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From Stable Marriage
to the Hospitals/Residents problem

and its variants

Match Day 2017. Credit: Charles E. Schmidt College of Medicine, FAU.

For more photos of this important day of medical students’ life click here.
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Nobel prize in Economic Sciences, 2012

The Sveriges Riksbank Prize in Economic Sciences in Memory of Alfred Nobel 2012
Alvin E. Roth, Lloyd S. Shapley

The prize was awarded jointly to Alvin E. Roth and Lloyd S. Shapley 
``for the theory of stable allocations and the practice of market design’’.
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4

Please note that the PDF version of these slides that 
are available through EASSS link does not include the
animations. If you would like to have the original PPT
version (that includes animations) please send me an 
email to: baharakr@gmail.com



From Stable Marriage
to the Hospitals/Residents problem

and its variants

Match Day 2017. Credit: Charles E. Schmidt College of Medicine, FAU.

For more photos of this important day of medical students’ life click here.

5

https://www.google.co.uk/search?rlz=1C1GGRV_enGB754GB754&biw=1493&bih=780&tbm=isch&sa=1&ei=uRghW-eQBYjiU9CKi_gF&q=match+day+residents&oq=match+day+residents


Stable Marriage problem (SM)

•A market with two disjoint sets of agents
• 2 men: Adam, Bob
• 2 women: Alice, Bella

•Each agent has a strict preference ordering over the agents on 
the other side of the market (a.k.a candidates). 

•Goal: identifying a stable marriage (matching)

•Applications: many, including college admission, 
hospitals/residents problem

Adam:   Alice Bella Alice: Adam Bob
Bob: Bella Alice Bella:   Adam      Bob
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Applications of SM

•Assigning residents to hospitals

•Assigning children to daycare places

•Assigning children to schools (school choice programs)

•Assigning students to colleges/universities (higher education 
admission)

•Placing military cadets in branches and assigning naval cadets 
to billets 

•Hiring federal judicial law clerks 

•Placement of graduating rabbis 

•Online dating and online matrimony

•Auction mechanisms for sponsored search

•Kidney exchange
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Stable Matchings

Matching:

A pairing of women and men such that each man is paired with at 
most one woman and vice versa.

Adam:   Alice Bella Alice: Adam Bob

Bob:    Bella Alice Bella:   Adam      Bob
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Stable Matchings

Matching:

A pairing of women and men such that each man is paired with at 
most one woman and vice versa.

Blocking pair:

A pair who prefer each other to their current partners.

Alice and Adam block this matching

Adam:   Alice Bella Alice: Adam Bob

Bob:    Bella Alice Bella: Adam      Bob
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Stable Matchings

Matching:

A pairing of women and men such that each man is paired with at 
most one woman and vice versa.

Blocking pair:

A pair who prefer each other to their current partners.

Stable matching:

A matching with no blocking pair.

Not stable

Adam: Alice Bella Alice: Adam Bob

Bob: Bella Alice Bella: Adam      Bob
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Stable Matchings

Matching:

A pairing of women and men such that each man is paired with at 
most one woman and vice versa.

Blocking pair:

A pair who prefer each other to their current partners.

Stable matching:

A matching with no blocking pair.

Stable

Adam: Alice Bella Alice: Adam Bob

Bob: Bella Alice Bella: Adam      Bob
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Theorem (Gale & Shapley, 1962)

A stable matching always exists, and can be found in polynomial time.

Deferred-acceptance-man-oriented (men, women, preference orderings)

1 Assign all men and women to be free;

2 While (some man m is free) {

3 w = first woman on m's list to whom m hasn't yet proposed;

4 If (w is free)

5 assign m and w to be engaged;

6 else if (w prefers m to her fiancé m') {

7  set m and w to be engaged;

8 set m' to be free;

9 } else

10 w rejects m; //and m remains free

11 }

12 output the n engaged pairs, who form a stable matching;

Does every instance of SM problem 
admit a stable matching?
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Example: Man-oriented Gale Shapley (MGS)

1 Assign all men and women to be free;

2 While (some man m is free) {

3 w = first woman on m's list to whom m hasn't yet proposed;

4 If (w is free)

5 assign m and w to be engaged;

6 else if (w prefers m to her fiancé m') {

7  set m and w to be engaged;

8 set m' to be free;

9 } else

10 w rejects m; //and m remains free

11 }

m1: w2 w1 w3 w1: m1 m2 m3

m2: w1 w2 w3 w2: m2 m1 m3

m3: w1 w2 w3 w3: m1 m3 m2
13



Extensions of Stable Marriage problem

• Agents may declare some candidates unacceptable
→ Stable Marriage problem with Incomplete lists (SMI)

Matching: a set of (man,woman) acceptable pairs
Blocking pair: a pair who prefer each other to their current partners. 
(Assume that agents prefer getting matched to an acceptable 
candidate to remaining unmatched.)

• Agents may be indifferent among several candidates
→ Stable Marriage problem with Ties (SMT)

• Both incomplete lists and indifferences are allowed
→ Stable Marriage problem with Ties and Incomplete lists (SMTI)

• Agents on one side can get matched to several candidates
• Many-one stable matching problem
• Hospitals/Residents problem (HR) and HR with Ties (HRT)

•Many-to-many stable matching problem
• Workers/Firms problem (WF)
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Extensions of Stable Marriage problem

• Agents may declare some candidates unacceptable
→ Stable Marriage problem with Incomplete lists (SMI)

Matching: a set of (man,woman) acceptable pairs
Blocking pair: a pair who prefer each other to their current partners. 
(Assume that agents prefer getting matched to an acceptable 
candidate to remaining unmatched.)

