides the move e2-e3A will lead to a win for Black. At
this moment, we are unable to predict the game-theoretical outcomes of the other
two opening moves (i.e., a win for Black or a draw).

Furthermore, we have solved the smaller variants of the game as well. An
overview of the results of Fanorona and all smaller boards is given in Table 4. The
column labeled DB size indicates which databases have been used. The column
labeled Nodes indicates the total number of created nodes.

For smaller boards we may remark the following. If we have a look at Table
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4, we see that all boards with a side equal to size 3 are a win for White. Thus,
the starting player can exploit a narrow board and force a win. However, for most
boards, with sides of at least size 5, White does not have this advantage anymore.

Table 4 shows differences between horizontal and vertical boards. The difference
in number of nodes between the 5×7 and 7×5 boards (see Table 4 and Figure
2) can be explained by the fact that 5×7 is a win for Black (the second player),
which is harder to prove. Furthermore, a substantial difference between the 3×9 and
9×3 boards can be observed. We conjecture that the average distance between the
players’ pieces is larger on vertical boards than on horizontal boards when entering
the endgame. This would result in a slower convergence.

In order to provide insight into the strategies behind optimal play we show the
solution for the 3×3 board. Figure 6 shows the game which will be played if both
players play optimally.

Below, some interesting positions in this game are discussed. In Subfigure 6b
Black has no choice of movement because there is only one possible capturing move.
In Subfigure 6d Black has two choices. b3-c3 would lead to a loss in 1 because White
would answer with b2-a1W-a2A. Subfigure 6f is the most interesting one. Black
decides to stop the capturing sequence after the capturing of only one of the two
possible pieces. The reason for this is to postpone the eventual loss by one move.

6.2. Behavior of the PN search

During this research we made an interesting observation. Figure 7 and Figure 8 show
the development of proof and disproof number of the root node during the search.
Figure 7 depicts a search with the goal that White can win the initial position.
Figure 8 visualizes a search with the goal that White can at least draw the initial
position. We found that the development of the proof and disproof number has a
similar pattern for smaller boards and looks like a Chi-Square distribution. The
number which goes to zero, independent of its nature (proof or disproof number),
always reaches its peak in the beginning and has a long tail at the end. A similar
pattern can be found when solving the small boards. For instance, this can be seen
when solving the 7×3 board (See Figure 9).

7. Correctness

It is important that the obtained results are free of errors. This section will describe
two arguments why we are convinced that the resuls presented in this paper are
correct.

First, we verified the code for the retrograde analysis in three ways. (1) We
solved endgame positions with the help of forward search and compared the ob-
tained result with the entry in the database. (2) We did use the database code
to construct Lines of Action (LOA) and Surakarta endgame databases which were
verified independently by the programs MIA32 and SIA,33 respectively. (3) A con-
sistency check was done in order to check for possible bit flips.26 It turns out that
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(a) Start (b) c1-b2A (c) a2-a3W

(d) c2-c1W (e) a3-a2 (f) b2-c2W

(g) b3-b2A (h) c1-b1 (i) b2-a2W

(j) b1-b2 (k) a2-a1 (l) b2-c3W

Fig. 6. 3×3 board: White can force a win.

no bit flips had occured.
Second, in order to verify PN search three actions have been taken. (1) The

smaller boards were checked manually. This was possible for the 3×3, 5×3, and
3×5 boards. (2) PN search was compared to a standard alpha-beta search. Non-
trivial 5×9 positions were solved by both solvers in order to detect differences.
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(3) To handle the Graph-History-Interaction (GHI) problem34,35 no transposition
tables were used during the search. There exist methods which handle the GHI
problem with PN search36,37 but these were not implemented.

8. Conclusions and Future Research

This section starts with two conclusions drawn from our research. Thereafter, a
discussion is presented. The section ends with future research.

