
Type-based Communication Correctness in
Multi-agent Systems

Part I: Correctness, Communication, and Process Calculi

Jorge A. Pérez

Bernoulli Institute for Mathematics, Computer Science, and AI
University of Groningen, The Netherlands

www.jperez.nl

20th European Agent Systems Summer School (EASSS 2018)

www.jperez.nl


Outline

Preamble

Software and Its Correctness

Concurrency

Process Calculi

The �-calculus
Motivation
Syntax
Structural Congruence
Scope Extrusion
Simple Examples

Taking Stock

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 2 / 59



Overview of the Tutorial

An introduction to type systems (in particular, session types), a
technique for enforcing correct multi-agent, communicating systems.

Concurrency
Theory

Programming
Languages

Program
Verification

This Tutorial

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 3 / 59



Overview of the Tutorial

An introduction to type systems (in particular, session types), a
technique for enforcing correct multi-agent, communicating systems.

Concurrency
Theory

Programming
Languages

Program
Verification

This Tutorial

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 3 / 59



Overview of the Tutorial

An introduction to type systems (in particular, session types), a
technique for enforcing correct multi-agent, communicating systems.

Concurrency
Theory

Programming
Languages

Program
Verification

This Tutorial

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 3 / 59



Overview of the Tutorial

An introduction to type systems (in particular, session types), a
technique for enforcing correct multi-agent, communicating systems.

Part I: Correctness, Communication, and Process Calculi
� What is software correctness?
� Concurrency and communication
� Formal models of concurrency, in particular process calculi
� The �-calculus, the paradigmatic calculus of concurrency

Part II: Type Systems for Concurrency & Logical Foundations
� Type systems for concurrency: behavioral types
� Session types for the �-calculus
� Logical foundations for message-passing concurrency
� Further topics

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 4 / 59



About Me

Since April 2014, assistant professor at University of Groningen:
� Research within the “Fundamental Computing” group

Part-time affiliation at CWI, Amsterdam (since September 2016)
� Current group: 3 PhDs (two PhDs and one PostDoc soon to arrive)
� Collaborations with UK, Italy, France, Portugal, Serbia, Colombia
� Looking forward to new collaborations!

Prior to Groningen:
� Postdoctoral Researcher (Lisbon, Portugal, 2010-2014)

Work on: Logical Foundations of Concurrent Programming
� PhD in Informatics (Bologna, Italy, 2007-2010)

Thesis: Expressiveness Results for Higher-Order Concurrency
� Engineering Degree in Computer Science (Cali, Colombia, 2005)

Thesis: A Library for Soft Constraint Satisfaction Problems

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 5 / 59



About Me

Since April 2014, assistant professor at University of Groningen:
� Research within the “Fundamental Computing” group

Part-time affiliation at CWI, Amsterdam (since September 2016)
� Current group: 3 PhDs (two PhDs and one PostDoc soon to arrive)
� Collaborations with UK, Italy, France, Portugal, Serbia, Colombia
� Looking forward to new collaborations!

Prior to Groningen:
� Postdoctoral Researcher (Lisbon, Portugal, 2010-2014)

Work on: Logical Foundations of Concurrent Programming
� PhD in Informatics (Bologna, Italy, 2007-2010)

Thesis: Expressiveness Results for Higher-Order Concurrency
� Engineering Degree in Computer Science (Cali, Colombia, 2005)

Thesis: A Library for Soft Constraint Satisfaction Problems

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 5 / 59



Outline

Preamble

Software and Its Correctness

Concurrency

Process Calculi

The �-calculus
Motivation
Syntax
Structural Congruence
Scope Extrusion
Simple Examples

Taking Stock

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 6 / 59



Software is Everywhere!

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 7 / 59



Software Should be Correct

� A huge part of software today is deployed in critical infrastructures
(Critical as in ‘millions of human lives involved’)

� We depend on programs and systems behaving as intended
� While correct software is a “silent hero”, defective/unreliable/costly

software (rightly) receives a lot of attention
� Not a new issue! Academic interest at least from the late 1960s

(“Software Crisis” is a term coined in 1968!)
� Increasing awareness about software correctness, and its many

ramifications (financial, social, ethical, etc)

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 8 / 59



Lots of Incorrect Software

http://en.wikipedia.org/wiki/List_of_software_bugs

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 9 / 59

http://en.wikipedia.org/wiki/List_of_software_bugs


Software Correctness in the Real World

In software engineering processes, correctness means testing:

The waterfall model The spiral model

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 10 / 59



The Humble Programmer (1/2)

Edsger Wybe Dijkstra
ACM Turing Winner, 1972

� Testing can be effective to show the
presence of bugs, but is hopelessly
inadequate for showing their absence.