• Agents may be indifferent among several candidates
→ Stable Marriage problem with Ties (SMT)

• Both incomplete lists and indifferences are allowed
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• Agents on one side can get matched to several candidates
• Many-one stable matching problem
• Hospitals/Residents problem (HR) and HR with Ties (HRT)

•Many-to-many stable matching problem
• Workers/Firms problem (WF)

15



What’s next in the tutorial

1.1. Classical Hospitals / Residents problem

1.2. Hospitals / Residents problem with Ties

1.3. Hospitals / Residents problem with Couples

1.4. “Almost stable” matchings

1.5: Social Stability
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From Stable Marriage
to the Hospitals/Residents problem

and its variants

Match Day 2017. Credit: Charles E. Schmidt College of Medicine, FAU.

For more photos of this important day of medical students’ life click here.
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How it works in practice, usually

• Junior doctors (or residents) must undergo training in hospitals

• Applicants rank hospitals in order of preference

• Hospitals do likewise with their applicants

• Centralised matching schemes (clearinghouses) produce a 
matching in several countries

‒ US (National Resident Matching Program)

‒ Canada (Canadian Resident Matching Service)

‒ Japan (Japan Residency Matching Program)

‒ UK (UK Foundation Programme Office)

• Stability is the key property of a matching

‒ [Roth, 1984]
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Hospitals / Residents problem (HR)

• There are n1 residents r1, r2, …, rn1
and n2 hospitals h1, h2, …, hn2

• Each hospital has a capacity

• Residents rank hospitals in order of preference, hospitals do 
likewise

• r finds h acceptable if h is on r’s preference list, and unacceptable 
otherwise (and vice versa)

• A matching M is a set of resident-hospital pairs such that:

1. (r,h)M  r, h find each other acceptable

2. No resident appears in more than one pair

3. No hospital appears in more pairs than its capacity
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HR: example matching

r1: h2 h1

r2: h1 h2 Each hospital has capacity 2

r3: h1 h3

r4: h2 h3 h1: r1 r3 r2 r5 r6

r5: h2 h1 h2: r2 r6 r1 r4 r5

r6: h1 h2 h3: r4 r3

Resident preferences Hospital preferences
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HR: example matching

r1: h2 h1

r2: h1 h2 Each hospital has capacity 2

r3: h1 h3

r4: h2 h3 h1: r1 r3 r2 r5 r6

r5: h2 h1 h2: r2 r6 r1 r4 r5

r6: h1 h2 h3: r4 r3

Resident preferences Hospital preferences

M = {(r1, h1), (r2, h2), (r3, h3), (r5, h2), (r6, h1)} (size 5)
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HR: stability

• Matching M is stable if M admits no blocking pair

– (r, h) is a blocking pair of matching M if:

1. r, h find each other acceptable

and

2. either r is unmatched in M
or r prefers h to his/her assigned hospital in M

and

3. either h is undersubscribed in M
or h prefers r to its worst resident assigned in M
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HR: blocking pair (1)

r1: h2 h1

r2: h1 h2 Each hospital has capacity 2

r3: h1 h3

r4: h2 h3 h1: r1 r3 r2 r5 r6

r5: h2 h1 h2: r2 r6 r1 r4 r5

r6: h1 h2 h3: r4 r3

Resident preferences Hospital preferences

M = {(r1, h1), (r2, h2), (r3, h3), (r5, h2), (r6, h1)} (size 5)

(r2, h1) is a blocking pair of M
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HR: blocking pair (2)

r1: h2 h1

r2: h1 h2 Each hospital has capacity 2

r3: h1 h3

r4: h2 h3 h1: r1 r3 r2 r5 r6

r5: h2 h1 h2: r2 r6 r1 r4 r5

r6: h1 h2 h3: r4 r3

Resident preferences Hospital preferences

M = {(r1, h1), (r2, h2), (r3, h3), (r5, h2), (r6, h1)} (size 5)

(r4, h2) is a blocking pair of M
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HR: blocking pair (3)

r1: h2 h1

r2: h1 h2 Each hospital has capacity 2

r3: h1 h3

r4: h2 h3 h1: r1 r3 r2 r5 r6

r5: h2 h1 h2: r2 r6 r1 r4 r5

r6: h1 h2 h3: r4 r3

Resident preferences Hospital preferences

M = {(r1, h1), (r2, h2), (r3, h3), (r5, h2), (r6, h1)} (size 5)

(r4, h3) is a blocking pair of M
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HR: stable matching

r1: h2 h1

r2: h1 h2 Each hospital has capacity 2

r3: h1 h3

r4: h2 h3 h1: r1 r3 r2 r5 r6

r5: h2 h1 h2: r2 r6 r1 r4 r5

r6: h1 h2 h3: r4 r3

Resident preferences Hospital preferences

M = {(r1, h1), (r2, h2), (r3, h3), (r5, h2), (r6, h1)} (size 5)

r5 is unmatched
h3 is undersubscribed
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HR: classical results

• A stable matching always exists and can be found in linear time 
[Gale and Shapley, 1962; Gusfield and Irving, 1989]

• There are resident-optimal and hospital-optimal stable 
matchings

• Stable matchings form a distributive lattice [Conway, 1976; 
Gusfield and Irving, 1989]

• “Rural Hospitals Theorem”: for a given instance of HR:

1. the same residents are assigned in all stable matchings;

2. each hospital is assigned the same number of residents in all 
stable matchings;

3. any hospital that is undersubscribed in one stable matching is 
assigned exactly the same set of residents in all stable matchings.

[Roth, 1984; Gale and Sotomayor, 1985; Roth, 1986]
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Resident-optimal and hospital-optimal stable matchings

• In a resident-optimal stable matching

‒ each assigned resident is matched with the best hospital s/he can 
obtain in a stable matching, and

‒ each unassigned resident is unassigned in all stable matchings.

• In a hospital-optimal stable matching

‒ every full hospital hj is assigned its cj (cj being its capacity) best 
stable partners, and

‒ every undersubscribed hospital is assigned the same set of 
residents in every stable matching.

• The resident-optimal stable matching is worst-possible for the 
hospitals and vice versa.

