
Type-based Communication Correctness in
Multi-agent Systems

Part II: Type Systems for Concurrency and Logical Foundations

Jorge A. Pérez

Bernoulli Institute for Mathematics, Computer Science, and AI
University of Groningen, The Netherlands

www.jperez.nl

20th European Agent Systems Summer School (EASSS 2018)

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 1 / 71

www.jperez.nl

Outline

Context

Type Systems for Concurrency

Binary Session Types

Multiparty Session Types

The Curry-Howard Isomorphism

Session Types and Linear Logic
Typing Rules and Main Properties
Multiparty Session Types Into Binary Sessions

Closing Remarks

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 2 / 71

Communication & Types: Here to Stay!

The Present: Languages Promoted by Industry

� Facebook’s Flow (gradual types for JavaScript)
� Google’s Go (concurrency, message-passing communication)
� Mozilla’s Rust (affine references/ownership types)
� Erlang (actor-based concurrency)

The Future (According to Gartner)
Communication and distribution at a (very) large-scale:
� 2018: 6 billion connected ‘things’ requesting support
� 2020: Autonomous agents part of 5% of all transactions
� 2020: Smart agents facilitate 40% of mobile interactions

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 3 / 71

Communication & Types: Here to Stay!

The Present: Languages Promoted by Industry

� Facebook’s Flow (gradual types for JavaScript)
� Google’s Go (concurrency, message-passing communication)
� Mozilla’s Rust (affine references/ownership types)
� Erlang (actor-based concurrency)

The Future (According to Gartner)
Communication and distribution at a (very) large-scale:
� 2018: 6 billion connected ‘things’ requesting support
� 2020: Autonomous agents part of 5% of all transactions
� 2020: Smart agents facilitate 40% of mobile interactions

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 3 / 71

Communication & Types: Here to Stay!

The Present: Languages Promoted by Industry

� Facebook’s Flow (gradual types for JavaScript)
� Google’s Go (concurrency, message-passing communication)
� Mozilla’s Rust (affine references/ownership types)
� Erlang (actor-based concurrency)

The Future (According to Gartner)
Communication and distribution at a (very) large-scale:
� 2018: 6 billion connected ‘things’ requesting support
� 2020: Autonomous agents part of 5% of all transactions
� 2020: Smart agents facilitate 40% of mobile interactions

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 3 / 71

Large-scale Software Infrastructures

� Large collections of services: distributed software artifacts
- Heterogeneous, dynamic, extensible, composable, long-running, ...

� Concurrent and communication-centered
- Services expose behavioral interfaces
- Complex interaction/coordination patterns among them

� Correctness is a combination of several issues, including:
- Protocol compatibility
- Resource usage
- Security and trustworthiness

� Building correct communicating software is difficult!

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 4 / 71

Where Do Errors Come From?

Leesatapornwongsa et al. (ASPLOS’16):

A study of 104 distributed concurrency (DC) bugs from
widely-deployed cloud-scale datacenter distributed systems.

From their summary of findings:

� DC bugs linger in concurrent executions of multiple protocols.
Systems contain many background protocols beyond user-facing
foreground protocols. Their concurrent interactions can be deadly.

� DC bugs triggered by a single untimely message delivery that
commits order violation or atomicity violation, with regard to
other messages or computation.

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 5 / 71

Where Do Errors Come From?

Leesatapornwongsa et al. (ASPLOS’16):

A study of 104 distributed concurrency (DC) bugs from
widely-deployed cloud-scale datacenter distributed systems.

From their summary of findings:

� DC bugs linger in concurrent executions of multiple protocols.
Systems contain many background protocols beyond user-facing
foreground protocols. Their concurrent interactions can be deadly.

� DC bugs triggered by a single untimely message delivery that
commits order violation or atomicity violation, with regard to
other messages or computation.

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 5 / 71

Type Systems: Two Slogans

Robin Milner
ACM Turing Winner, 1991

� Types are the leaven of computer
programming: they make it digestible.

� Well-typed programs can’t go wrong

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 6 / 71

Type Systems

Traditional data types (e.g., int, bool, string) classify values,
and are an effective basis for validating sequential programs

To reason about services, behavioral types classify interactions
� High-level representations of communication structures
� Compositional ways of (statically) checking service behavior
� Tied to programming abstractions that promote communication as

a first-class concern

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 7 / 71

Type Systems

Traditional data types (e.g., int, bool, string) classify values,
and are an effective basis for validating sequential programs

To reason about services, behavioral types classify interactions
� High-level representations of communication structures
� Compositional ways of (statically) checking service behavior
� Tied to programming abstractions that promote communication as

a first-class concern

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 7 / 71

Outline

Context

Type Systems for Concurrency

Binary Session Types

Multiparty Session Types

The Curry-Howard Isomorphism

Session Types and Linear Logic
Typing Rules and Main Properties
Multiparty Session Types Into Binary Sessions

Closing Remarks

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 8 / 71

Type Systems for Concurrency

The development of process languages with type-based techniques
has received much attention

Type systems have revealed a rich landscape of concurrent models
with disciplined communication

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 9 / 71

Behavioral Type Systems

� In contrast to usual data types, behavioral types represent
causality, alternatives, repetition.

� Given a communication device (say, a channel), a behavioral type
defines
- the series of actions realized through that device along time
- its resource-usage policy

� Often developed on top of process calculi, such as the �-calculus.

� General verification techniques that may be tailored to different
actual languages:
- Object-oriented: Java, Scala
- Functional: Haskell, OCaML
- Protocol languages: Scribble

� A notable class of behavioral types: session types

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 10 / 71

Behavioral Types: An Incomplete Timeline

1990

2017

Sortings for the �-calculus [Milner]
1991 Type & Effect System for CML [Nielson & Nielson]
1993 Types for Dyadic Interaction [Honda]1993

A Typed Interaction-based Language [Takeuchi et al.]
1994

Linear Types for � [Kobayashi et al.]1996

Types for Deadlock-freedom in � [Kobayashi]
1997

Binary Session Types [Honda et al.]

