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Introduction



AUTONOMOUS CAR 

How do they plan the route to the destination?
CarTV https://www.youtube.com/watch?v=M1ShJhOqtxA

https://www.youtube.com/watch?v=M1ShJhOqtxA


AUTONOMOUS CARS: 

BENEFITS

• increased mobility of the elderly and 

disabled people

• better utilisation of travel time

• finding urban places faster 

• increased fuel efficiency

• more efficient traffic flow

• less congestion



LESS CONGESTION, 

OPTIMAL COLLECTIVE 

BEHAVIOUR

DW: Das Auto der Zukunft https://youtu.be/RY1WHUfT_zk?t=217

https://youtu.be/RY1WHUfT_zk?t=217


HUMAN DRIVEN VS. 

AUTONOMOUS

• human driven
– may follow their habits, although these habits may not be optimal

– psychologically influenced decision may result in altruistic or 
panic-like behaviour

– may not always be aware of the relevant information

• autonomous
– always follow their designed rational preferences

– wider sensory capabilities (we assume they are correct and do not have 

e.g. the blind spot of deep learning neural nets)

– telecommunication technologies to ''see'' beyond objects and to 
''see'' much farther away

– real-time data

– informed decision

https://doi.org/10.1109/SP.2017.49


ADAPTATION

• single autonomous car: one actor senses the 

environment and takes actions to adapt to the 

changing environment

• several autonomous cars: the overall traffic 

will emerge as the result of the collective 

behaviour of several autonomous cars

• can we verify that joint actions of autonomous 

cars do not generate unwanted behaviour?



The Routing Problem 

in the Traffic Engineering Domain
routing problem, preference, optimum, equilibrium, Braess

paradox



ROAD TRAFFIC: ROUTING 

PROBLEM



ROAD TRAFFIC: ROUTING 

GAME

1

2



ROAD TRAFFIC: 

AUTONOMOUS

• a centralized system would be able to create 
an optimal plan for the trips of the cars
– optimality: for some ''global'' parameter

– fairness: e.g. none of the cars pays with some 
extra long travel time for the global optimum

• autonomous: 
– traffic participants make autonomous decisions 

based on their goals and the information available 
for them locally

• individually self-optimizing travel routes does 
not necessarily result in optimal traffic 



ROAD TRAFFIC: COMPLEX 

SYSTEM - BRAESS

• road sections are capacious: travel time always takes 15 minutes

• bridges are bottlenecks

• X is the flow rate (number of cars per hour)

• time to cross the bridge is X÷100 minutes

15 + L÷100 = 15 + R÷100

L + R = 1000

• the collective behaviour

L = R = 500 → 20 minutes travel

• Nash equilibrium

http://vcp.med.harvard.edu/braess-paradox.html

D. Braess. Über ein paradoxon der verkehrsplanung. 

Unternehmensforschung, 12:258–268, 1968.  link

http://vcp.med.harvard.edu/braess-paradox.html
https://doi.org/10.1007/BF01918335


ROAD TRAFFIC: COMPLEX 

SYSTEM - BRAESS

• road sections are capacious: travel time always takes 15 minutes

• bridges are bottlenecks

• time to cross the bridge is X÷100 minutes

• central road: always 7.5 minutes

15 + (L+C)÷100 = 15 + (R+C)÷100

15 + (L+C)÷100 = (L+C)÷100 + 7.5 + (R+C)÷100

L + R + C = 1000

• the collective behaviour

L = R = 250  ,  C=500 → 22.5 minutes travel

• Nash equilibrium

• they would be better off, if they did not use route C (20 minutes)

http://vcp.med.harvard.edu/braess-paradox.html

http://vcp.med.harvard.edu/braess-paradox.html


BRAESS PARADOX IN 

PHYSICS

Joel E. Cohen & Paul Horowitz; Paradoxical Behaviour of 

Mechanical and Electrical Networks; Nature volume 352, 

pages 699–701. 1991. link

https://www.youtube.com/watch?v=ekd2MeDBV8s TSG Physics

https://doi.org/10.1038/352699a0
https://www.youtube.com/watch?v=ekd2MeDBV8s


BRAESS PARADOX IN SOCIAL 

NETWORKS 

• mid-90s: the New York Knicks seemed to 
play much better when their superstar 
centre, Patrick Ewing, was out