• The Resident-oriented Gale-Shapley (next slide) produces the 
resident-optimal stable matching.
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Resident-oriented Gale-Shapley algorithm

1 M = ∅;  //assign all residents and hospitals to be free

2 While (some resident ri is unmatched and has a non-empty list) {

3 ri applies to the first hospital hj on her list;

4 M = M ∪ {(ri, hj)};

5 If (hj is over-subscribed) {

6 rk = worst resident assigned to hj;

7 M = M ∖ {(rk, hj)};

8 }

9 If (hj is full) {

10  rk = worst resident assigned to hj;

11 For (each successor rl of rk on hj’s list){

12 delete rl from hj’s lis;t //rl is set free

13 delete hj from rl’s list; 

14 }

15 }
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RGS algorithm: example

r1: h2 h1

r2: h1 h2 Each hospital has capacity 2

r3: h1 h3

r4: h2 h3 h1: r1 r3 r2 r5 r6

r5: h2 h1 h2: r2 r6 r1 r4 r5

r6: h1 h2 h3: r4 r3

Resident preferences Hospital preferences
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RGS algorithm: example

r1: h2 h1

r2: h1 h2 Each hospital has capacity 2

r3: h1 h3

r4: h2 h3 h1: r1 r3 r2 r5 r6

r5: h2 h1 h2: r2 r6 r1 r4 r5

r6: h1 h2 h3: r4 r3

Resident preferences Hospital preferences

Stable matching: M = {(r1, h2), (r2, h1), (r3, h1), (r4, h3), (r6, h2)} 
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What’s next in the tutorial

1.1. Classical Hospitals / Residents problem

1.2. Hospitals / Residents problem with Ties

1.3. Hospitals / Residents problem with Couples

1.4. “Almost stable” matchings

1.5: Social Stability
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Hospitals / Residents problem with Ties (HRT)

• In practice, residents’ preference lists are short
• Hospitals’ lists are generally long, so ties may be used –

Hospitals / Residents problem with Ties (HRT)
• A hospital may be indifferent among several residents

‒ E.g., h1: (r1 r3) r2 (r5 r6 r8)

• Matching M is stable if there is no pair (r,h) such that:
1. r, h find each other acceptable
2. either r is unmatched in M

or r prefers h to his/her assigned hospital in M
3. either h is undersubscribed in M

or h prefers r to its worst resident assigned in M

• A matching M is stable in an HRT instance I if and only if M is 
stable in some instance I of HR obtained from I by breaking 
the ties [Manlove et al, 1999]
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HRT: stable matching (1)

r1: h1 h2

r2: h1 h2 Each hospital has capacity 2

r3: h1 h3

r4: h2 h3 h1: r1 r2 r3 r5 r6

r5: h2 h1 h2: r2 r1 r6(r4 r5)

r6: h1 h2 h3: r4 r3

Resident preferences Hospital preferences
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HRT: stable matching (1)

r1: h1 h2

r2: h1 h2 Each hospital has capacity 2

r3: h1 h3

r4: h2 h3 h1: r1 r2 r3 r5 r6

r5: h2 h1 h2: r2 r1 r6(r4 r5)

r6: h1 h2 h3: r4 r3

Resident preferences Hospital preferences

M = {(r1, h1), (r2, h1), (r3, h3), (r4, h2), (r6, h2)} (size 5)
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HRT: stable matching (2)

r1: h1 h2

r2: h1 h2 Each hospital has capacity 2

r3: h1 h3

r4: h2 h3 h1: r1 r2 r3 r5 r6

r5: h2 h1 h2: r2 r1 r6(r4 r5)

r6: h1 h2 h3: r4 r3

Resident preferences Hospital preferences

M = {(r1, h1), (r2, h1), (r3, h3), (r4, h3), (r5, h2), (r6, h2)} (size 6)
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Maximum stable matchings

• Stable matchings can have different sizes

• A maximum stable matching can be (at most) twice the size of a 
minimum stable matching

• Problem of finding a maximum stable matching (MAX HRT) is 
NP-hard [Iwama, Manlove et al, 1999], even if (simultaneously):

– each hospital has capacity 1 (SMTI)
– the ties occur on one side only
– each preference list is either strictly ordered or is a single tie
– and
• either each tie is of length 2 [Manlove et al, 2002]
• or each preference list is of length 3 [Irving, Manlove, O’Malley, 2009]

• Minimisation problem is NP-hard too, for similar restrictions!    
[Manlove et al, 2002]
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Reminder: computational complexity

• Given two functions f and g, we say f(n)=O(g(n)) if there are positive 
constants c and N such that f(n)  c.g(n) for all nN

• An algorithm for a problem has time complexity O(g(n)) if its running time f
satisfies f(n)=O(g(n)) where n is the input size

• An algorithm runs in polynomial time if its time complexity is O(nk) for some 
constant k, where n is the input size

• A decision problem is a problem whose solution is yes or no for any input

• A decision problem belongs to the class P if it can be solved by a  polynomial-
time algorithm

• A decision problem belongs to the class NP if it can be verified in  polynomial 
time

• A decision problem A is NP-hard if every other problem in NP reduces to A. 

• A decision problem A is NP-complete if it NP-hard and it belongs to NP.

• If a decision problem is NP-complete it has no polynomial-time algorithm 
unless P=NP
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Reminder: approximation algorithms

• An optimisation problem is a problem that involves maximising or 
minimising (subject to a suitable measure) over a set of feasible solutions 
for a given instance

– e.g., colour a graph using as few colours as possible

• If an optimisation problem is NP-hard it has no polynomial-time algorithm 
unless P=NP

• An approximation algorithm A for an optimisation problem is a polynomial-
time algorithm that produces a feasible solution A(I) for any instance I.

• A has performance guarantee c, for some c>1 if

– |A(I)|  c.opt(I) for any instance I (in the case of a minimisation problem)

– |A(I)|  (1/c).opt(I) for any instance I (in the case of a maximisation 
problem)

where opt(I) is the measure of an optimal solution and |A(I)| the size of the 
solution produced by A.