� The only effective way to raise the
confidence level of a program is to give a
convincing proof of its correctness.

� But one should not first make the program
and then prove its correctness: the
requirement of providing the proof would
only increase the programmer’s burden.

� The programmer should let correctness
proof and program grow hand in hand.

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 11 / 59



The Humble Programmer (1/2)

Edsger Wybe Dijkstra
ACM Turing Winner, 1972

� Testing can be effective to show the
presence of bugs, but is hopelessly
inadequate for showing their absence.

� The only effective way to raise the
confidence level of a program is to give a
convincing proof of its correctness.

� But one should not first make the program
and then prove its correctness: the
requirement of providing the proof would
only increase the programmer’s burden.

� The programmer should let correctness
proof and program grow hand in hand.

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 11 / 59



The Humble Programmer (2/2)

� The only mental tool by means of which a
very finite piece of reasoning can cover a
myriad cases is “abstraction”.

� The effective exploitation of his powers of
abstraction is one of the most vital
activities of a competent programmer.

� The purpose of abstracting is not to be
vague, but to create a new semantic level
in which one can be absolutely precise.

Edsger Wybe Dijkstra
ACM Turing Winner, 1972

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 12 / 59



Guess the Year!

From the preface:
� The cost of “bugs” in critical software is

great; consequently the problem of
software correctness is being
investigated intensively worldwide.

� Programming is a mathematical activity.
That is, a programmer ought to be able
to prove, in the mathematical sense,
that his programs are correct.

� Programming requires of programmers
the precise thinking, creative leaps, and
attention to detail normally required of
mathematicians.

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 13 / 59



When is Software Correct?

The correctness problem consists in checking that a software
system “behaves as intended”

We’d say that a software artifact (e.g., a mobile app) is correct when

� Provides an output consistent with some given input
� Correctly (and quickly) completes its tasks
� Shows predictable and reliable behavior

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 14 / 59



Formal Verification

Formal verification is the problem of checking that an artifact P is
correct with respect to a given mathematical specification '.
� ' describes the system behaviors (or configurations) that the

designer judges to be acceptable
� artifacts that always exhibit behaviors as described by ' are said

to correctly implement '
� ' could be a formula in some logic (model checking) or a formal

specification of the expected behavior (equivalence checking)

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 15 / 59



Outline

Preamble

Software and Its Correctness

Concurrency

Process Calculi

The �-calculus
Motivation
Syntax
Structural Congruence
Scope Extrusion
Simple Examples

Taking Stock

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 16 / 59



“Things That Occur at the Same Time”

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 17 / 59



Concurrency: A Challenge

Currently, a mismatch:

Information technologies
(predominantly concurrent and interactive)

vs.
computing foundations

(mostly sequential)

� Consequence: conceiving, designing, and implementing
concurrent software systems is difficult and error prone.

� These errors are often costly (even catastrophic) and have
societal implications

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 18 / 59



Concurrency: A Challenge

Currently, a mismatch:

Information technologies
(predominantly concurrent and interactive)

vs.
computing foundations

(mostly sequential)

� Consequence: conceiving, designing, and implementing
concurrent software systems is difficult and error prone.

� These errors are often costly (even catastrophic) and have
societal implications

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 18 / 59



Correctness in Concurrency is Tricky

Consider two programs, P1 and P2:

P1 : x := 1; x := x + 1
P2 : x := 2

Run in isolation, P1 and P2 have the same semantics:
they replace the value of x by 2.

Consider now the program Q :

Q : x := 3

and run it concurrently with P1 and P2:

R1 : P1 k Q
R2 : P2 k Q

Now R1 and R2 have a different semantics (Why?)