• if satisfaction of the agents is influenced 
by their neighbours, then

• adding more choices to a node, the 
network may end up in a situation that is 
worse for everybody

Brian Skinner; The Price of Anarchy in Basketball; Journal of 

Quantitative Analysis in Sports, Volume 6, Issue 1 link

Apt, K.R., Markakis, E. & Simon, S.; Paradoxes in Social 

Networks with Multiple Products; Synthese (2016); Volume 

193, Issue 3, pp 663–687 link

http://blogs.cornell.edu/info2040/2016/09/19/braesss-paradox-in-basketball-the-ewing-theory/

https://doi.org/10.2202/1559-0410.1217
https://doi.org/10.1007/s11229-015-0864-4
http://blogs.cornell.edu/info2040/2016/09/19/braesss-paradox-in-basketball-the-ewing-theory/


Classic Game Theory Model 
routing game, existence of optimum, price of anarchy, upper 

bound on the price of anarchy, evolutionary dynamics of 

repeated games, convergence to the equilibrium



ALGORITHMIC GAME THEORY 

(ROUTING GAMES)

• directed graph G=(V,E)

• source-sink vertex pairs (si,ti)

• flow rj for source-sink pairs (a measure of traffic)  

• cost function ce: maps the total flow on the edge to the cost of 
the edge (continuous, nondecreasing)

• nonatomic routing game: the flow can be divided arbitrarily 
– any rational numbers

– players for each source-sink pair

– players decide how to divide their flow among the paths

• atomic routing game: the flow can be divided in units 
– predefined units in rational numbers

– players for each unit 

– players decide which path to follow

Noam Nisan, Tim Roughgarden, Eva Tardos, and Vijay V. 

Vazirani, Algorithmic Game Theory. Cambridge University 

Press, New York, NY, USA. 2007 link

chapter: Tim Roughgarden, Routing Games, 461–486.

http://www.cs.cmu.edu/~sandholm/cs15-892F13/algorithmic-game-theory.pdf


ALGORITHMIC GAME THEORY 

(ROUTING GAMES)

• nonatomic routing game

r1=1
2÷3

1÷3

s1

t1



ALGORITHMIC GAME THEORY 

(ROUTING GAMES)

• atomic routing game

r1a=2÷5 

r1b=2÷5 

r1c=1÷5

2÷5 + 1÷5

2÷5

s1

t1



ALGORITHMIC GAME THEORY 

(ROUTING GAMES)

• atomic routing game

r1a=2÷5 

r1b=2÷5 

r1c=1÷5

2÷5 + 2÷5

1÷5

s1

t1



ALGORITHMIC GAME THEORY 

(ROUTING GAMES)

• cost of the flow = sum of the costs of the edges on the 
path(s)

• cost of the players = sum of the costs of its flow

• selfish players

• equilibrium: none of the players can change its path 
selection to decrease its cost

• (sum) optimum: the sum of the costs of all players is 
minimal

• equilibrium > optimum (see the Braess example)

• price of anarchy: the sum of the costs of all players in 
equilibrium divided by the sum of the costs of all 
players in optimum



ALGORITHMIC GAME THEORY 

(ROUTING GAMES)

• nonatomic routing games
– they have at least one equilibrium

– all equilibriums have the same cost

• there are atomic routing games that 
– do not have an equilibrium

• there are atomic routing games that 
– have equilibriums with different costs

• if the traffic units of an atomic routing game are equal, then 
– there is at least one equilibrium

• if the cost functions of an atomic routing game are affine 
(ae*x+be), then 
– there is at least one equilibrium

• the proofs are with a potential function: the change in the 
player’s cost is identical to the change in the potential function



ALGORITHMIC GAME THEORY 

(ROUTING GAMES)

• if the cost functions of a nonatomic routing 
game are affine (ae*x+be), then 

– the price of anarchy is at most 4÷3

• if the traffic units (ri) of an atomic routing 
game are equal, then 

– the price of anarchy is at most 5÷2

• if the cost functions of an atomic routing 
game are affine (ae*x+be), then 

– the price of anarchy is at most (3 + 5) ÷ 2



EVOLUTIONARY DYNAMICS 

OF ROUTING GAMES

• routing game – static

• real life – evolves over time

• agents revise their strategies from time to 
time based on their observations:

– the agent observes its own and one of its 
randomly chosen opponent’s payoff 

– and decides to imitate its opponent by 
adopting its strategy with probability 
proportional to the payoff difference

Simon Fischer & Berthold Vöcking (2004): On the Evolution 

of Selfish Routing. In: In Proc. of the 12th European 

Symposium on Algorithms (ESA 04), Springer-Verlag, pp. 