➢ We say that A is a c-approximation algorithm for this problem.
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Master lists

• In practice there may be a common ranking of residents according to 
some objective criteria (e.g., academic ability) – a master list

• Each hospital’s preference list is then derived from this master list

• Depending on how fine-grained the scoring system is, ties may arise as 
a result of residents having equal scores

• MAX HRT is NP-hard even if (simultaneously):
– each hospital’s preference list is derived from a master list of residents

– each resident’s preference list is derived from a master list of hospitals

– each hospital has capacity 1

– and

• either there is only a single tie that occurs in one of the master lists

• or the ties occur in one master list only and are of length 2

[Irving, M and Scott, 2008]
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Example: master list

r1: h1 h2

r2: h1 h2 Each hospital has capacity 2

r3: h1 h2

r4: h2 h3 h1: r1 r2 r3 r5

r5: h1 h3 h2: r1 r2(r3 r4)r6

r6: h2    h3: r4 r5

Resident preferences Hospital preferences

Hospitals’ preferences derived from the following master list:
r1 r2 (r3 r4) r5 r6

Residents’ preferences derived from the following master list:
h1 h2 h3
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MAX HRT: approximability

• MAX HRT is not approximable within 33/29 unless P=NP, even if 
each hospital has capacity 1 [Yanagisawa, 2007]

• MAX HRT is not approximable within 4/3- assuming the Unique 
Games Conjecture (UGC) [Yanagisawa, 2007]

• Trivial 2-approximation algorithm for MAX HRT 

• Succession of papers gave improvements, culminating in:

‒ MAX HRT is approximable within 3/2 [McDermid, 2009; Király, 2012; 
Paluch 2012]

• Experimental comparison of approximation algorithms and 
heuristics for MAX HRT and MAX SMTI [Irving and M, 2009; 
Podhradský 2010]
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Kiraly’s 
3

2
-approximation for MAX SMTI 

(man-oriented version)

•When a man is rejected by all women in his list, he is given a 
second chance

• For a man m, and for two women wi and wj , we say that m prefers 
wi to wj if 

1. either he prefers wi in the usual sense
2. or he is indifferent between the two, wj is engaged and wi is free.

• For a woman w, and for two men mi and mj , we say that w prefers 
mi to mj if 

1. either she prefers mi in the usual sense
2. or she is indifferent between the two, mi has a second chance (he is 
proposing to the women in his list for the 2nd time) and mj does not 
(he is proposing to the women in his list for the 1st time).
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Kiraly’s 
3

2
-approximation for MAX SMTI 

(man-oriented version) contd.

•An unassigned man proposes to his most-preferred woman on 
his list, according to his new definition of prefers

•An unassigned woman always accepts a proposal (as was the 
case in GS)

•An assigned woman w accepts a new proposal from a man m, 
and rejects her current partner mk , if 

1. either she prefers m to her current partner, according to her new 
definition of prefers
2. or her current partner prefers some woman to w, again according 
to his new definition of prefers. (In this case we call w precarious.)

•When a woman w rejects a man m, and she is not precarious, m and 
w are deleted from each others’ lists
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SMTI: stable matching (1)

m1:( w1 w2 ) w1: ( m1 m2 )

m2:  w1 w2: m1

m3:  w3  w4 w3: ( m3 m4 )

m4:  w3 w4:   m3

M = {(m1, w1), (m3, w3)} (size 2)
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SMTI: stable matching (2)

m1:( w1 w2 ) w1: ( m1 m2 )

m2:  w1 w2: m1

m3:  w3  w4 w3: ( m3 m4 )

m4:  w3 w4:   m3

M = {(m1, w2), (m2, w1), (m3, w4), (m4, w3)} (size 4)
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Example: Kiraly’s algorithm

m1:( w1 w2 ) w1: ( m1 m2 )

m2:  w1 w2: m1

m3:  w3  w4 w3: ( m3 m4 )

m4:  w3 w4:   m3

•w1 is precarious: her current partner m1 prefers another woman, 
w2, according to his new definition of prefers. 

•w3 is not precarious and is indifferent between m3 and m4, even 
according to her new definition of prefers.

•m4 is given a second chance. 

•w3 prefers m4 to m3, according to her new definition of prefers.
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Example: Kiraly’s algorithm

M = {(m1, w2), (m2, w1), (m3, w4), (m4, w3)} (size 4)

m1:( w1 w2 ) w1: ( m1 m2 )

m2:  w1 w2: m1

m3:  w3  w4 w3: ( m3 m4 )

m4:  w3 w4:   m3
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Tutorial Outline

1.1: Classical Hospitals / Residents problem

1.2: Hospitals / Residents problem with Ties

1.3: Hospitals / Residents problem with Couples

1.4: “Almost stable” matchings

1.5: Social Stability
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Couples in HR

• Pairs of residents who wish to be matched to geographically close 
hospitals form couples

• Each couple (ri,rj) ranks in order of preference a set of pairs of 
hospitals (hp,hq) representing the assignment of ri to hp and rj to hq

• Stability definition may be extended to this case [Roth, 1984; 
McDermid and Manlove, 2010; Biró et al, 2011]

• Gives the Hospitals / Residents problem with Couples (HRC)

• A stable matching need not exist:

(r1,r2): (h1,h2) h1:1: r1 r3 r2

r3: (h1 h2 h2:1: r1 r3 r2
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Couples in HR

• Pairs of residents who wish to be matched to geographically close 
hospitals form couples

• Each couple (ri,rj) ranks in order of preference a set of pairs of 
hospitals (hp,hq) representing the assignment of ri to hp and rj to hq

• Stability definition may be extended to this case [Roth, 1984; 
McDermid and Manlove, 2010; Biró et al, 2011]

• Gives the Hospitals / Residents problem with Couples (HRC)

• A stable matching need not exist:

(r1,r2): (h1,h2) h1:1: r1 r3 r2

r3: (h1 h2 h2:1: r1 r3 r2
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Couples in HR

• Pairs of residents who wish to be matched to geographically close 
hospitals form couples