1998

Types for Non-Uniform Objects [Ravara & Vasconcelos]
2000

Generic Process Types [Igarashi & Kobayashi]

2001

Multipoint Session Types [Bonelli & Compagnoni]

2007
Multiparty Session Types [Honda et al.]

2008 Conversation Types [Caires & Vieira]
2009 Parameterized Multiparty Session Types [Yoshida et al.]2010

Linear Session Types, Revisited [Giunti & Vasconcelos]
2010

Session Types as Linear Logic [Caires & Pfenning]

2010

Dynamic Multirole Session Types [Deniélou & Yoshida]

2011

Choreographic Programming [Carbone & Montesi]

2013

Behavioral Separation Types [Caires & Seco]

2013

Behavioral Types: An Incomplete Timeline

1990

2017

Sortings for the �-calculus [Milner]
1991 Type & Effect System for CML [Nielson & Nielson]
1993 Types for Dyadic Interaction [Honda]1993

A Typed Interaction-based Language [Takeuchi et al.]
1994

Linear Types for � [Kobayashi et al.]1996

Types for Deadlock-freedom in � [Kobayashi]
1997

Binary Session Types [Honda et al.]

1998

Types for Non-Uniform Objects [Ravara & Vasconcelos]
2000

Generic Process Types [Igarashi & Kobayashi]

2001

Multipoint Session Types [Bonelli & Compagnoni]

2007
Multiparty Session Types [Honda et al.]

2008 Conversation Types [Caires & Vieira]
2009 Parameterized Multiparty Session Types [Yoshida et al.]2010

Linear Session Types, Revisited [Giunti & Vasconcelos]
2010

Session Types as Linear Logic [Caires & Pfenning]

2010

Dynamic Multirole Session Types [Deniélou & Yoshida]

2011

Choreographic Programming [Carbone & Montesi]

2013

Behavioral Separation Types [Caires & Seco]

2013

Outline

Context

Type Systems for Concurrency

Binary Session Types

Multiparty Session Types

The Curry-Howard Isomorphism

Session Types and Linear Logic
Typing Rules and Main Properties
Multiparty Session Types Into Binary Sessions

Closing Remarks

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 12 / 71

Session-Based Concurrency

Conceptually, two phases:
1. Services advertise their session protocols along channel names.

Agreements are realized by their point-to-point interaction, in an
unrestricted and non-deterministic way.

2. After agreement, compatible services establish a unique session
along (fresh, private) session names.
Intra-session interactions follow the intended protocol in a linear
and deterministic way.

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 13 / 71

The Language of Session Types

Session types describe protocols in terms of
� communication actions (input and output)
� labeled choices (offers and selections)
� sequential composition
� recursion

Session protocols are associated to communication devices:
� �-calculus names
� service endpoints
� TCP-IP sockets
� � � �

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 14 / 71

The Syntax of Binary Session Types

S ::= !U :S output value of type U , continue as S

j ?U :S input value of type U , continue as S

j Nfli : Sigi2I offer a selection between S1; : : : ;Sn

labels l1; : : : ; ln are pairwise different
j �fli : Sigi2I select between S1; : : : ;Sn

labels l1; : : : ; ln are pairwise different
j �t :S j t recursion
j end terminated protocol

Notice:
� The syntax of U refers to “basic values” (e.g. int;bool; : : :) but it

may also could contain S — aka session delegation
� Sequential communication patterns (no built-in concurrency)
Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 15 / 71

Example: A Two-Buyer Protocol

Alice and Bob cooperate in buying a book from Seller.
1. Alice sends a book title to Seller, who sends a quote back.

2. Alice checks with Bob whether he can contribute in buying the
book.

3. Alice uses the answer from Bob to interact with Seller, either
a) completing the payment and arranging delivery details
b) canceling the transaction

4. In case 3(a) Alice contacts Bob to get his address, and forwards it
to Seller.

4’. In case 3(b) Alice is in charge of gracefully concluding the
conversation.

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 16 / 71

Example: A Two-Buyer Protocol

Desiderata for the implementations of Alice, Bob, and Seller:

� Fidelity – they follow the intended protocol. For instance:
- Alice doesn’t continue the transaction if Bob can’t contribute
- Alice chooses among the options provided by Seller

� Safety – they don’t feature communication errors.
For instance: Seller always returns an integer when asked by
Alice to provide a quote

� Progress/Deadlock-Freedom – they do not “get stuck” while
running the protocol.
For instance: Alice eventually receives an answer from Bob on his
contribution to the transaction.

� Termination – they do not engage in infinite behavior (that may
prevent them from completing the protocol)

Correctness follows from their interplay. This is hard to enforce,
especially if actions are “scattered around” in source programs.

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 17 / 71

Example: A Two-Buyer Protocol

Desiderata for the implementations of Alice, Bob, and Seller:

� Fidelity – they follow the intended protocol. For instance:
- Alice doesn’t continue the transaction if Bob can’t contribute
- Alice chooses among the options provided by Seller

� Safety – they don’t feature communication errors.
For instance: Seller always returns an integer when asked by
Alice to provide a quote

� Progress/Deadlock-Freedom – they do not “get stuck” while
running the protocol.
For instance: Alice eventually receives an answer from Bob on his
contribution to the transaction.

� Termination – they do not engage in infinite behavior (that may
prevent them from completing the protocol)

Correctness follows from their interplay. This is hard to enforce,
especially if actions are “scattered around” in source programs.
Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 17 / 71

Example: A Two-Buyer Protocol

We may define two separate protocols, with Alice “leading” the
interactions (later on we will consider a simpler solution):

� A session type for Seller (in its interaction with Alice):

S1 = ?book: !quote: N
(

buy : ?paym: ?address: !ok:end
cancel : ?thanks: !bye:end

� A session type for Alice (in its interaction with Bob):

S2 = !cost: N
(

share : ?address: !ok:end
close : !bye:end

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 18 / 71

Example: A Two-Buyer Protocol

Implementations for Alice, Bob, Seller should be compatible.