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 19 / 59



Correctness in Concurrency is Tricky

Consider two programs, P1 and P2:

P1 : x := 1; x := x + 1
P2 : x := 2

Run in isolation, P1 and P2 have the same semantics:
they replace the value of x by 2.

Consider now the program Q :

Q : x := 3

and run it concurrently with P1 and P2:

R1 : P1 k Q
R2 : P2 k Q

Now R1 and R2 have a different semantics (Why?)
Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 19 / 59



Which Concurrency?

A rough classification of the forms of concurrency of interest in
computer science:

� Shared-memory concurrency (“local concurrency”)
� Message-passing concurrency (“global concurrency”)

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 20 / 59



Shared-Memory Concurrency

Focus on interaction that occurs in a shared state.
Multiple homogeneous tasks executing “nearby” with limited
resources and operations.

Examples:
� Threads in a smartphone (or any mobile device)
� Multicore processors in modern tablets and laptops
� GPGPUs
� Concurrent data structures
Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 21 / 59



Message-Passing Concurrency

Privileges the notion of computing as interaction, in distributed and
highly dynamic scenarios.
Typical of systems built as the composition of heterogeneous
components which communicate between them.
We shall refer to those components as agents or processes.

Examples:
� Online services for booking flights and hotels
� Web services, cloud computing, software-defined networks
� Government information systems
Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 22 / 59



Models for Concurrency

It is hard to specify and reason about the phenomena which are
typical of concurrent computation.

This is because, unlike sequential programs, concurrent systems
are:
� Interactive and reactive
� Infinite (as opposed to terminating)
� Hard to predict (as opposed to deterministic)

Consequence: Models and techniques for designing, building, and
verifying sequential systems are inadequate for concurrent systems.

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 23 / 59



Models for Concurrency

We require models tailored to concurrent computing.

In principle, we would like models which are at least
� general, based on a few key principles
� expressive enough to represent relevant phenomena

Moreover, these models should be also precise and reliable.
To this end, we will find it reasonable to require models which
� are formal: based upon solid mathematical foundations
� are endowed with reasoning techniques which allow us to discern

about certain aspects of interest

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 24 / 59



Models for Concurrency

We require models tailored to concurrent computing.

In principle, we would like models which are at least
� general, based on a few key principles
� expressive enough to represent relevant phenomena

Moreover, these models should be also precise and reliable.
To this end, we will find it reasonable to require models which
� are formal: based upon solid mathematical foundations
� are endowed with reasoning techniques which allow us to discern

about certain aspects of interest

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 24 / 59



Models for Concurrency

We require models tailored to concurrent computing.

In principle, we would like models which are at least
� general, based on a few key principles
� expressive enough to represent relevant phenomena

Moreover, these models should be also precise and reliable.
To this end, we will find it reasonable to require models which
� are formal: based upon solid mathematical foundations
� are endowed with reasoning techniques which allow us to discern

about certain aspects of interest

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 24 / 59



Aspects of Interest

Models of concurrency may aim at capturing different aspects.
Some examples:

� communication discipline: point-to-point, broadcast
� synchronization mechanisms: synchronous, asynchronous
� message passing, shared variables
� timed (discrete, continuous) or untimed
� deterministic, or non deterministic

Following an abstraction principle, the intended models will focus
only on a few aspects/concerns, ignoring the rest.

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 25 / 59



Models of Concurrency: Ideal

� Formal: abstract, rigorous, unambiguous
� Common language, widely understandable to various experts
� Very expressive (e.g. flexible time, multiparty synchronizations)

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 26 / 59



Models of Concurrency: Ideal

� Formal: abstract, rigorous, unambiguous
� Common language, widely understandable to various experts
� Very expressive (e.g. flexible time, multiparty synchronizations)

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 26 / 59



Elements of Interaction (1/2)

Robin Milner
ACM Turing Winner, 1991

� Concurrency requires a fresh
approach, not just an extension of
the constructions which explain
sequential computing.

� Constructions for concurrency may
be understood mathematically, just
as sequential computing may be
understood in terms of functions.

� I reject the idea that there can be a
unique model or formalism for all
aspects of something as large as
concurrent computation.

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 27 / 59



Elements of Interaction (2/2)

� Functions are an essential
ingredient of the air we breathe, so
to speak, when we discuss
sequential programming.