323–334. link

https://doi.org/10.1007/978-3-540-30140-0_30


EVOLUTIONARY DYNAMICS 

OF ROUTING GAMES

• Nash equilibrium(s)  

• evolutionarily stable equilibrium

j   A

i A i B

j   B

2 , 2 1 , 2

2 , 22 , 1

j cooperates

i cooperates i defects

j defects

3 , 3 1 , 4

2 , 24 , 1



EVOLUTIONARY DYNAMICS 

OF ROUTING GAMES

• if 

the cost functions of the non-atomic routing game 
are strictly increasing, 

then the Nash equilibrium is evolutionarily stable

• if 

the adaptation probability is the same on all flows 
of the non-atomic routing game,

and the initial flow distribution has at least some 
traffic on each path of the Nash equilibrium, 

then the flow distribution converges to the Nash 
equilibrium



EVOLUTIONARY DYNAMICS 

OF ROUTING GAMES

• speed of the convergence

– convergence is defined by the proportion of 
flow (ε) above the average cost with more 
than ε (i.e. 1+ε times)

– time to reach this convergence is logarithmic 
function of cmax÷cavg for single flow non-atomic 
routing games

– time to reach this convergence is linear 
function of cmax÷cavg for multi-flow non-atomic 
routing games 



REGRET MINIMISATION IN 

ROUTING GAMES

• regret over a series of time steps
– difference between the average latency of the 

user and the latency of the best fixed path in 
hindsight for the same origin-destination

• no-regret online algorithm
– if, for any sequence of flows, the expected regret 

goes to 0 as the number of steps goes to infinity

– i.e. the algorithm „learns the best choice”

– learning algorithms usually need more 
information (e.g. following the best player) than 
e.g. playing against a randomly selected player

Avrim Blum, Eyal Even-Dar & Katrina Ligett (2006): Routing 

Without Regret: On Convergence to Nash Equilibria of 

Regret-minimizing Algorithms in Routing Games. In: 

Proceedings of the Twenty-fifth Annual ACM Symposium on 

Principles of Distributed Computing, PODC ’06, ACM, New 

York, NY, USA, pp. 45–52. link

https://doi.org/10.1145/1146381.1146392


REGRET MINIMISATION IN 

ROUTING GAMES

• ε-Nash equilibrium of a flow

– if the average cost under this flow is within ε of 

the minimum cost paths under this flow

– i.e. most users take a nearly-cheapest path

• if each player in a non-atomic routing game 

uses a no-regret strategy, then the behaviour 

will converge to ε-Nash equilibrium

– different bounds on the time needed to reach ε-
Nash equilibrium



Dynamic Routing - Queuing Model 
traffic flows over time, queuing model, dynamic equilibrium



QUEUING MODEL

• an approximation to investigate how traffic flows 
evolve over time (the game is not repeated)

• each edge consists of a queue followed by a link 
which has a constant delay and a maximum capacity

• the cost of the edge is the waiting time in the queue 
plus the constant delay

• speed of the growth of the queue of the edge is 
proportional to the difference between the inflow to the 
edge and the maximum capacity of the edge

• a player controls one flow particle and chooses a 
source-target-path in the network

capacitye delaye outflowinflow           queuee



NON-ATOMIC QUEUING MODEL –

DYNAMIC EQUILIBRIUM AND 

STEADY STATE

• dynamic shortest path

– a particle entering the source node s at time θ follows 
a path p = e1e2 · · · ek

– it will reach the end of the path at time 
Tp(θ) = Tek

◦ · · · ◦Te2
◦Te1

(θ)

– the set of paths at time θ with minimal Tp(θ)

• dynamic equilibrium

– a flow pattern that uses only dynamic shortest paths

• steady state

– if the cumulative inflows and outflows are equal on all 
edges all the time

Roberto Cominetti, José Correa, Neil Olver (2017): Long 

Term Behavior of Dynamic Equilibria in Fluid Queuing 

Networks. In: Eisenbrand F., Koenemann J. (eds) Integer 

Programming and Combinatorial Optimization. IPCO 2017. 