8.1. Conclusions

Our first and main conclusion is that the game of Fanorona (played on the 5×9
board) has been weakly solved and is drawn when both players play optimally. This
conclusion was arrived at by a well-chosen combination of proof-number search and
endgame databases. Combining these two methods is a relatively new approach for
solving a game. Simultaneously to our research, Schaeffer et al.13,14 used a similar
method for solving checkers. Endgame-database statistics show that (1) the player
to move has an advantage and (2) that a draw can often be achieved in spite of
having fewer pieces than the opponent. Second, we may conclude that White is

Fig. 7. White cannot win the initial Fanorona position.

Fig. 8. White can at least draw the initial Fanorona position.
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Fig. 9. White can win the initial position on the 7×3 board.

able to force a win on board sizes with one side equal to 3. We conjecture that for
boards where both sides have at least size 5, White does not have this advantage
for the majority of cases (so, we consider 7×5 as an exception because White still
wins). The 9×5 board (please note the inversion) of the game has not been fully
weakly solved up to now. Preliminary results suggest that this board is much harder
to solve than the 5×9 board. We anticipate that the reason for this is the larger
distance to the opponent when entering the endgame (see 6.1).

8.2. Discussion

The game-tree and state-space complexity of Fanorona are somewhat higher than
those of checkers. Therefore, the following question may arise: why is this game
easier to solve than checkers? The answer lies in the properties of the game (e.g.,
the decision complexity38). In Fanorona, capturing is almost always possible in the
opening and middle game; often a large amount of pieces is then captured. Thus, the
game converges fast to the endgame, where the endgame databases can take over
the best-play procedure. The speed of the game convergence is not represented in
the game-tree and state-space complexity. We are confident that if such a measure
would be established, it would be higher for Fanorona than for checkers.

8.3. Future Research

In this contribution Fanorona has been weakly solved. We determined a strategy
to achieve the game-theoretic value against any opposition starting from the initial
position. Solving Fanorona strongly is a challenging subject for future research.

At this moment of time (2007) the 9×5 and all larger boards are unsolved. We
believe that for solving these board sizes larger databases are required.

Finally, it would be interesting to investigate whether the proof and disproof
number show a similar pattern as seen in Subsection 6.2 when solving other games.
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9. D. M. Breuker. Memory versus Search in Games. PhD thesis, Universiteit Maastricht,

Maastricht, The Netherlands, 1998.
10. D. M. Breuker, J. W. H. M. Uiterwijk, and H. J. van den Herik. Solving 8 × 8

Domineering. Theoretical Computer Science, 230(1–2):195–206, 1999.
11. N. Bullock. Domineering: Solving large combinatorial search spaces. ICGA Journal,

25(2):67–84, 2002.
12. J. Wágner and I. Virág. Solving renju. ICGA Journal, 24(1):30–34, 2001.
13. J. Schaeffer, N. Burch, Y. Björnsson, A. Kishimoto, M. Müller, R. Lake, P. Lu, and

S. Sutphen. Checkers is solved. Science, 317(5844):1518–1522, 2007.
14. J. Schaeffer. Game over: Black to play and draw in checkers. ICGA Journal, 30(4):187–

197, 2007.
15. J. T. Tromp. John’s connect four playground. Retrieved 26.6.2007.

http://homepages.cwi.nl/˜tromp/c4/c4.html.
16. G. Irving, H. H. L. M. Donkers, and J. W. H. M. Uiterwijk. Solving Kalah. ICGA

Journal, 23(3):139–147, 2000.
17. J. W. Romein and H. E. Bal. Solving awari with parallel retrograde analysis. IEEE

Computer, 36(10):26–33, 2003.
18. J. W. H. M. Uiterwijk, L. V. Allis, and H. J. van den Herik. A knowledge-based

approach to connect-four. In D. N. L. Levy and D. F. Beal, editors, Heuristic Pro-
gramming in Artificial Intelligence: the First Computer Olympiad, pages 113–133. Ellis
Horwood Limited, Chichester, UK, 1989.

19. L. V. Allis, H. J. van den Herik, and M. P. H. Huntjes. Go-moku and threat-space
search. Technical Report CS 93-02, Department of Computer Science, Faculty of Gen-
eral Sciences, Rijksuniversiteit Limburg, Maastricht, The Netherlands, 1993.
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