� But for concurrent programming
and interactive systems in general,
we have nothing comparable.

� Right ideas to explain concurrency
will only come from a dialectic
between models from logic and
mathematics and a proper
distillation of practical experience.

Robin Milner
ACM Turing Winner, 1991

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 28 / 59



Formal Models of Concurrency

In this tutorial, we shall focus on so-called process calculi (aka
process algebras), a class of models of concurrency.

� Formal languages in which the structure of terms represents (or
reflects) the structure of computational processes

� Such a structure is given by a reduced set of process constructors
� Tiny programming languages, endowed with an operational

semantics which represents (concurrent) computational steps.
� Widely studied since the 80s (promoted by Milner and others).

Example:
� Given processes P and Q , process P k Q is the parallel execution

of P and Q . That is, P and Q are combined using the k operator.
� If P autonomously evolves into P 0, an operational semantics �!

may decree that P �! P 0 but also that P k Q �! P 0 k Q .

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 29 / 59



Formal Models of Concurrency

In this tutorial, we shall focus on so-called process calculi (aka
process algebras), a class of models of concurrency.

� Formal languages in which the structure of terms represents (or
reflects) the structure of computational processes

� Such a structure is given by a reduced set of process constructors
� Tiny programming languages, endowed with an operational

semantics which represents (concurrent) computational steps.
� Widely studied since the 80s (promoted by Milner and others).

Example:
� Given processes P and Q , process P k Q is the parallel execution

of P and Q . That is, P and Q are combined using the k operator.
� If P autonomously evolves into P 0, an operational semantics �!

may decree that P �! P 0 but also that P k Q �! P 0 k Q .

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 29 / 59



Process Calculi: Some Features

� A compositional approach: a concurrent system specified in terms
of its sub-systems and the interaction between them

� The operators allow us to represent explicitly abstraction criteria in
specifications

� They are defined as minimal models, able to represent interesting
behaviors using a reduced set of elements.

Typically, process calculi are able to represent
� Atomic actions (inputs, outputs) and their interaction

(synchronizations)
� Explicit concurrency (e.g. the parallel composition operator k)
� Choices between different alternative behaviors
� Delimited interactions (e.g., channels private to a process)
� Infinite behaviors (e.g. recursion)

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 30 / 59



Process Calculi: Some Features

� A compositional approach: a concurrent system specified in terms
of its sub-systems and the interaction between them

� The operators allow us to represent explicitly abstraction criteria in
specifications

� They are defined as minimal models, able to represent interesting
behaviors using a reduced set of elements.

Typically, process calculi are able to represent
� Atomic actions (inputs, outputs) and their interaction

(synchronizations)
� Explicit concurrency (e.g. the parallel composition operator k)
� Choices between different alternative behaviors
� Delimited interactions (e.g., channels private to a process)
� Infinite behaviors (e.g. recursion)

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 30 / 59



Outline

Preamble

Software and Its Correctness

Concurrency

Process Calculi

The �-calculus
Motivation
Syntax
Structural Congruence
Scope Extrusion
Simple Examples

Taking Stock

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 31 / 59



Process Calculi: Purpose

� Basic models of concurrent computing (just as the �-calculus and
automata are the foundation of sequential programming)

� Formal foundations for modern programming languages and
development tools

� Useful to define and study reasoning and verification techniques:
� Simulators
� Model and equivalence checkers
� Type systems

� Two notable process calculi (by Milner and collaborators):
- CCS: The Calculus of Communicating Systems
- The �-calculus

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 32 / 59



Sequential (�) vs Concurrent (�)

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 33 / 59



The �-calculus

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 34 / 59



Outline

Preamble

Software and Its Correctness

Concurrency

Process Calculi

The �-calculus
Motivation
Syntax
Structural Congruence
Scope Extrusion
Simple Examples

Taking Stock

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 35 / 59



The �-calculus: A Calculus of Mobile Processes

Arguably, the paradigmatic calculus for concurrency
� Proposed by Milner, Parrow, and Walker in 1992.

Developed significantly by Sangiorgi.