Lecture Notes in Computer Science, vol 10328. pp 161-172. 

Springer. link

https://doi.org/10.1007/978-3-319-59250-3_14


NON-ATOMIC QUEUING MODEL –

DYNAMIC EQUILIBRIUM AND 

STEADY STATE

• single-source-sink flow

• the inflow is not above the total capacity of 
the network

• proved: 

– the dynamic equilibrium is a steady state

– a steady state is a dynamic equilibrium

– a steady state exists and it is actually reached 
in finite time

• (note: some proofs are „delayed to the full version of the paper”)



NON-ATOMIC QUEUING MODEL –

CURRENTLY SHORTEST PATHS

• single-source-sink flow

• Nash equilibrium over time (dynamic equilibrium 
by Cominetti et al.)
– a flow pattern that uses only currently shortest paths 

(dynamic shortest paths by Cominetti et al.)

• the following statements are equivalent
– flow is only sent along currently shortest paths

– flow over time is a Nash flow over time

– no flow overtakes any other flow

• the snapshots at every moment is seen as a static 
flow and then they prove price of anarchy 
properties 

Ronald Koch, Martin Skutella (2011): Nash Equilibria and 

the Price of Anarchy for Flows over Time. Theory of 

Computing Systems, July 2011, Vol. 49, Issue 1, pp. 71–97. 

link

https://doi.org/10.1007/s00224-010-9299-y


ATOMIC QUEUING MODEL –

FIFO

• different coordination mechanisms are
defined

• we are interested in FIFO, where tasks are 
processed in order of arrival

• players have weights wi

• the processing time on an edge e for agent i
is ae*wi*Δτ
(i.e. ae*wi time steps are needed = constant 
for FIFO)

• the cost of an edge is the waiting time in the 
FIFO queue plus the processing time

Martin Hoefer, Vahab S. Mirrokni, Heiko Röglin, Shang-Hua 

Teng (2011): Competitive Routing over Time. Theoretical 

Computer Science Volume 412, Issue 39, September 2011, 

Pages 5420-5432. link

https://doi.org/10.1016/j.tcs.2011.05.055


ATOMIC QUEUING MODEL –

SINGLE-SOURCE

• for unweighted single-source temporal 
network congestion games with the FIFO 
policy a Nash equilibrium always exists

• in every unweighted single-source temporal 
network congestion game with the FIFO 
policy it takes at most n rounds to reach 
an equilibrium. In particular, the random and 
concurrent greedy best-response dynamics 
reach a strong equilibrium in expected 
polynomial time



ATOMIC QUEUING MODEL –

GENERAL

• there are weighted single-source temporal 

congestion games with the FIFO policy 

and without Nash equilibria

• there are unweighted temporal congestion 

games with the FIFO policy and without 

Nash equilibria



ATOMIC QUEUING MODEL –

TIME-DEPENDENT COSTS

• cost (i.e. quality of service) depends on the 
number of players allocating the edge at a 
given point in time

– an edge e in the network is fixed to a constant 
delay de (time steps needed)  

– if an edge e is shared at time τ by ne(τ) players, 
all these players get charged cost ce(ne(τ))

– cost incurred by player i on a path Pi=(e1,...,e𝑙) is 

ci(τ1)= 𝑗=1
𝑙  τ=τ

𝑗

τ
𝑗
+𝑑

𝑒𝑗
−1 𝑐𝑒𝑗(𝑛𝑒𝑗(τ))

where τ𝑗 =  k=1
𝑗−1

𝑑𝑒𝑘



ATOMIC QUEUING MODEL –

TIME-DEPENDENT COSTS

• it turns out (according to the paper), that

• if new resources are created for each edge and each 
time step to reach the given edge, 
then this is a standard congestion game

• therefore there is a pure Nash equilibrium in every 
game, and any better-response dynamics converges 
to Nash equilibrium

• however, the congestion game obtained by this 
reduction might have a large number of resources, 
and, in addition, the game is not necessarily a network 
congestion game

• therefore, the complexity results known for standard 
network congestion games do not carry over