� Using session types, compatibility follows from type duality,
which relates types with opposite behaviors. Intuitively:
- the dual of input is output (and vice versa)
- branching is the dual of selection (and vice versa)

� This way, e.g., the implementation of Bob should conform to the
dual of S2, denoted S2:

S2 = !cost:N
(

share : ?address: !ok:end
close : !bye:end

S2 = ?cost:�

(
share : !address: ?ok:end
close : ?bye:end

� Also, Alice’s implementation should conform to both S1 and S2.

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 19 / 71

Example: A Two-Buyer Protocol

Implementations for Alice, Bob, Seller should be compatible.

� Using session types, compatibility follows from type duality,
which relates types with opposite behaviors. Intuitively:
- the dual of input is output (and vice versa)
- branching is the dual of selection (and vice versa)

� This way, e.g., the implementation of Bob should conform to the
dual of S2, denoted S2:

S2 = !cost:N
(

share : ?address: !ok:end
close : !bye:end

S2 = ?cost:�

(
share : !address: ?ok:end
close : ?bye:end

� Also, Alice’s implementation should conform to both S1 and S2.

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 19 / 71

Example: A Two-Buyer Protocol

Implementations for Alice, Bob, Seller should be compatible.

� Using session types, compatibility follows from type duality,
which relates types with opposite behaviors. Intuitively:
- the dual of input is output (and vice versa)
- branching is the dual of selection (and vice versa)

� This way, e.g., the implementation of Bob should conform to the
dual of S2, denoted S2:

S2 = !cost:N
(

share : ?address: !ok:end
close : !bye:end

S2 = ?cost:�

(
share : !address: ?ok:end
close : ?bye:end

� Also, Alice’s implementation should conform to both S1 and S2.

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 19 / 71

Session Type Duality, Formally

Given a (finite) session type S , its dual type S is inductively defined
as follows:

!U :S = ?U :S

?U :S = !U :S

Nfli : Sigi2I = �fli : Sigi2I

�fli : Sigi2I = Nfli : Sigi2I

end = end

Notice:
� Duality for recursive session types is defined coinductively rather

than inductively (i.e., the dual of �t :S is not just �t :S)

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 20 / 71

Enhancing Compatibility via Subtyping

Consider a “mathematical server” and two candidate clients.
� The session type for the server:

S = N
(

add : ?Real: ?Real: !Real:end
eq : ?Real: ?Real: !Bool:end

� The session types for each of the clients:

Integer client T1 = �

(
add : !Real: !Real: ?Real:end
eq : !Int: !Int: ?Bool:end

Minimal client T2 = �
n

add : !Real: !Real: ?Real:end

� The types are incompatible: S and T1 consider messages of
different base types, and the options of S and T2 do not match.

� Still, the types are “morally” compatible...

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 21 / 71

Enhancing Compatibility via Subtyping

Consider a “mathematical server” and two candidate clients.
� The session type for the server:

S = N
(

add : ?Real: ?Real: !Real:end
eq : ?Real: ?Real: !Bool:end

� The session types for each of the clients:

Integer client T1 = �

(
add : !Real: !Real: ?Real:end
eq : !Int: !Int: ?Bool:end

Minimal client T2 = �
n

add : !Real: !Real: ?Real:end

� The types are incompatible: S and T1 consider messages of
different base types, and the options of S and T2 do not match.

� Still, the types are “morally” compatible...

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 21 / 71

Enhancing Compatibility via Subtyping

We may relate S with T1 and T2, using a subtyping relation.

� Notation: S1 � S2 (read: S1 is a subtype of S2)

� Intuitively, if S1 � S2 then a name of type S1 can safely be used
where a name of type S2 is expected (safe sustitutability)

� Consider the session types (dual to the client types T1;T2):

S1 = N
(

add : ?Real: ?Real: !Real:end
eq : ?Int: ?Int: !Bool:end

S2 = N
n

add : ?Real: ?Real: !Real:end

� We have that:
S1 � S : it is safe to receive integers if reals are supported
S2 � S : it is safe to deal with clients that don’t know all options

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 22 / 71

Enhancing Compatibility via Subtyping

We may relate S with T1 and T2, using a subtyping relation.

� Notation: S1 � S2 (read: S1 is a subtype of S2)

� Intuitively, if S1 � S2 then a name of type S1 can safely be used
where a name of type S2 is expected (safe sustitutability)

� Consider the session types (dual to the client types T1;T2):

S1 = N
(

add : ?Real: ?Real: !Real:end
eq : ?Int: ?Int: !Bool:end

S2 = N
n

add : ?Real: ?Real: !Real:end

� We have that:
S1 � S : it is safe to receive integers if reals are supported
S2 � S : it is safe to deal with clients that don’t know all options

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 22 / 71

Enhancing Compatibility via Subtyping

We may relate S with T1 and T2, using a subtyping relation.

� Notation: S1 � S2 (read: S1 is a subtype of S2)

� Intuitively, if S1 � S2 then a name of type S1 can safely be used
where a name of type S2 is expected (safe sustitutability)

� Consider the session types (dual to the client types T1;T2):

S1 = N
(

add : ?Real: ?Real: !Real:end
eq : ?Int: ?Int: !Bool:end

S2 = N
n

add : ?Real: ?Real: !Real:end

� We have that:
S1 � S : it is safe to receive integers if reals are supported
S2 � S : it is safe to deal with clients that don’t know all options

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 22 / 71

Subtyping, Formally

For finite session types we may inductively define:

end � end
U1 � U2 S1 � S2

!U2:S1 � !U1:S2

U1 � U2 S1 � S2

?U1:S1 � ?U2:S2

I � J 8i 2 I :Si � Ti

Nfli : Sigi2I � Nflj : Tj gj2J

J � I 8j 2 J :Sj � Tj

�flj : Sj gj2J � �fli : Tigi2I

In our examples:
� Nfadd : S1g � Nfadd : T1;eq : T2g, provided S1 � T1.
� ?Int: ?Int: !Bool:end � ?Real: ?Real: !Bool:end,

provided Int � Real.