Interactive systems with dynamic connectivity (topology).
A dual role:
� A model of networked computation:

Exchanged messages which contain links referring to
communication channels themselves

� A basic model of computation:
Interaction as the primitive notion of concurrent computing
(Just as the �-calculus for functional computing)

Here: the �-calculus without going too much into technical details

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 36 / 59



Mobility as dynamic connectivity (1)

Towards the meaning of ‘mobility’:
� What kind of entity moves? In what space does it move?

Many possibilities—the two most relevant in this course are:
1. Processes move, in the virtual space of linked processes
2. Links move, in the virtual space of linked processes

Observe that
� A process’ location is given by the links it has to other processes

(think of your contacts in your mobile phone)
� Hence, the movement of a process can be represented by the

movement of its links

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 37 / 59



Mobility as dynamic connectivity (1)

Towards the meaning of ‘mobility’:
� What kind of entity moves? In what space does it move?

Many possibilities—the two most relevant in this course are:
1. Processes move, in the virtual space of linked processes
2. Links move, in the virtual space of linked processes

Observe that
� A process’ location is given by the links it has to other processes

(think of your contacts in your mobile phone)
� Hence, the movement of a process can be represented by the

movement of its links

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 37 / 59



Mobility as dynamic connectivity (2)

1. Processes move, in the virtual space of linked processes
2. Links move, in the virtual space of linked processes

The �-calculus commits to mobility in the sense of (2)...
� Economy, flexibility, and simplicity

...while models of higher-order concurrency stick to (1):
� Inspired in the �-calculus
� It might be difficult/inconvenient to “normalize” all concurrency

phenomena in the sense of (2)

We will argue that (1) and (2) need not be mutually exclusive

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 38 / 59



Mobility as dynamic connectivity (2)

1. Processes move, in the virtual space of linked processes
2. Links move, in the virtual space of linked processes

The �-calculus commits to mobility in the sense of (2)...
� Economy, flexibility, and simplicity

...while models of higher-order concurrency stick to (1):
� Inspired in the �-calculus
� It might be difficult/inconvenient to “normalize” all concurrency

phenomena in the sense of (2)

We will argue that (1) and (2) need not be mutually exclusive

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 38 / 59



Mobility as dynamic connectivity (2)

1. Processes move, in the virtual space of linked processes
2. Links move, in the virtual space of linked processes

The �-calculus commits to mobility in the sense of (2)...
� Economy, flexibility, and simplicity

...while models of higher-order concurrency stick to (1):
� Inspired in the �-calculus
� It might be difficult/inconvenient to “normalize” all concurrency

phenomena in the sense of (2)

We will argue that (1) and (2) need not be mutually exclusive

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 38 / 59



Dynamic connectivity, Intuitively (1)

Arguably the most distinctive feature of the �-calculus as a model of
concurrency is dynamic connectivity.

To motivate this idea, let’s assume a graph-like notation for
communicating agents. Agents, depicted as nodes, will be
connected if they share a name for communication.

Let A;B , and C be agents. A and C share a name c.
A and B have names a and b, respectively, to communicate with
their environment. C and B don’t share any names.

(1)

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 39 / 59



Dynamic connectivity, Intuitively (1)

Arguably the most distinctive feature of the �-calculus as a model of
concurrency is dynamic connectivity.

To motivate this idea, let’s assume a graph-like notation for
communicating agents. Agents, depicted as nodes, will be
connected if they share a name for communication.

Let A;B , and C be agents. A and C share a name c.
A and B have names a and b, respectively, to communicate with
their environment. C and B don’t share any names.

(1)
Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 39 / 59



Dynamic connectivity, Intuitively (2)

Suppose now that A can evolve and split into two agents, A and A0,
which use a private name d to communicate. We may think of A0 as
a “deputy” agent for A.
Then the system looks as follows:

(2)

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 40 / 59



Dynamic connectivity, Intuitively (3)

Finally, suppose that A0 performs some (communication) actions to
stand by for A and then dies. Graphically:

(3)

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 41 / 59



Dynamic connectivity, Intuitively ((4)

The models of concurrency that preceded the �-calculus (such as
CCS) links between agents can proliferate and die:

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 42 / 59



Dynamic connectivity, Intuitively (5)

However, such models are limited: new links between existing
agents cannot be created. In those models, a transition such as

!

is not possible.