QUEUING MODEL -

EVALUATION

• the queuing model 
– does not have usage dependent cost of the edges if the 

queue is empty and the inflow is below the maximum 
capacity, because in this flow range the edge has a 
constant delay 

– the queuing model has a kind of usage dependent cost of 
the edges only when the inflow exceeds the maximum 
capacity of the edges

– however, above the maximum-capacity flow, the queue 
grows to infinity over time at constant inflow

• therefore the queuing model is not a complete 
extension of the static routing game to the time 
dimension

• in addition, the queuing model assumes that the 
agents have complete knowledge of the current and 
future state of all queues and edges



Traffic Generated by Autonomous 
Cars  
real-time traffic information, supporting software applications, 
online routing problem, evolutionary dynamics in the online 
routing problem



EQUILIBRIUM

• traffic engineers assume: the traffic is always assigned 
in accordance with the nonatomic equilibrium 

• game theory assumes: agents have complete 
knowledge about the game, and the agents come to 
the equilibrium with full rationality 

• evolutionary dynamics: the agents receive feedback
– routing game converges to the equilibrium

• game dynamics assumptions: the decision making is 
on the flow level; the game is repeated
– not realistic for autonomous cars: the decision making 

is done at the individual car level, and the decision is 
based on the real-time situation

John Glen Wardrop (1952): Some Theoretical Aspects of 

Road Traffic Research. Proceedings of the Institution of Civil 

Engineers, Part II 1(36), pp. 352–378. link

Martin J. Beckmann, C. B. McGuire, and Christopher B. 

Winsten. Studies in the Economics of Transportation. Yale 

University Press, 1956. link

https://doi.org/10.1680/ipeds.1952.11259
https://cowles.yale.edu/sites/default/files/files/pub/misc/specpub-beckmann-mcguire-winsten.pdf


ONLINE REAL-TIME DATA

• are there online navigation devices in this room?
– potentially many,

– with online data,

– more and more integrated with cars.

• will the traffic as a whole benefit 
if traffic is guided by these devices?
– some say: yes!

– some say: no!

• Wardrop model: the traffic is allocated in accordance 
with the equilibrium
– is it still valid with this technical progress? 

• we need a theoretical model to study these questions



ONLINE REAL-TIME DATA



ONLINE REAL-TIME DATA

it is widely believed 

that route planning 

results in shorter 

travel time if we take 

into account the real-

time traffic information



ONLINE REAL-TIME DATA

• agents are embedded in their environment 

• they perceive the current state 
and 
make decisions which action to perform
in order to 
adapt to the environment 

• the actions are both 
reactive 
and 
proactive 



ONLINE REAL-TIME DATA

• traffic networks are complex systems, 
not only because of the complexity of the 
road network, 
but also because the traffic changes with 
delay in response to the actions of the 
agents participating in the traffic: 
when an agent selects a route to follow, 
then the agent may contribute to a 
congestion which will develop in the 
network sometime later 



ONLINE REAL-TIME DATA

• decision is based on current situation, 

which may change while they are on route

1

2



ONLINE REAL-TIME DATA

• subsequent agents of the same flow may 

select different routes

1

2



ONLINE REAL-TIME DATA AND 

PLANNING

• agents are dynamically arriving and departing

• plans are created by exploiting online data that 
describe the current cost of the resources

• uncertainty about the feasible decision of an 
agent, because the cost of the resources will 
change by the time the agent starts to use them: 

– departing agents will release the resources 

– agents simultaneously creating their plans will 
influence each other’s costs

– agents arriving later may also influence the costs of 
the resources already used by agents



SIMULATIONS

• shortest current travel time strategy in a Braess network



SIMULATIONS



Online Routing Game Model
online routing game, the issue of equilibrium, benefit of online 

data, intention awareness, benefit in intention aware online 

routing games



ONLINE DATA: 

BEYOND ROUTING GAMES

• the throughput characteristic of the network 
changes with time and the agents do not know this 
characteristic 

• the agents continuously enter the road network 
and decide their optimal route only when they 
enter the road network and the decision is based 
on the live information on the current situation of 
the road network

• the outcome travel time for a given agent depends 
on the trip schedule of other agents that entered 
the network previously, are currently entering the 
network, or will enter the network later 



ONLINE ROUTING GAMES

• sextuple (t, T, G, c, r, k), where

– t={1, 2, ...}: sequence of equal time periods;