Notice
� � concerns substitutability of names implementing protocols.

Safe substitutability of processes (programs) is also possible.

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 23 / 71

Outline

Context

Type Systems for Concurrency

Binary Session Types

Multiparty Session Types

The Curry-Howard Isomorphism

Session Types and Linear Logic
Typing Rules and Main Properties
Multiparty Session Types Into Binary Sessions

Closing Remarks

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 24 / 71

From Binary to Multiparty Protocols

� Binary session types organize interactions between exactly two
partners. Multiple participants follow disjoint protocols.

� In many scenarios, however, three or more partners must interact
along the same session protocol.

� Decomposing such multiparty protocols into binary sessions is
not always possible — crucial sequencing information may be lost.

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 25 / 71

The Need for Sequencing Information

� A two-buyer protocol, similar to the one discussed earlier:

� A decomposition as binary protocols may appear plausible...

� ... but misses key sequencing between unrelated partners.

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 26 / 71

The Need for Sequencing Information

� A two-buyer protocol, similar to the one discussed earlier:

� A decomposition as binary protocols may appear plausible...

� ... but misses key sequencing between unrelated partners.

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 26 / 71

The Need for Sequencing Information

� A two-buyer protocol, similar to the one discussed earlier:

� A decomposition as binary protocols may appear plausible...

� ... but misses key sequencing between unrelated partners.

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 26 / 71

Multiparty Session Types (MPSTs)

A methodology for decentralized specification, development, and
validation of protocols between multiple participants:

� A global type: overall description of the multiparty protocol
� A series of local types, one for each participant, obtained from

the global type using a projection function
� End-point implementations can be developed using local types

as a reference for (local) validation (e.g. type-checking)

G

TbobTalice Tcarol Tdave

PbobPalice Pcarol Pdave

Projection

Type
Checking

Global type

Local types

Programs

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 27 / 71

Multiparty Session Types (MPSTs)

A methodology for decentralized specification, development, and
validation of protocols between multiple participants:
� A global type: overall description of the multiparty protocol
� A series of local types, one for each participant, obtained from

the global type using a projection function
� End-point implementations can be developed using local types

as a reference for (local) validation (e.g. type-checking)

G

TbobTalice Tcarol Tdave

PbobPalice Pcarol Pdave

Projection

Type
Checking

Global type

Local types

Programs

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 27 / 71

The Syntax of Multiparty Session Types

Let U denote the type for transmittable values.

� Global types:

G ::= p! q : hU i:G Value exchange
j p! q : fli : Gigi2I Branching
j �t :G j t Recursion
j end Terminated global protocol

� Local types:

T ::= !hp;U i:T Send value to p

j ?hp;U i:T Receive value from p

j �hp; fli : Tigi2I i Select from options offered by p
j Nhp; fli : Tigi2I i Offer labeled options to p

j �t :T j t j end Recursion / Terminated Protocol

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 28 / 71

Projection

The projection of global type G onto participant r, denoted G�r:

� (p! q : hU i:G 0)�r =

8>><
>>:
!hq;U i:(G 0�r) if r = p

?hp;U i:(G 0�r) if r = q

G 0�r otherwise

� (p! q : fli : Gigi2I)�r =8>>>>><
>>>>>:

�hq; fli : (Gi�r)gi2I i if r = p

Nhp; fli : (Gi�r)gi2I i if r = q

Gj�r if r 6= p;r 6= q; j 2 I and
Gk�r = Gl�r, for all k ; l 2 I

� (�t :G 0)�r =

(
�t :(G 0�r) if G 0�r 6= t
end otherwise

t�r = t

� end�r = end

This is a bit too rigid - why?
Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 29 / 71

The Two-Buyer Protocol, Revisited (1/3)

Alice and Bob cooperate in buying a book from Seller.
1. Alice sends a book title to Seller, who sends a quote back.

2. Alice checks with Bob whether he can contribute in buying the
book.

3. Alice uses the answer from Bob to interact with Seller, either
a) completing the payment and arranging delivery details
b) canceling the transaction

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 30 / 71

The Two-Buyer Protocol, Revisited (2/3)

A single global protocol G between Alice, Bob, and Seller:

G = Alice ! Seller : hbooki:
Seller ! Alice : hquotei:

Alice ! Bob : hcosti:
Bob ! Alice : f share : Alice ! Bob : hoki:

Alice ! Seller : hpaymi:end

close : Alice ! Bob : hbyei:
Alice ! Seller : hbyei:end

g

where book, quote, cost, ok, paym, bye, and close are all base
types. Also, for simplicity, we assume that paym = close = str.

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 31 / 71

The Two-Buyer Protocol, Revisited (3/3)

The projections of G onto Alice, Bob, and Seller:

G�Alice = !hSeller;booki:?hSeller;quotei:!hBob;costi:
NhBob; fshare : !hBob;oki:

!hSeller;paymi:end
close : !hBob;byei:endg i

G�Bob = ?hAlice;costi:
�hAlice; fshare : ?hAlice;oki:end

close : ?hAlice;byei:endg i

G�Seller = ?hAlice;booki:!hAlice;quotei:
?hAlice;paym=closei:end

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 32 / 71

Taking Stock (1/2)

Binary session types
� Describe protocols between exactly two partners
� A session type describes the (possibly infinite) sequence of

actions that a given participant performs
� Compatibility defined in terms of session type duality
� Enhancements of compatibility via subtyping

Multiparty session types
� Describe protocols between more than two partners
� A global type describes the overall interaction scenario.

Local types: binary session types + participant identities.
� Global type projection into local types enforces compatibility.

Not all global types are well-formed (i.e., implementable).
� Enhancements via subtyping extend to local types

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 33 / 71

Outline

Context

Type Systems for Concurrency

Binary Session Types

Multiparty Session Types

The Curry-Howard Isomorphism

Session Types and Linear Logic
Typing Rules and Main Properties
Multiparty Session Types Into Binary Sessions

Closing Remarks

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 34 / 71

Are They Related?

