
Deep Learning Basics

Eric MSP Veith <eric.veith@offis.de>

1 Artificial Neural Network Basics

Output
Layer

…
…

Hidden
Layer(s)

…
…

Input
Layer

…
…

An Artificial Neural Network (ANN) is a directed graph consisting of neurons
and connections between them. ANNs are usually subdivided into layers: Input
from the outside world is propagates from neurons in the input layer via one or
more intermediate, so-called hidden layers—because they are not visible from
the outside—to the output layer, which contains the neurons whose output is
the output of the ANN. These networks are also called feed-forward networks,
because they are constructed as a directed, acyclic graph. Examples of feed-
forward networks are the Perceptron—which is a general-purpose network
structure for pattern matching and to approximate any continuous function—
and convolutional neural networks (ConvNets), which are used for object
detection in images. ANNs can also feed the result of a neuron’s activation back
to itself, potentially remembering the values between two activations. These
ANNs are then called Recurrent Artificial Neural Networks (RNNs), and can
in theory approximate any dynamic systems. Examples include the ancestory
Elman Network and the modern Long-Short Term Memory cells and Gated Recurrent Units. RNNs excel at
time series prediction, e.g., for natural language processing or power output prediction, because through their context
layers that save the last run’s activation, they incorporate the concept of a series.

The input of each neuron—except for the input layer—is the weighted sum of the results of all other neurons that are
connected to it. To this sum, an activation function is applied. The activation function for all non-input layer neurons
is usually not the identity function, to introduce nonlinearity. For feed-forward networks, the recified linear unit (ReLU)
is recommended; other possible choices, especially for RNNs, are the logistic function and tanh.

Identity ReLU Sigmoid tanh

f(x) = x f(x) =

{
0 for x < 0 ,

1 for x ≥ 1
σ(x) =

1

1 + e−x
tanh(x) =

ex − e−x

ex + e−x

f ′(x) = 1 f ′(x) =

{
0 for x < 0 ,

1 for x ≥ 1
σ′(x) = σ(x)(1− σ(x)) tanh′(x) = 1− tanh2(x)

The activation of a layer is the result of a function taking an argument vector; the transition between two layers the
product of the previous layer’s output vector and the corresponding weight matrix.

ok = f(x) , netj = ojWjk . (1)

1



2 Training
ANNs are approximators with a probability distribution. In order to create their model of the function or system they

approximate, every ANN and RNN needs to be trained. Training happens by adjusting the weights of the ANN.

Supervised Learning Unsupervised Learning Reinforcement Learning

C

Maps features (inputs) to known
labels (teaching outputs): x 7→ ŷ.
Calculates error to adjust weights:

c = f(y, ŷ).

Clusters a set of inputs without a
teaching output/error feedback.

The ANN acts as an agent upon the
world, receives a feedback, and then
tries to maximize its internal reward
function accordingly by training.

One of the most used algorithms is backpropagation of error. It builds on the non-linearity of the activation
functions, which need to be differentiable, to make most cost functions non-convex. It attributes a portion of the cost
to a particular weight. Specifically, it understands the activation of an ANN as a nesting of activation functions and uses
the gradient to travel the downward slope of the error function.

δk =
∂c

∂ok
f ′(netj) (2)

A weight is updated stepwise according to the learning rate η and the momentum. The momentum helps the algorithm
to escape local minima and be more efficient; in the most current version of backpropagation, Nadam, it is adaptive and
based on previous and the guessed next step sizes.
Looking at the sigmoid function, we can imagine that the gradient is very small in extreme values. This is called

the vanishing gradient problem and lets the learning stagnate. By choosing a cost function that penalizes big error
values, yet stays out of the extreme regions of an activation function’s derivative, by remaining in the [0; 1] interval. The
cross-entropy function is based on the information potential of the ANN for an input x over all n training items:

c = − 1

n

∑
x

[y ln o+ (1− y) ln(1− o)] . (3)

Any ANN’s most important ability is to generalize. However, if the information
capacity of the ANN becomes too big and it is able to learn the training set perfectly,
it might overfit. Then, it has perfectly memorized the statistical noise that makes up
the training data. To detect this, we subdivide the training patterns in supervised
learning into a training and a test set. After training, the ANN is fed the test set, but
not to modify its weights: If the training error is very low, but the test error is high,
it has overfitted.
Two straightforward approaches to reduce overfitting are increasing the training

set, and to reduce the number of neurons/connections (optimal brain damage).
However, the best way is to regularize the cost function over all weights (weight
decay), i.e., to scale it according to the information capacity of the ANN:

c′ = c+
λ

2n

∑
w

w2 . (4)

Another option is, instead of permanently reducing the number of neurons/connections, we delete a randomly chosen
(p = 0.5) subset of them only temporarily for training; this is achieved using a dropout layer.

References
Dozat, T. (2016). Incorporating nesterov momentum into adam.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2):179–211.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. (2016). Deep learning, volume 1. MIT press Cambridge.

Hochreiter, S. and Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8):1735–1780.

Orr, G. B. and Müller, K.-R. (2003). Neural networks: tricks of the trade. Springer.

Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747.

2