• Each couple (ri,rj) ranks in order of preference a set of pairs of 
hospitals (hp,hq) representing the assignment of ri to hp and rj to hq

• Stability definition may be extended to this case [Roth, 1984; 
McDermid and Manlove, 2010; Biró et al, 2011]

• Gives the Hospitals / Residents problem with Couples (HRC)

• A stable matching need not exist:

(r1,r2): (h1,h2) h1:1: r1 r3 r2

r3: (h1 h2 h2:1: r1 r3 r2

• Stable matchings can have different sizes
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Couples in HR

• The problem of determining whether a stable matching exists in a 
given HRC instance is NP-complete, even if each hospital has 
capacity 1 and:

– there are no single residents
[Ng and Hirschberg, 1988; Ronn, 1990]

– there are no single residents, and
– each couple has a preference list of length ≤2, and
– each hospital has a preference list of length ≤3

[Manlove and McBride, 2013]

– the preference list of each single resident, couple and hospital is derived 
from a strictly ordered master list of hospitals, pairs of hospitals and 
residents respectively [Biró et al, 2011], and

– each preference list is of length ≤3, and
– the instance forms a “dual market”

[Manlove and McBride, 2013]
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Algorithm for HRC

• Algorithm C described in [Biró et al, 2011]:
• A Gale-Shapley like heuristic
• An agent is a single resident or a couple
• Agents apply to entries on their preference lists
• When a member of an assigned couple is rejected their partner 

must withdraw from their assigned hospital
• This creates a vacancy – so any resident previously rejected by 

the hospital in question may have to be reconsidered

• The algorithm need not terminate
‒ if it terminates, the matching found is guaranteed to be stable
‒ it cannot terminate if there is no stable matching
‒ it need not terminate even if there is a stable matching
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Algorithm C: example

Resident preferences

r3 : h1 h5

r7 : h6 h8

(r1,r5) : (h1,h2) (h3,h6)

(r2,r4) : (h4,h5) (h1,h2) (h3,h7)

(r6,r8) : (h6,h8)

Hospitals’ preferences derived from the following master list:

r1 r2 r3 r4 r5 r6 r7 r8

Each hospital has capacity 1

cycle
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Stable matching

Resident preferences

r3 : h1 h5

r7 : h6 h8

(r1,r5) : (h1,h2) (h3,h6)

(r2,r4) : (h4,h5) (h1,h2) (h3,h7)

(r6,r8) : (h6,h8)

Hospitals’ preferences

r1 r2 r3 r4 r5 r6 r7 r8

Each hospital has capacity 1

Stable matching: M = {(r1, h3), (r2, h1), (r3, h5), (r4, h2), (r5, h6), (r7, h8)}
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Empirical evaluation

• Extensive empirical evaluation due to [Biró et al, 2011]:

• Compared 5 variants of Algorithm C against 10 other algorithms

• Instances generated with varying:

‒ sizes

‒ numbers of couples

‒ densities of the “compatibility matrix”

‒ lengths of time given to each instance

• Measured proportion of instances found to admit a stable matching

• Clear conclusion:

‒ high likelihood of finding a stable matching (with Algorithm C) if 

the number / proportion of couples is low
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Tutorial Outline

1.1: Classical Hospitals / Residents problem

1.2: Hospitals / Residents problem with Ties

1.3: Hospitals / Residents problem with Couples

1.4: “Almost stable” matchings

1.5: Social Stability

58



Maximum matchings vs stable matchings

• Maximum matchings can be twice the size of stable matchings

• Example (each hospital has capacity 1):

r1: h1 h2 h1: r1 r2
r2: h1 2 h2: r1
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Maximum matchings vs stable matchings

• Maximum matchings can be twice the size of stable matchings

• Example (each hospital has capacity 1):

r1: h1 h2 h1: r1 r2
r2: h1 1 h2: r1

r1

r2

h1

h2

r1: h1 h2 h1: r1 r2
r2: h1 2 h2: r1

r1

r2

h1

h2

stable matching maximum matching
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Maximum matchings vs stable matchings

• A small number of blocking pairs could be tolerated if it is 

possible to find a larger matching

• But, different maximum matchings can have different numbers of 

blocking pairs

• Example:

(each hospital 

has capacity 1)

• Every stable matching has size 3

r1: h4 h1 h3 h1: r4 r1 r2
r2: h2 h1 h4 h2: r3 r2 r4
r3: h2 h4 h3 h3: r1 r3
r4: h1 h4 h2 h4: r4 r1 r3 r2
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Maximum matchings vs stable matchings

• A small number of blocking pairs could be tolerated if it is 

possible to find a larger matching

• But, different maximum matchings can have different numbers of 

blocking pairs

• Example:

(each hospital 

has capacity 1)

• Maximum matching M1={(r1,h1), (r2,h2), (r3,h3), (r4,h4)}

• Blocking pairs of M1: (r3,h2), (r4,h1)   (2)

r1: h4 h1 h3 h1: r4 r1 r2
r2: h2 h1 h4 h2: r3 r2 r4
r3: h2 h4 h3 h3: r1 r3
r4: h1 h4 h2 h4: r4 r1 r3 r2
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Maximum matchings vs stable matchings

• A small number of blocking pairs could be tolerated if it is possible 

to find a larger matching

• But, different maximum matchings can have different numbers of 

blocking pairs

• Example:

(each hospital 

has capacity 1)

• Maximum matching M2={(r1,h1), (r2,h4), (r3,h3), (r4,h2)}

• Blocking pairs of M2: (r1,h4), (r2,h2), (r3,h2), (r3,h4), (r4,h1), (r4,h4)   (6)

r1: h4 h1 h3 h1: r4 r1 r2
r2: h2 h1 h4 h2: r3 r2 r4
r3: h2 h4 h3 h3: r1 r3
r4: h1 h4 h2 h4: r4 r1 r3 r2
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Maximum matchings vs stable matchings

• A small number of blocking pairs could be tolerated if it is possible 

to find a larger matching

• But, different maximum matchings can have different numbers of 

blocking pairs

• Example:

(each hospital 

has capacity 1)

• Maximum matching M3={(r1,h4), (r2,h2), (r3,h3), (r4,h1)}

• Blocking pairs of M3: (r3,h2) (1)

r1: h4 h1 h3 h1: r4 r1 r2
r2: h2 h1 h4 h2: r3 r2 r4
r3: h2 h4 h3 h3: r1 r3
r4: h1 h4 h2 h4: r4 r1 r3 r2
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“Almost stable” matchings

• Given an instance of HR, the problem is to find a maximum 

matching that is “almost stable”, i.e., admits the minimum number 

of blocking pairs

• The problem is:
‒ NP-hard

• even if every preference list is of length 3

‒ not approximable within n1-, for any  > 0, unless P=NP, where n is 

the number of residents

‒ solvable in polynomial time if each resident’s list is of length 2

• In all cases the result is true if each hospital has capacity 1

[Biro, Manlove and Mittal, 2010]
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Tutorial Outline

1.1: Classical Hospitals / Residents problem

1.2: Hospitals / Residents problem with Ties

1.3: Hospitals / Residents problem with Couples

1.4: “Almost stable” matchings

1.5: Social Stability
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The Social Network Graph

• A blocking pair (r,h) of a matching M may not necessarily lead to M

being undermined in practice
– Especially if r and h are unaware of each other’s preference list

• Consider an HR instance I augmented by a social network graph
– A bipartite graph comprising a subset of the acceptable resident-hospital 

pairs that have some social ties

• A resident-hospital pair is acquainted if 

they form an edge in the social network 

graph, and unacquainted otherwise

• Unacquainted pairs cannot block a matching

1

2

3

4

5

6

1

2

3

Social network graph G

Residents Hospitals
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Example

r1: h2 h1

r2: h1 h2 Each hospital has capacity 2

r3: h1 h3

r4: h2 h3 h1: r1 r3 r2 r5 r6

r5: h2 h1 h2: r2 r6 r1 r4 r5

r6: h1 h2 h3: r4 r3

Resident preferences Hospital preferences

Unacquainted pairs: {(r1,h2), (r3,h1), (r5,h2)}

1

2

3

4

5

6

1

2

3

Social network graph G

Residents Hospitals

68



Example

r1: h2 h1

r2: h1 h2 Each hospital has capacity 2

r3: h1 h3

r4: h2 h3 h1: r1 r3 r2 r5 r6

r5: h2 h1 h2: r2 r6 r1 r4 r5

r6: h1 h2 h3: r4 r3

Resident preferences Hospital preferences

Unacquainted pairs: {(r1,h2), (r3,h1), (r5,h2)}

(r3,h1) is no longer allowed to block the matching

1

2

3

4

5

6

1

2

3

Social network graph G

Residents Hospitals
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Social stability

• A pair (r,h) socially blocks a matching M if:
– (r,h) blocks M in the classical sense

– (r,h) is an acquainted pair

• M is socially stable if it has no social blocking pair

• An instance of the Hospitals / Residents problem under Social 

Stability (HRSS) comprises an HR instance I and a social network 

graph G

• Given an HRSS instance (I,G), any stable matching in I is socially 

stable in (I,G)
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Socially stable matchings of different sizes

r1: h2 h1

r2: h1 h2 Each hospital has capacity 2

r3: h1 h3

r4: h2 h3 h1: r1 r3 r2 r5 r6

r5: h2 h1 h2: r2 r6 r1 r4 r5

r6: h1 h2 h3: r4 r3

Resident preferences Hospital preferences

Socially stable matching of size 6

1

2

3

4

5

6

1

2

3

Social network graph G

Residents Hospitals
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Socially stable matchings of different sizes

r1: h2 h1

r2: h1 h2 Each hospital has capacity 2

r3: h1 h3

r4: h2 h3 h1: r1 r3 r2 r5 r6

r5: h2 h1 h2: r2 r6 r1 r4 r5

r6: h1 h2 h3: r4 r3

Resident preferences Hospital preferences

Socially stable matching of size 5

1

2

3

4

5

6

1

2

3

Social network graph G

Residents Hospitals

72



Algorithmic results

• The problem of finding a maximum socially stable matching, given an 
instance of HRSS, is:

– NP-hard, even if all preference lists are of length 3 and each hospital 
has capacity 1

– solvable in polynomial-time if:

• each resident’s list is of length 2, or
• the number of acquainted pairs is constant, or
• the number of unacquainted pairs is constant

– approximable within 3/2

– not approximable better than 3/2 assuming the Unique Games 
Conjecture

– [Askalidis, Immorlica, Kwanashie, M and Pountourakis, 2013]
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What’s next in the tutorial

2.1. Strategic agents

2.2. Integer Programming

2.3. Parameterised complexity

2.4. Preference elicitation

2.6: School Choice
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Dominant-strategy truthfulness

•Agents (e.g. hospitals and residents) declare their preference 
lists to the centralised system (e.g. NRMP)

•Agent are strategic: they misreport if it is in their benefit
‒ i.e. if providing a different ranking over candidates results in the 

system matching them with a better one

•A matching mechanism is dominant-strategy truthful (DS 
truthful), if every agent finds it in his/her best interest to 
declare his/her true preference list, no matter what other 
agents choose to do.

•Is Gale-Shapley DS truthful?
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Is Gale-Shapley DS truthful?

Will all agents reveal their preferences truthfully? 

•When the man-oriented version of Gale-Shapley algorithm is 
executed, all men find it in their best interest to be truthful.

• Some women, however, may benefit from misreporting their 
preferences.

m1: w2 w1 w3 w1: m1 m3 m2

m2: w1 w2 w3 w2: m2 m1 m3

m3: w1 w2 w3 w3: m1 m3 m2

In truth w1 prefers m2 to m3
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Is Gale-Shapley DS truthful?

Will all agents reveal their preferences truthfully? 

•When the man-oriented version of Gale-Shapley algorithm is 
executed, all men find it in their best interest to be truthful.