– T: time periods giving one time unit;

– G: a directed graph G=(V, E)

– c: cost function of G with ce:R
+→R+

– r: total flow, ri: aiming for a trip Pi from si to ti
– k=(k1, k2,…): sequence of decision vectors 

with decision vector kt=(kt
1, k

t
2,…) made in 

time period t and decision kt
i made by the 

agent of the flow ri in time period t

László Z. Varga: Online Routing Games and the Benefit of 

Online Data, in Proc. Eighth International Workshop on 

Agents in Traffic and Transportation, at 13th Int. Conf. on 

Autonomous Agents and Multiagent Systems (AAMAS 

2014), May 5-6, 2014, Paris, France, pp. 88-95. link

http://agents.fel.cvut.cz/att2014/att2014_paper_5.pdf


ONLINE ROUTING GAMES

• the cost function maps the flow fe(τ) (that enters the 
edge e at time τ) to the travel time on the edge 

• fe(τ) is the number of agents that entered the edge e 
between τ−T (inclusive) and τ (non-inclusive)

• the cost for the agent entering the edge e is never less 
than the remaining cost of any other agent already 
utilizing that edge increased with a time gap gape, 
(FIFO, maximum capacity)

• if two agents enter an edge exactly at the same time τ, 
then one of them (randomly selected) suffers a delay 
gape, which is part of its cost on edge e, and its 
remaining cost is determined at the delayed time, so 
its cost on edge e will be gape+ce(fe(τ+gape))



ONLINE ROUTING GAMES

• the variable part of the cost functions are not 
known to any of the agents of the model 

• and the agents can learn the actual cost only 
when an agent exits an edge and reports it

• the actual cost of a path (e1, e2, e3, …) for a flow 
starting at time period t is 

ce1(fe1(t))+
ce2(fe2(t+ce1(fe1(t))))+
ce3(fe3(t+ce1(fe1(t))+ce2(fe2(t+ce1(fe1(t))))))+…, 

i.e. the actual cost of an edge is determined at the 
time when the flow enters the edge



ONLINE ROUTING GAMES

• a complete extension of the routing game to the time 
dimension

• each edge consists of a queue followed by a link 
which has a congestion sensitive delay and a 
maximum capacity

• speed of the growth of the queue of the edge is 
proportional to the difference between the inflow to the 
edge and the maximum capacity of the edge (i.e. 
gape)

capacitye delaye(flow)
outflowinflow           queuee

cost is determined here

(environment)

cost is reported here

(perception)



ONLINE ROUTING GAMES

• the cost of the edge is the waiting time in the queue 
plus the delay

• agents interested in the (estimated!) cost values must 
decrease the last reported value by taking into account 
the time elapsed since the last reporting event

• a player controls one flow particle and chooses a 
source-target-path in the network

• resembles to online navigation software available 
for autonomous cars

capacitye delaye(flow)
outflowinflow           queuee

cost is determined here

(environment)

cost is reported here

(perception)



SIMPLE NAÏVE STRATEGY

• the decision kt
i is how the trip Pi is routed 

on a single path among the paths leading 
from si to ti

• we are investigating how basic navigation 
systems perform in online routing games

• typical navigation software use shortest 
travel time search

• we call this decision strategy as simple 
naïve strategy



BENEFIT OF ONLINE DATA

• Definition 1. The worst case benefit of online 

real-time data at a given flow is the ratio 

between the cost of the maximum cost of the 

flow and the cost of the same flow with an 

oracle using the same decision making 

strategy for only the fixed part of the cost 

functions.

• Definition 2. The best case benefit of …

• Definition 3. The average case benefit of …



EQUILIBRIUM IS NOT 

GUARANTEED

• THEOREM 1. There are simple naïve strategy 
online routing games which do not have 
equilibrium at certain flow values.

v1 v2

p2

p1

r1

cc1>cc2>cnc1>cnc2



SINGLE FLOW 

INTENSIFICATION

• THEOREM 2. There are SN=(t, T, G, r, c, k) simple 
naïve strategy online routing games where the 
total traffic flow has only one incoming flow, i.e. 
r=(r1), however the flow on some of the edges of G 
sometimes may be more than r1.