Programmer Logician

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 35 / 71

Yes, They Are!

Haskell Curry William Howard

The Curry-Howard isomorphism: an intimate and tight relation
between logic and computation:

Propositions as Types
Proofs as Programs

Simplification of Proofs as Program Evaluation

A remarkable correspondence!
Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 36 / 71

Curry-Howard: Significance

Haskell Curry William Howard

Viewing “propositions as types, proofs as programs” has important
consequences:
� Some aspects of everyday programming are absolute
� Understand computation through logic (and vice versa!)

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 37 / 71

Curry-Howard Today

Luís Caires Frank Pfenning

� Until recently, the CH isomorphism was limited to sequential
programs in the functional paradigm

� In 2010, Luís Caires and Frank Pfenning showed that CH can be
extended to concurrent, message-passing programs:

Propositions in Linear Logic as Session Types
Proofs as �-calculus processes

Simplification of Proofs as Process Reduction

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 38 / 71

Linear Logic, Informally (1/3)1

� Proposed by Jean-Yves Girard (1987)
� Classical logic deals with stable truths:

if A and A) B then B , but A still holds

� Example:
- A = ‘Tomorrow is June 22nd’
- B = ‘John will swim’
- A) B = ‘If tomorrow is June 22nd, then John will swim’

� So, if tomorrow is June 22nd, then John will swim.
This doesn’t change the fact that tomorrow will be June 22nd.

1Based on slides by Beniamino Accattoli.

Linear Logic, Informally (2/3)

� However, with consumable resources (money, food, etc), classical
implications are wrong.

� Example:
- A = ‘John has (only) 5 Euros’
- B = ‘John has a pack of cigarettes’
- A) B = ‘For his 5 Euros, John gets a pack of cigarettes’

� In the classical world, if John buys the cigarettes then he will still
have the 5 Euros!

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 40 / 71

Linear Logic, Informally (3/3)

In Linear Logic:
� Implication consumes hypothesis to produce conclusions
� Linear implications are actions
� Not a new kind of logic, but a refinement of classic logic
� Two conjunctions (
 and N), two disjunctions (O and �), and two

modalities for duplicating and discarding resources (! and ?)
� Connectives are multiplicative (
 and O) and additive (N and �)
� Intuition: multiplicatives denote simultaneous occurrence of

resources, whereas additives denote alternative occurrence

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 41 / 71

Outline

Context

Type Systems for Concurrency

Binary Session Types

Multiparty Session Types

The Curry-Howard Isomorphism

Session Types and Linear Logic
Typing Rules and Main Properties
Multiparty Session Types Into Binary Sessions

Closing Remarks

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 42 / 71

Logic Foundations for Session Types

Linear Logic for Concurrency [Caires&Pfenning’10]

Based on dual intuitionistic linear logic (DILL) [cf. Barber&Plotkin]

propositions $ session types
sequent proofs $ �-calculus processes
cut elimination $ process communication

Main Features

� Clear account of resource usage policies in concurrency
� Session fidelity, runtime safety, global progress “for free”
� Excellent basis for generalizations and extensions

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 43 / 71

A Synchronous �-calculus (2-ary)

P ;Q ::= x z :P send z on x , proceed as P
j x (y):P receive z on x , proceed as Pfz=yg
j !x (y):P replicated server at x
j x :case(P ;Q) branching: offers a choice at x
j x :inl;P select left at x , continue as P
j x :inr;P select right at x , continue as P
j [x$y] forwarder: fuses x and y
j P | Q parallel composition
j (νy)P name restriction
j 0 inaction

Notation: We write x (y) to stand for the bound output (νy)x y .

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 44 / 71

A Synchronous �-calculus (n-ary)

P ;Q ::= x z :P send z on x , proceed as P
j x (y):P receive z on x , proceed as Pfz=yg
j !x (y):P replicated server at x
j x .fl1:P1; : : : ;ln :Png branching: offers a choice at x
j x /lj ;P select label lj at x , continue as P
j [x$y] forwarder: fuses x and y
j P | Q parallel composition
j (νy)P name restriction
j 0 inaction

Notation: We write x (y) to stand for the bound output (νy)x y .

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 44 / 71

Operational Semantics

� Reduction gives the behavior of a process on its own:

x y :Q | x (z):P �! Q | Pfy=zg
x y :Q | !x (z):P �! Q | Pfy=zg | !x (z):P

x :inr;P | x :case(Q ;R) �! P | R
x :inl;P | x :case(Q ;R) �! P | Q

(νx)([x$y] | P) �! Pfy=xg
Q �! Q 0) P | Q �! P | Q 0

P �! Q) (νy)P �! (νy)Q

Closed under structural congruence, noted �.
� A standard LTS with labels for selection/choice constructs:

� ::= � j x (y) j x /l j x y j x (y) j x /l

Strong transitions �
�! and weak transitions �

=).

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 45 / 71

Session Types as Linear Logic Props

The type syntax coincides with dual intuitionistic linear logic.
Propositions/types (A;B ;C ;T) are assigned to names:

x : A
B Output an A along x , behave as B on x

x : A(B Input an A along x , behave as B on x

x : !A Persistently offer A along x

x : A N B Offer both A and B along x

x : A�B Select either A or B along x

x : 1 Terminated interaction on x

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 46 / 71

Session Types as Linear Logic Props

The type syntax coincides with dual intuitionistic linear logic.
Propositions/types (A;B ;C ;T) are assigned to names:

x : A
B Output an A along x , behave as B on x

x : A(B Input an A along x , behave as B on x

x : !A Persistently offer A along x

x : Nfl1:A1; : : : ;ln :Ang Offer A1; : : : ;An along x

x : �fl1:A1; : : : ;ln :Ang Select one of A1; : : : ;An along x

x : 1 Terminated interaction on x

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 46 / 71

Type Judgments: Intuitions

P :: z : C

Process P offers behavior C at name z

when composed with
processes offering A1 at x1, � � � , An at xn

Examples
� ` P :: z : 1 P offers nothing relying on behaviors �
� ` Q :: z : !A Q is an autonomous replicated server