Dynamic connectivity refers precisely to this kind of transitions.
The �-calculus goes beyond CCS by allowing dynamic
communication topologies.

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 43 / 59



Dynamic connectivity, Intuitively (5)

However, such models are limited: new links between existing
agents cannot be created. In those models, a transition such as

!

is not possible.

Dynamic connectivity refers precisely to this kind of transitions.
The �-calculus goes beyond CCS by allowing dynamic
communication topologies.

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 43 / 59



The �-calculus, more formally

We now formally introduce the �-calculus. Some highlights:
� The major novelty is communication of names
� Dynamic connectivity formalized as scope extrusion
� An operational semantics coupled with a relation of structural

congruence

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 44 / 59



The �-calculus: Syntax

� We use x ; y ; z ; : : : to range over N , an infinite set of names.
� Communication actions are specified via action prefixes:

� ::= x hyi send name y along x
x (y) receive a name along x
� unobservable action

� Syntax of processes:

P ;Q ::= �:P Prefix
j 0 Inactive process
j P jjQ Parallel composition of P and Q
j (�y)P Name restriction: y is private to P
j P + Q Sum
j Ahy1; : : : ; yni Identifier

Each A is equipped with a definition A(x1; : : : ; xn)
def
= P .

� In (�y)P and x (y):P name y is bound with scope P .
Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 45 / 59



Structural Congruence: Intuitions

� The syntax of processes is too concrete: syntactically different
terms that represent the same behavior. Examples:

a(x ):bhx i and a(y):bhyi (“Receive on a , forward on b”)
P jjQ and Q jjP (“Run P and Q concurrently”)

[We often omit trailing 0s, and write bhyi instead of bhyi:0.]

� Structural congruence identifies processes which are “clearly the
same” based on their syntactical structure

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 46 / 59



Structural Congruence

P and Q structurally congruent, written P � Q , if we can transform
one into the other by using the following equations:

1. �-conversion: change of bound names
2. Laws for parallel composition:

P jj 0 � P
P jj Q � Q jj P

P jj (Q jj R) � (P jj Q) jj R

3. Law for recursive definitions: Ah~yi � Pf~y=~xg if A(~x ) def
= P

4. Laws for restriction:

(�x )(P jj Q) � P jj (�x )Q if x 62 fn(P)

(�x )0 � 0
(�x )(P + Q) � P + (�x )Q
(�x )(�y)P � (�y)(�x )P

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 47 / 59



Scope Extrusion (1)

A process P jj Q jj R.
Name x is free in P and Q , while z is free in Q and R:

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 48 / 59



Scope Extrusion (2)

Suppose that z is restricted to P and R, while x is free in P and Q .
That is, we have the process (�z )(P jj R) jj Q :

What happens if P wishes to send z to Q?

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 49 / 59



Scope Extrusion (3)

Suppose P = x hz i:P 0, with z 62 fn(P 0).
Suppose also Q = x (y):Q 0, with z 62 fn(Q 0).

where Q 00 = Q 0fz=yg. We have graphically described the reduction

(�z )(P jj R) jj Q �! P 0 jj (�z )(R jj Q 00)

The above describes a movement of a way of accessing R (rather
than a movement of R).

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 50 / 59



Some Simple Examples

We present some simple examples of scope extrusion.
We exploit three (informal) postulates for an operational semantics,
which we will define as a reduction relation 7�!:

1. A law for inferring interactions (point-to-point communication):

a(x ):P jj ahbi:Q 7�! Pfb=xg jjQ

2. Restrictions respect silent transitions:

P 7�! Q implies (�x )P 7�! (�x )Q

3. Structurally congruent processes have the same behavior

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 51 / 59



A Simple Example

We use str. congruence to infer an interaction for the process

a(x ):chx i jj (�b)ahbi

Since b =2 fn(a(x ):chx i), we have

a(x ):chx i jj (�b)ahbi � (�b)(a(x ):chx i jj ahbi)

We can infer that

(�b)(a(x ):chx i jj ahbi) 7�! (�b)(chbi jj0)

because a(x ):chx i jj ahbi 7�! chbi jj0 is a valid interaction.

Removing 0, in general we have, for any b =2 fn(P):

a(x ):P jj (�b)ahbi:Q 7�! (�b)(P jjQfb=xg)

and the scope of b has moved from the right to the left.

