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The notion of the smart grid is nowadays almost always connected with a high share of renewable energy
sources, i.e., the smart grid enables us to integrate a large number of volatile energy sources. In order to
still provide a reliable supply of power, grid operation relies on more planning, based on reliable forecasting,
models to predict or estimate the state of the grid at a certain point in time, and a distributed intelligence for
automatic, fine-tuned voltage control.

1 Forecasting Real Power
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Purpose Create a forecast of real power generation or consumption on a node.
Methodology Use Recurrent Neural Networks to forecast a time series. The

RNN architecture captures the concept of a series of data with interdependencies, but
has no representation of absolute time values. The inputs at t−n, . . . , t− 1, t are used
to forecast Pt+1. Valid input data are the previous power generation/consumption
as well as other useful features, such as barometric pressure.

Pros This technique allows forecasting even for renewable energies without
meteorological model with an accuracy suitable for distribution grids. It requires
constant refinement and re-training.

Cons An intelligent data storage is needed to keep the pattern set bounded. The
RNN can hardly forecast unknown weather phenomena.

2 Meta-Prognosis for Distributed Renewables
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Purpose Algorithmically merge the weather-based power regeneration prognosis
for a portfolio of renewables.

Methodology The output forecasted by different vendors’ prognoses are com-
pared against the actual power generation of a wind farm or PV installation. Different
meteorological models weight the available features differently and are thus not op-
timized for a specific renewables portfolio. Neural networks can be trained to learn
the error of each model, thus creating a meta-prognosis.

Pros Reduces need for after-market trade of undersupply, which is comparatively
expensive.

Cons The meta-prognosis does not capture real weather phenomena; features are
hidden in the meteorological model that creates the input data.

3 Surrogate Models
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Purpose Replace a simulation (or a part thereof) that is computationally or
memory expensive with an approximation derived from artificial neural networks in
order to reduce compute time.

Methodology The artificial neural network is trained as a surrogate model
that replaces another, more expensive, computation, such as a power flow study
or a network state estimation. For a given network, example states are used for
training and validation; the neural network can afterwards replace the actual model
and computation for different states.

Pros Dramatically quicker evaluation time, making the surrogate model suitable
for on-line usage.

Cons Every surrogate model is just an approximation; the neural network can learn the errors of the surrogate
model and not the representation of the surrogated original. Also, using the surrogate model makes sense only when the
model it replaces is sufficiently large to make a difference.
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4 Power Factor Correction in Non-Linear Loads

(Ilic et al., 2011)

Purpose Reactive power management in the distribution grid helps to keep
voltage within safe levels while driving generators powered by renewable energy sources
as efficient as possible.

Methodology Devices that measure the phase angle (φ) are mostly deployed in
the transmission grid, while most wind farms are connected to the distribution grid.
The non-linear voltage drop makes it desirable to integrate them into the power factor
correction (i.e., correction of cosφ). Wind farms and PV installations currently have
a fixed cosφ or fixed characteristic curve. Artificial neural networks can be used to
derive the desired power factor correction for installed renewables, even if no extensive
installation of Phase Measurement Units (PMUs) is available.

Pros The artificial neural networks solve an optimization problem with constraints: Optimal real power generation
and providing ancillary services through power factor correction that helps to sustain the grid while keeping within own
operational limits and those of the grid.

Cons As with the usage of surrogate models, the application of artificial neural networks provides an approximation,
not an exact solution.

5 Distribution System Loss Minimum Reconfiguration

(Inoue et al., 2014)

Purpose Open and close switches in a distribution system in such a way as to
minimize line loss while remaining within safe operating parameters.

Methodology An artificial neural network learns, for different load situations,
which switches to open and which to close, and is then able to re-configure the grid
for optimal power flow and low line losses.

Pros Fast reconfiguration of a distribution system leads to nearly minimal line
loss for all time periods.

Cons Highly unusual or fault situations can cause the
neural network to suggest erroneous switch configurations, which damage the grid.
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