x : A
B ` R :: z : C R requires A;B on x to offer z : C

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 47 / 71

Type Judgments: Intuitions

x1 : A1; : : : ; xn : An ` P :: z : C

Process P offers behavior C at name z
when composed with

processes offering A1 at x1, � � � , An at xn

Examples
� ` P :: z : 1 P offers nothing relying on behaviors �
� ` Q :: z : !A Q is an autonomous replicated server

x : A
B ` R :: z : C R requires A;B on x to offer z : C

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 47 / 71

Type Judgments: Intuitions

x1 : A1; : : : ; xn : An ` P :: z : C

Process P offers behavior C at name z
when composed with

processes offering A1 at x1, � � � , An at xn

Examples
� ` P :: z : 1 P offers nothing relying on behaviors �
� ` Q :: z : !A Q is an autonomous replicated server

x : A
B ` R :: z : C R requires A;B on x to offer z : C

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 47 / 71

Type Judgments, Actually

Dependencies as two sets of type assignments, � and �:

u1 : A1; : : : ;un : An| {z }
�

; x1 : B1; : : : ; xk : Bk| {z }
�

` P :: z : C

� � specifies shared services Ai along ui

� � specifies linear services Bj along xj [no weakening, contraction]

(Names ui ; xj ; z pairwise distinct.)

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 48 / 71

Example: PDF Conversion Service

Receive a file and then either return its PDF version OR quit:

Converter , file(
�
(PDF
 1) N 1

�
� A process which offers a linear conversion service:

Server , x (f):x .fconv : x (y):C(f ;y) ; quit : Qg

� A user which depends on the server:

User , x (txt):x /conv; x (pdf):R

� Next, we will see how server and user can be composed:

� ` Server :: x : Converter x : Converter ` User :: z : A
� ` (νx)(Server | User) :: z : A

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 49 / 71

Typing Rules

The logic correspondence induces right and left typing rules:
� Right rules detail how a process can implement the behavior

described by the given connective
� Left rules explain how a process may use a session of a given type

Cut rules in sequent calculus read as well-typed process
composition, based on restriction and parallel composition.

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 50 / 71

Some Typing Rules

�; x : A ` [x$z] :: z : A

�;� ` P :: y : A �;�0 ` Q :: x : B
�;�;�0 ` x (y):(P | Q) :: x : A
B

�;�; y : A; x : B ` P :: T
�;�; x : A
B ` x (y):P :: T

�;� ` P :: x : A �;� ` Q :: x : B
�;� ` x :case(P ;Q) :: x : A N B

�;�; x : A ` P :: T
�;�; x : A N B ` x :inl;P :: T

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 51 / 71

Some Typing Rules

�; x : A ` [x$z] :: z : A

�;� ` P :: y : A �;�0 ` Q :: x : B
�;�;�0 ` x (y):(P | Q) :: x : A
B

�;�; y : A; x : B ` P :: T
�;�; x : A
B ` x (y):P :: T

�;� ` P :: x : A �;� ` Q :: x : B
�;� ` x :case(P ;Q) :: x : A N B

�;�; x : A ` P :: T
�;�; x : A N B ` x :inl;P :: T

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 51 / 71

Some Typing Rules

�; x : A ` [x$z] :: z : A

�;� ` P :: y : A �;�0 ` Q :: x : B
�;�;�0 ` x (y):(P | Q) :: x : A
B

�;�; y : A; x : B ` P :: T
�;�; x : A
B ` x (y):P :: T

�;� ` P :: x : A �;� ` Q :: x : B
�;� ` x :case(P ;Q) :: x : A N B

�;�; x : A ` P :: T
�;�; x : A N B ` x :inl;P :: T

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 51 / 71

Some Typing Rules

�; x : A ` [x$z] :: z : A

�;� ` P :: y : A �;�0 ` Q :: x : B
�;�;�0 ` x (y):(P | Q) :: x : A
B

�;�; y : A; x : B ` P :: T
�;�; x : A
B ` x (y):P :: T

�;� ` P :: x : A �;� ` Q :: x : B
�;� ` x :case(P ;Q) :: x : A N B

�;�; x : A ` P :: T
�;�; x : A N B ` x :inl;P :: T

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 51 / 71

Some Typing Rules

�; x : A ` [x$z] :: z : A

�;� ` P :: y : A �;�0 ` Q :: x : B
�;�;�0 ` x (y):(P | Q) :: x : A
B

�;�; y : A; x : B ` P :: T
�;�; x : A
B ` x (y):P :: T

�;� ` P :: x : A �;� ` Q :: x : B
�;� ` x :case(P ;Q) :: x : A N B

�;�; x : A ` P :: T
�;�; x : A N B ` x :inl;P :: T

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 51 / 71

Typing Composition

Linear Composition
Cut as composition principle for linear services:

�;� ` P :: x : A �;�0
; x : A ` Q :: T

�;�;�0 ` (νx)(P | Q) :: T

Shared Composition
Cut! as composition principle for shared services:

�; � ` P :: y : A �;u : A; � ` Q :: z : C
�;� ` (νu)(!u(y):P | Q) :: z : C

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 52 / 71

Linear Cut as Process Reduction

�1 ` P1 :: y :A �2 ` P2 :: x :B
�1;�2 ` x (y):(P1 | P2) :: x :A
B

�3; y :A; x :B ` Q :: T
�3; x :A
B ` x (y):Q :: T

�1;�2;�3 ` (νx)(x (y):(P1 | P2) | x (y):Q) :: T

�!