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 52 / 59



A Simple Example

We use str. congruence to infer an interaction for the process

a(x ):chx i jj (�b)ahbi

Since b =2 fn(a(x ):chx i), we have

a(x ):chx i jj (�b)ahbi � (�b)(a(x ):chx i jj ahbi)

We can infer that

(�b)(a(x ):chx i jj ahbi) 7�! (�b)(chbi jj0)

because a(x ):chx i jj ahbi 7�! chbi jj0 is a valid interaction.

Removing 0, in general we have, for any b =2 fn(P):

a(x ):P jj (�b)ahbi:Q 7�! (�b)(P jjQfb=xg)

and the scope of b has moved from the right to the left.

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 52 / 59



A Simple Example

We use str. congruence to infer an interaction for the process

a(x ):chx i jj (�b)ahbi

Since b =2 fn(a(x ):chx i), we have

a(x ):chx i jj (�b)ahbi � (�b)(a(x ):chx i jj ahbi)

We can infer that

(�b)(a(x ):chx i jj ahbi) 7�! (�b)(chbi jj0)

because a(x ):chx i jj ahbi 7�! chbi jj0 is a valid interaction.

Removing 0, in general we have, for any b =2 fn(P):

a(x ):P jj (�b)ahbi:Q 7�! (�b)(P jjQfb=xg)

and the scope of b has moved from the right to the left.
Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 52 / 59



Another Example

P = (�z )((x hyi+ z (w):whyi) jj x (u):uhvi jj x hz i)

Observe that fn(P) = fx ; v ; yg and bn(P) = fz ;w ;ug.

There are two possibilities for reduction.
1. Interaction among the first and second components:

P 7�! (�z )(0 jj uhvify=ug jj x hz i)
= (�z )(0 jj yhvi jj x hz i) = P1

Process Pfy=ug represents the process P in which the free
occurrences of name u have been substituted with y .

2. Interaction among the second and third components:

P 7�! (�z )((x hyi+ z (w):whyi) jj uhvifz=ug jj 0)
= (�z )((x hyi+ z (w):whyi) jj z hvi jj 0) = P2

While P1 67�!, we do have P2 7�! (�z )(z hyi jj 0 jj 0) � (�z )z hyi

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 53 / 59



Another Example

P = (�z )((x hyi+ z (w):whyi) jj x (u):uhvi jj x hz i)

Observe that fn(P) = fx ; v ; yg and bn(P) = fz ;w ;ug.
There are two possibilities for reduction.

1. Interaction among the first and second components:

P 7�! (�z )(0 jj uhvify=ug jj x hz i)
= (�z )(0 jj yhvi jj x hz i) = P1

Process Pfy=ug represents the process P in which the free
occurrences of name u have been substituted with y .

2. Interaction among the second and third components:

P 7�! (�z )((x hyi+ z (w):whyi) jj uhvifz=ug jj 0)
= (�z )((x hyi+ z (w):whyi) jj z hvi jj 0) = P2

While P1 67�!, we do have P2 7�! (�z )(z hyi jj 0 jj 0) � (�z )z hyi

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 53 / 59



Another Example

P = (�z )((x hyi+ z (w):whyi) jj x (u):uhvi jj x hz i)

Observe that fn(P) = fx ; v ; yg and bn(P) = fz ;w ;ug.
There are two possibilities for reduction.

1. Interaction among the first and second components:

P 7�! (�z )(0 jj uhvify=ug jj x hz i)
= (�z )(0 jj yhvi jj x hz i) = P1

Process Pfy=ug represents the process P in which the free
occurrences of name u have been substituted with y .

2. Interaction among the second and third components:

P 7�! (�z )((x hyi+ z (w):whyi) jj uhvifz=ug jj 0)
= (�z )((x hyi+ z (w):whyi) jj z hvi jj 0) = P2

While P1 67�!, we do have P2 7�! (�z )(z hyi jj 0 jj 0) � (�z )z hyi

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 53 / 59



Another Example

P = (�z )((x hyi+ z (w):whyi) jj x (u):uhvi jj x hz i)

Observe that fn(P) = fx ; v ; yg and bn(P) = fz ;w ;ug.
There are two possibilities for reduction.