• Some women, however, may benefit from misreporting their 
preferences.

m1: w2 w1 w3 w1: m1 m3 m2

m2: w1 w2 w3 w2: m2 m1 m3

m3: w1 w2 w3 w3: m1 m3 m2

In truth w1 prefers m2 to m3
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Is Gale-Shapley DS truthful?

•When the man-oriented version of Gale-Shapley algorithm is 
executed, all men find it in their best interest to be truthful.

• Some women, however, may benefit from misreporting their 
preferences.

• In fact, there is no mechanism that can always induce all agents 
to be truthful.

Theorem (Roth, 1982)

No stable matching mechanism exists for which truth-telling is a 
dominant strategy for every agent.

m1: w2 w1 w3 w1: m1 m3 m2

m2: w1 w2 w3 w2: m2 m1 m3

m3: w1 w2 w3 w3: m1 m3 m2
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What’s next in the tutorial

2.1. Strategic agents

2.2. Integer Programming

2.3. Parameterised complexity

2.4. Preference elicitation

2.6: School Choice
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Recall: Integer (Linear) Programming

• Integer programming:

‒ min cTx subject to    Ax≤b

‒ where c=(c1, c2,…, cn)
T , x=(x1, x2,…, xn)

T , b=(b1, b2,…, bm) T

A=(aij) (1≤i≤m, 1≤ j≤n), the ci, aij and bj are real-valued known 

coefficients and the xi are integer-valued variables

• Linear programming: relaxation in which xi are real-valued
‒ solvable in polynomial time

• General integer programming problem is NP-hard
‒ but there are some powerful solvers

Objective function

Constraints

Variables
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Integer Programming for MAX HRT

• Model developed by Augustine Kwanashie (2012)

• Solved using CPLEX IP solver

• IP models of HRT instances with tie density of about 85% are the 

most likely to be computationally hard

• Real world SFAS (Scottish Foundation Allocation Scheme ) datasets 

were also solved using the IP model

‒Ties only exist in hospitals’ lists
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Scottish Foundation Allocation Scheme

• Set of applicants and programmes (residents and hospitals)

• Up to 2012: each applicant

– ranks 10 programmes in strict order of preference

– has a score in the range 40..100

• Two applicants can link their applications

– preferences are interleaved in a precise way to form their joint 

preference list

– only compatible programmes appear on joint preference list

• Each programme

– has a capacity indicating the number of posts it has

– has a preference list derived from the above scoring function

– so ties are possible
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Integer Programming for HRC

• Model developed by Iain McBride (2013)

• Solved using CPLEX IP solver

• Random instances, scalability (preference lists of length between 5 and 10):

‒ 5000 residents, 500 hospitals, 500 couples, 5000 posts (x25)

• solved in 99.6 seconds on average

‒ 10000 residents, 1000 hospitals, 1000 couples, 10000 posts (x1)

• solved in 10 minutes

• Random instances, solvability / sizes of largest stable matchings found:

‒ 500 residents, 50 hospitals, 250 couples, 500 posts (x1000)

• around 70% of instances were solvable

• Average time taken 75s per instance

• SFAS instances:

‒ 2012: 710 residents, stable matching of size 681 found in 16s

‒ 2011: 736 residents, stable matching of size 688 found in 17s

‒ 2010: 734 residents, stable matching of size 681 found in 65s 83



IP for “Almost stable” matchings in HRC

•Model developed by Iain McBride and James Trimble (2016)

•Solved using CPLEX IP solver

•A Constraint Programming (CP) model also developed

•Both of these models evaluated on 28,000 randomly generated 

instances of HRC
‒ taking into account the fact that, in reality, some hospitals and 

residents are more popular than others

•Major findings

‒ The CP model is about 1.15 times faster than the IP model

‒ the number of blocking pairs admitted by a solution is very 
small, i.e., usually at most 1, and never more than 2
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What’s next in the tutorial

2.1. Strategic agents

2.2. Integer Programming

2.3. Parameterised complexity

2.4. Preference elicitation

2.6: School Choice
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Recall: parameterised complexity

•A parameterised problem with total input size n and
parameter k is considered to be tractable if it can be solved by 
an algorithm whose running time is bounded by f(𝒌). 𝒏𝑶(𝟏)

‒ f can be any computable function

•The problem is then said to be fixed-parameter tractable and 
belong to the class FPT

•And the algorithm is called an fpt-algorithm

86



Parameterised complexity of MAX SMTI

• Studied by Marx and Schlotter [2010] 

•Three parameters were considered:
• the number of ties
• the maximum length of a tie
• the total length of the ties

• MAX SMTI is 
‒ in FPT when parameterised by the total length of the ties
‒ W[1]-hard when parameterised by the number of ties, even if all 

the men have strictly ordered preference lists.

• If W[1]≠ FPT, there is no FPT local search algorithm for MAX 
SMTI with parameterisation l, the size of the neighbourhood to 
be searched, even if the maximum length of a tie is 2 and ties 
occur in the women’s lists only.
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Parameterised complexity of MAX HRC

•MAX HRC is the problem of finding a maximum cardinality 
stable matching, or reporting that none exists, in an instance 
of HRC.

• Studied by Marx and Schlotter [2011] 

• If W[1]≠ FPT, there is no FPT local search algorithm for MAX 
SMTI with parameterisation l, the size of the neighbourhood to 
be searched, even if each hospital has capacity 1. 

• If the problem is parameterised by both l and |Rc|, the 
number of couples, then there is an FPT local search algorithm 
(with no assumption on the hospital capacities).
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What’s next in the tutorial

2.1. Strategic agents

2.2. Integer Linear Programming

2.3. Parameterised complexity

2.4. Preference elicitation

2.6: School Choice
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Preference elicitation (via interviews)

•Agents don’t always know their preferences
‒ Specially in large markets such as hospitals/residents problem, or 

academic hiring

•They usually start by having some rough ideas about their 
preferences
• e.g. residents mentally rank hospitals into top tier, second tier, 

and so on.