�2 ` P2 :: x :B
�1 ` P1 :: y :A �3; y :A; x :B ` Q :: T

�1;�3; x :B ` (νy)(P1 | Q) :: T
�1;�2;�3 ` (νx)(P2 | (νy)(P1 | Q)) :: T

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 53 / 71

Shared Cut as Process Reduction

�; � ` P :: x :A
�;u :A; �; x :A ` Q :: T
�;u :A; � ` u(x):Q :: T

copy

�;� ` (νu)(!u(x):P | u(x):Q) :: T cut!

�!

�; � ` P :: x :A
�; � ` P :: x :A �;u :A; �; x :A ` Q :: T

�;�; x :A ` (νu)(!u(x):P | Q) :: T cut!

�;� ` (νx)(P | (νu)(!u(x):P | Q)) :: T cut

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 54 / 71

Properties of the Type System

Theorem (Type Preservation)
If �;� ` P :: z : A and P �! Q then �;� ` Q :: z : A.

� Process reductions map to principal cut reductions
� Derived properties: communication safety and session fidelity.

For any P , define live(P) iff P � (νn)(�:Q | R) for some �:Q ;R;n
where �:Q is a non-replicated guarded process.

Theorem (Global Progress / Deadlock Avoidance)
If �; � ` P :: z : 1 and live(P) then exists a Q such that P �! Q .

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 55 / 71

Properties of the Type System

Theorem (Type Preservation)
If �;� ` P :: z : A and P �! Q then �;� ` Q :: z : A.

� Process reductions map to principal cut reductions
� Derived properties: communication safety and session fidelity.

For any P , define live(P) iff P � (νn)(�:Q | R) for some �:Q ;R;n
where �:Q is a non-replicated guarded process.

Theorem (Global Progress / Deadlock Avoidance)
If �; � ` P :: z : 1 and live(P) then exists a Q such that P �! Q .

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 55 / 71

Multiparty STs Within Binary STs

First analysis of multiparty sessions within binary session types
� Based on linear logic foundations [Caires&Pfenning’10]

� Relates standard formulations [Honda,Yoshida,Carbone’08]

� Simple and extensible (polymorphism, recursion, asynchrony)

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 56 / 71

Binary Session Types (BSTs)
- Exactly two partners
- Correctness relies on action compatibility
- Well-understood theory and analysis techniques

Foundational significance:
Curry-Howard correspondence with linear logic [Caires&Pfenning’10;
Wadler’12]

Multiparty Session Types (MPSTs)

- More than two partners
- Global and local types, related by projection
- Subtle underlying theory; analysis techniques hard to obtain
Foundational significance:
Characterization via communicating automata (CFSMs)
[Deniélou&Yoshida’12,13; Lange,Tuosto,Yoshida’15]

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 57 / 71

Binary Session Types (BSTs)
- Exactly two partners
- Correctness relies on action compatibility
- Well-understood theory and analysis techniques

Foundational significance:
Curry-Howard correspondence with linear logic [Caires&Pfenning’10;
Wadler’12]

Multiparty Session Types (MPSTs)
- More than two partners
- Global and local types, related by projection
- Subtle underlying theory; analysis techniques hard to obtain

Foundational significance:
Characterization via communicating automata (CFSMs)
[Deniélou&Yoshida’12,13; Lange,Tuosto,Yoshida’15]

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 57 / 71

Binary Session Types (BSTs)
- Exactly two partners
- Correctness relies on action compatibility
- Well-understood theory and analysis techniques

Foundational significance:
Curry-Howard correspondence with linear logic [Caires&Pfenning’10;
Wadler’12]

Multiparty Session Types (MPSTs)
- More than two partners
- Global and local types, related by projection
- Subtle underlying theory; analysis techniques hard to obtain

Foundational significance:
Characterization via communicating automata (CFSMs)
[Deniélou&Yoshida’12,13; Lange,Tuosto,Yoshida’15]

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 57 / 71

Binary Session Types (BSTs)
- Exactly two partners
- Correctness relies on action compatibility
- Well-understood theory and analysis techniques

Foundational significance:
Curry-Howard correspondence with linear logic [Caires&Pfenning’10;
Wadler’12]

Multiparty Session Types (MPSTs)
- More than two partners
- Global and local types, related by projection
- Subtle underlying theory; analysis techniques hard to obtain
Foundational significance:
Characterization via communicating automata (CFSMs)
[Deniélou&Yoshida’12,13; Lange,Tuosto,Yoshida’15]

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 57 / 71

An Open Problem

Can MPSTs Be Reduced Into BSTs?

� A reduction would be insightful and practically useful

� Practice suggests MPSTs are more expressive than BSTs

� Challenge: Decompose global specs into binary pieces
- preserving sequencing information
- avoiding communication errors
- retaining significance of standard models

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 58 / 71

A Positive Answer

In a recent work (FORTE’16), we have presented a two-way
correspondence between
� Standard MPSTs with communication & composition, following

[Honda,Yoshida,Carbone’08; Deniélou & Yoshida’13]

� BSTs based on linear logic, following [Caires & Pfenning’10]:
fidelity, safety, termination, (dead)lock-freedom by typing

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 59 / 71

Our Approach: Medium Processes

G

TbobTalice Tcarol Tdave

PbobPalice Pcarol Pdave

Projection

Type
Checking

Global type

Local types

Programs

� The medium process MJGK
- Intermediate party in all exchanges in G
- Captures sequencing information in G by decoupling interactions

� Local implementations need not know about MJGK

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 60 / 71

Our Approach: Medium Processes

G

TbobTalice Tcarol Tdave

PbobPalice Pcarol Pdave MJGK

Projection

Medium

� The medium process MJGK
- Intermediate party in all exchanges in G
- Captures sequencing information in G by decoupling interactions

� Local implementations need not know about MJGK

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 60 / 71

Our Approach: Medium Processes

G

TbobTalice Tcarol Tdave

PbobPalice Pcarol Pdave MJGK

Projection

Binary Type
Checking

Medium

� The medium process MJGK
- Intermediate party in all exchanges in G
- Captures sequencing information in G by decoupling interactions