1. Interaction among the first and second components:

P 7�! (�z )(0 jj uhvify=ug jj x hz i)
= (�z )(0 jj yhvi jj x hz i) = P1

Process Pfy=ug represents the process P in which the free
occurrences of name u have been substituted with y .

2. Interaction among the second and third components:

P 7�! (�z )((x hyi+ z (w):whyi) jj uhvifz=ug jj 0)
= (�z )((x hyi+ z (w):whyi) jj z hvi jj 0) = P2

While P1 67�!, we do have P2 7�! (�z )(z hyi jj 0 jj 0) � (�z )z hyi

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 53 / 59



Another Example

P = (�z )((x hyi+ z (w):whyi) jj x (u):uhvi jj x hz i)

Observe that fn(P) = fx ; v ; yg and bn(P) = fz ;w ;ug.
There are two possibilities for reduction.

1. Interaction among the first and second components:

P 7�! (�z )(0 jj uhvify=ug jj x hz i)
= (�z )(0 jj yhvi jj x hz i) = P1

Process Pfy=ug represents the process P in which the free
occurrences of name u have been substituted with y .

2. Interaction among the second and third components:

P 7�! (�z )((x hyi+ z (w):whyi) jj uhvifz=ug jj 0)
= (�z )((x hyi+ z (w):whyi) jj z hvi jj 0) = P2

While P1 67�!, we do have P2 7�! (�z )(z hyi jj 0 jj 0) � (�z )z hyi
Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 53 / 59



Try it yourself

� Three agents: a printing server, a client, and a printer.
The client wishes to print a document d .

� The client and the server share a public name b. The server and
the printer share a name a .

� However, the client doesn’t share names with the printer, so it
cannot contact it.

� The document d cannot be transmitted along public names.

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 54 / 59



Reduction Semantics

� Intuitively, the reduction semantics focuses on the internal
behavior of a process, without external intervention.

� Defined as a binary relation on processes coupled with structural
congruence, denoted

P 7�! Q (“P reduces to Q”)

� Alternatively, one may endow processes with a semantics that
captures the interaction between a process and its environment.

� To that end, we would need a different kind of semantics (based
on a Labeled Transition System).

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 55 / 59



Reduction Semantics

The reduction relation, denoted 7�!, is defined by the following
rules, which make our previous informal postulates formal:

(a(x ):P + P 0) jj (ahvi:Q + Q 0) 7�! Pfv=xg jj Q

P 7�! P 0

P jj Q 7�! P 0 jj Q
P 7�! P 0

(�x )P 7�! (�x )P 0

P � P 0 7�! Q 0 � Q
P 7�! Q

Observe:
� Hence, � can occur at any point in the inference.

It promotes behavior, by bringing together processes.
� Above, guarded choices the form �1:P1 + � � �+ �n :Pn .

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 56 / 59



Outline

Preamble

Software and Its Correctness

Concurrency

Process Calculi

The �-calculus
Motivation
Syntax
Structural Congruence
Scope Extrusion
Simple Examples

Taking Stock

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 57 / 59



Taking Stock

Up to here:
� Software correctness (following Dijkstra)
� Concurrency and communication (following Milner)
� Formal models of concurrency, in particular process calculi
� The �-calculus, the paradigmatic calculus of concurrency:

overview of its syntax and semantics

How to ensure that communication-centric software systems
(specified in the �-calculus) respect their protocols?

Next:
� Type systems for concurrency: behavioral types
� Session types for the �-calculus
� Logical foundations for message-passing concurrency

Jorge A. Pérez (Univ. of Groningen) Types for Communication Correctness in Multi-agent Systems (Part I) 58 / 59



Type-based Communication Correctness in
Multi-agent Systems

Part I: Correctness, Communication, and Process Calculi

Jorge A. Pérez

Bernoulli Institute for Mathematics, Computer Science, and AI
University of Groningen, The Netherlands

www.jperez.nl

20th European Agent Systems Summer School (EASSS 2018)

www.jperez.nl

	Preamble
	Software and Its Correctness
	Concurrency
	Process Calculi
	The -calculus
	Motivation
	Syntax
	Structural Congruence
	Scope Extrusion
	Simple Examples

	Taking Stock