•And then use interviews to help them refine their preferences
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Interview minimisation

• Interviews are costly so it’s generally a good idea to minimise 
their numbers

•R. et al. [2013] investigated the design of a centralised system 
that schedules/recommends interviews (an interview 
scheduling policy)

‒ with the goal of minimising the total number of interviews (an 
optimal policy)

‒ while ensuring a matching stable w.r.t. the true underlying, albeit 
unknown, preferences of the agents can be found

•They considered three different optimality criteria

•Their results prove or suggest that 
‒ finding an optimal policy is  NP-hard

‒ but if agents’ preferences are correlated, then we can execute an 
optimal policy in polynomial time
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Pairwise comparison queries

• Drummond and Boutilier [2013] studied a setting where agents 
use  pairwise comparison queries to refine their preferences

•They proposed a method for finding approximately stable 
matchings, using minimax regret as a measure, while keeping 
the number of required comparisons relatively low. 

• In Drummond and Boutilier [2014] the authors introduced a 
unified model where both comparison queries and interviews 
(together) can be used to refine preferences. 

•They provided a polynomial-time policy for generating queries 
and interviews, and examined the effectiveness of their policy 
via empirical evaluation including comparison against the 
polynomial-time algorithm of R. et al. [13] for the restricted 
setting in which participants on one side of the market have the 
same partially ordered preferences.
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What’s next in the tutorial

2.1. Strategic agents

2.2. Integer Linear Programming

2.3. Parameterised complexity

2.4. Preference elicitation

2.5: School Choice
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School choice 

Background

•Historically, children have gone to neighborhood schools

• More recently: several countries have adopted school choice 
programs, allowing parents additional flexibility and creating 
competition between schools.

Goal: designing mechanism that 

•produces a Pareto efficient assignment of students to schools,

•has a fair procedure and outcomes, and

• is easy to understand and use (and can be implemented in 
polynomial time).
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School choice Model

• Similar to HR
• Schools replace hospitals
• Students replace residents 

• Schools’ preferences are referred to as priorities
• Sibling in the school

• Distance
• entrance exam results

• Priorities are usually course (ties exist)
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Pareto efficiency

• An assignment of students to schools is Pareto efficient if it is 
impossible to reassign the students so as to 

‒ make no students worse off and 
‒ make at least one student better off.

• In this example assume that each school/college has capacity 1

•Red matching is not Pareto efficient: {(s1 , c1), (s2, c3), (s3, c2)}

• s1 and s3 prefer the green matching: {(s1, c2), (s2, c3), (s3, c1)}

s1: c2 c1 c1: s1 s2 s3

s2: c1 c2 c3 c2: s3 s1 s2

s3: c1  c2 c3: s2 s4

s4: c3
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Fairness and stability

•We already know that it is important to require stability, so as 
to avoid (student,school) pairs undermining the prescribed 
matching

•Requiring stability can be viewed as a way of enforcing fairness

• No student can be forced to attend a school they don’t want 
to attend, and no school can be forced to take a student 
they view as unqualified

• There is no justified envy. That is, there is no student s who 
is assigned to a school they prefer less than c, only to see a 
student with lower priority end up at c
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Boston Mechanism 

• Let k denote the length of the longest preference list among 
students.

Boston mechanism

Assign all students and school to be free;

For (i = 1 to k) {

For each school c ∈ C that is undersubscribed, assign seats in c to the 
not-yet-assigned students that have ranked it i 'th, according to c's 
priority ordering;

}
s1: c2 c1 c1: s1 s2 s3

s2: c1 c2 c3 c2: s3 s1 s2

s3: c1  c2 c3: s2 s4

s4: c3

Each school has capacity 1 98



Boston mechanism is not DS truthful

• If you don’t put your priority school high on your rank list, you 
may lose it!

•Example: you want school c1 most and c2 second. You have 
high priority at c2 but not c1. Both are in high demand so to get 
in to either, you need to rank it first and have high priority. It 
will be best to rank c2 first.

‒ s3 is unassigned when reporting truth, but is assigned c2 when 
ranking it first

s1: c2 c1 c1: s1 s2 s3

s2: c1 c2 c3 c2: s3 s1 s2

s3: c1  c2 c3: s2 s4

s4: c3

Each school has capacity 1

s1: c2 c1 c1: s1 s2 s3

s2: c1 c2 c3 c2: s3 s1 s2

s3: c2  c1 c3: s2 s4

s4: c3
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Boston mechanism is not always fair

•The resulting assignment of Boston mechanism may be 
unstable.

•Boston mechanism generates the red matching: 
{(s1 , c2), (s2, c1), (s4, c3)}

•But (s3, c2) block this matching 
‒ s3 prefers c2 to be unassigned  
‒ c2 prefers s3 to s1

s1: c2 c1 c1: s1 s2 s3

s2: c1 c2 c3 c2: s3 s1 s2

s3: c1  c2 c3: s2 s4

s4: c3

Each school has capacity 1
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Student-oriented Gale-Shapley

• It is dominant-strategy truthful for students
• usually safe to assume that schools priorities are clearly stated 

and known 

• It produces a stable matching and hence is fair (according to 
our definition of fairness)

•But it can be inefficient!

• For this example, SGS produces the red matching

•But s1 and s3 prefer the green matching

s1: c2 c1 c1: s1 s2 s3

s2: c1 c2 c3 c2: s3 s1 s2

s3: c1  c2 c3: s2 s4

s4: c3
Each school has capacity 1
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Books

• The Stable Marriage Problem: Structure and Algorithms, by D. 
Gusfield & R.W. Irving, MIT Press, Boston, Ma., 1989.

• Two-Sided Matching: A Study in Game-Theoretic Modeling and 
Analysis, by A. E. Roth, and M. Sotomayor. Cambridge University 
Press, 1990.

• Algorithmics of Matching under Preferences , by David Manlove, 
World Scientific, 2013.
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Thank You!
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