� Local implementations need not know about MJGK

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 60 / 71

Medium Process of a Global Type

� MJp! q : hU i:G K = cp(u):cq(v):([u$v] | MJGK)
� MJp! q : fli : Gigi2I K = cp .

n
li : cq /li ;MJGiK

o
i2I

� MJp�q:flihUii:Gigi2I K =

cp .

n
li : cp(u):cq /li ; cq(v):([u$v] | MJGiK)

o
i2I

� MJendK = 0

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 61 / 71

Medium Process of a Global Type

� MJp! q : hU i:G K = cp(u):cq(v):([u$v] | MJGK)
� MJp! q : fli : Gigi2I K = cp .

n
li : cq /li ;MJGiK

o
i2I

� MJp�q:flihUii:Gigi2I K =

cp .

n
li : cp(u):cq /li ; cq(v):([u$v] | MJGiK)

o
i2I

� MJendK = 0

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 61 / 71

Different Worlds, Linked by Mediums

� MPSTs explained from different angles
� Logic justifications for MPSTs notions:

- projection, type well-formedness
- semantics of global types
- behavioral equivalences (global swapping)

� Connects standard MPSTs to process
implementations

� Supports name passing, delegation,
composition, infinite behavior/sharing

� Techniques for BSTs applied to MPSTs
- deadlock freedom
- typed behavioral equivalences
- parametric polymorphism

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 62 / 71

Outline

Context

Type Systems for Concurrency

Binary Session Types

Multiparty Session Types

The Curry-Howard Isomorphism

Session Types and Linear Logic
Typing Rules and Main Properties
Multiparty Session Types Into Binary Sessions

Closing Remarks

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 63 / 71

Taking Stock (2/2)

A concurrent interpretation of linear logic that

� Clarifies the logical foundations of binary session types, in the
spirit of the Curry-Howard isomorphism

� Identifies a class of �-calculus processes which enjoy fidelity,
safety, and progress

� Offers a canonical perspective also for multiparty session types

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 64 / 71

Further Topics

Research on session types has long addressed several topics not
mentioned here, including:

� Integration into programming languages (object-oriented,
functional, and imperative)

� Connections with automata theory

� Synchronous / asynchronous communication disciplines

� Security properties (secure information flow, access control)

� Different forms of liveness properties (progress,
deadlock-freedom, and lock-freedom)

� Connections with models of exceptions, reversibility, run-time
monitoring and adaptation

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 65 / 71

Session Types for Runtime Verification

� The original (and most studied) use of session types is as a static
verification technique for message-passing programs

� Problem: many components cannot be type-checked.
� Session types can be also used to enforce runtime verification.
� Idea: Use each local type as a monitor to ensure that the (local)

protocol is correctly followed, and to react in case of problems.

G

TbobTalice Tcarol Tdave

PbobPalice Pcarol Pdave

Projection

Static Type
Checking

Global type

Local types

Programs

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 66 / 71

Session Types for Runtime Verification

� The original (and most studied) use of session types is as a static
verification technique for message-passing programs

� Problem: many components cannot be type-checked.
� Session types can be also used to enforce runtime verification.
� Idea: Use each local type as a monitor to ensure that the (local)

protocol is correctly followed, and to react in case of problems.

G

TbobTalice Tcarol Tdave

PbobPalice Pcarol Pdave

Projection

Runtime
Checking

Global type

Programs

Local types
Monitors

(See works by Ancona et al. on dynamic protocol checking for MAS.)
Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 66 / 71

A Pressing Research Challenge

� Many different frameworks of behavioral type systems exist
� Their precision and features vary ostensibly
� There are as many notions of correctness as there are behavioral

type systems!

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 67 / 71

Addressing The Challenge

A recently awarded research grant (NWO VIDI):
� Goal: A unified theory of correctness for message-passing

concurrency
� Approach: Use the Curry-Howard correspondence for

Concurrency as objective yardstick in (formal) comparisons,
given as results of relative expressiveness

� Initial results promising!
� Impact: Interoperable tools for communicating programs

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 68 / 71

Essential References

� Kohei Honda, Vasco Thudichum Vasconcelos, Makoto Kubo:
Language Primitives and Type Discipline for Structured
Communication-Based Programming. ESOP 1998.

� Kohei Honda, Nobuko Yoshida, Marco Carbone:
Multiparty asynchronous session types. POPL 2008.
Also: Journal of the ACM, Volume 63(1): 9 (2016)

� Mario Coppo, Mariangiola Dezani-Ciancaglini, Luca Padovani,
Nobuko Yoshida:
A Gentle Introduction to Multiparty Asynchronous Session
Types. SFM 2015.

� Luís Caires, Frank Pfenning, Bernardo Toninho:
Linear logic propositions as session types.
Math. Structures in Comp. Science 26(3): 367-423 (2016)
(Extended version of a CONCUR 2010 paper.)

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 69 / 71

Further (Recent) References

� Hans Hüttel et al:
Foundations of Session Types and Behavioural Contracts.
ACM Comput. Surv. 49(1): 3 (2016)

� Davide Ancona et al:
Behavioral Types in Programming Languages. Foundations
and Trends in Programming Languages 3(2-3): 95-230 (2016)

� Luís Caires and Jorge A. Pérez:
Multiparty Session Types Within a Canonical Binary Theory,
and Beyond. FORTE 2016.

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 70 / 71

Type-based Communication Correctness in
Multi-agent Systems

Part II: Type Systems for Concurrency and Logical Foundations

Jorge A. Pérez

Bernoulli Institute for Mathematics, Computer Science, and AI
University of Groningen, The Netherlands

www.jperez.nl

20th European Agent Systems Summer School (EASSS 2018)

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part II) 71 / 71

www.jperez.nl

	Context
	Type Systems for Concurrency
	Binary Session Types
	Multiparty Session Types
	The Curry-Howard Isomorphism
	Session Types and Linear Logic
	Typing Rules and Main Properties
	Multiparty Session Types Into Binary Sessions

	Closing Remarks