v3

e1 e3

e2

v1 v2r1

c2>2 1.5*c2>cc1>c2>cnc1



WORST CASE BENEFIT IS 

NOT GUARANTEED

• THEOREM 3. There are SN=(t, T, G, r, c, k) simple 
naïve strategy online routing games where the 
worst case benefit of online real-time data is 
greater than 1, i.e. in these games the worst case 
benefit is a “price”.

v3

e1 e3

e2

v1 v2r1

c2>2 1.5*c2>cc1>c2>cnc1 cc3+>cc3



intention awareness



INTENTION PROPAGATION

• anticipatory vehicle routing 

– a vehicle agent running on a smart device 
inside the vehicle

– vehicle agents communicate their individual 
planned route to the delegate MAS 

– the delegate MAS makes forecast of future 
traffic density

– the delegate MAS sends back the traffic 
forecast to the vehicle agents which use this 
information to plan their trip

R. Claes, T. Holvoet, and D. Weyns: A Decentralized 

Approach for Anticipatory Vehicle Routing Using Delegate 

Multi-agent Systems, in IEEE Transactions on Intelligent 

Transportation Systems, vol. 12, no. 2, pp. 364-373, 2011. 

link

https://lirias.kuleuven.be/bitstream/123456789/309776/1/05730496.pdf


SNIP ONLINE ROUTING 

GAMES

• simple naive intention propagation online 

routing games are online routing games 

where 

– the decision making agents of the flows are 

the vehicle agents 

– the delegate MAS predicts the travel times for 

each path of the trip

– the decision is to select the path with the 

shortest predicted travel time

László Z. Varga. On Intention-Propagation-Based Prediction 

in Autonomously Self-adapting Navigation. Scalable 

Computing: Practice and Experience, 16(3):221–232, 2015. 

link

https://www.scpe.org/index.php/scpe/article/download/1098/439/0


SINGLE FLOW 

INTENSIFICATION

• THEOREM 1. There are simple naïve intention 
propagation strategy online routing games where 
the total traffic flow has only one incoming flow, i.e. 
r=(r1), however the flow on some of the edges of G 
sometimes may be more than r1.
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SINGLE FLOW 

INTENSIFICATION

• PHENOMENON 1. If we increase the 
throughput capacity between v1 and v2 with a 
parallel road e2, then the traffic on e3 will 
fluctuate and will be sometimes worse than 
without e2.
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=10+x   Ce2

=10.5+x   Ce3
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WORST CASE BENEFIT IS 

NOT GUARANTEED

• THEOREM 2. There are simple naïve intention 
propagation strategy online routing games where 
the worst case benefit of online real-time data is 
greater than 1, i.e. in these games the worst case 
benefit is a “price”.
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WORST CASE BENEFIT IS 

NOT GUARANTEED

• PHENOMENON 2. If we increase the throughput 
capacity between v2 and v3 with a parallel road e4, 
then the traffic in the whole network will be 
sometimes worse than without e4.
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EQUILIBRIUM IS NOT 

GUARANTEED

• THEOREM 3. There are simple naïve intention 
propagation strategy online routing games which 
do not have equilibrium at certain flow values.
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EQUILIBRIUM IS NOT 

GUARANTEED

• PHENOMENON 3. If we increase the throughput 
capacity between v2 and v3 with a parallel road e4, 
then the traffic in the whole network will fluctuate.
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IMPLICATIONS FOR ROAD 

NETWORK DESIGN

• two novel forms of paradox phenomena of the online 
routing game problem, similar to the Braess paradox: 
– If the road network is extended with parallel roads as in 

some networks, and the cars use online navigation 
devices, then

– although the throughput capacity of the network is 
extended, sometimes the overall performance will be 
reduced,

– because at some flow values the traffic might start to 
fluctuate

• implications for the structure of the road network
– try to avoid such parallel roads if the cars use navigation 

devices exploiting online information

László Z Varga: Paradox Phenomena in Autonomously Self-

Adapting Navigation; Cybernetics and Information 

Technologies 15:(5) pp. 78-87. (2015) link

https://doi.org/10.1515/cait-2015-0018


CONCLUSIONS

• a theoretical model for the metric and analysis of 
autonomous navigation based on online real-time data

• we have shown that autonomous self-adaptation with 
these strategies
– sometimes make the system fluctuate, 

– sometimes some agents pay a price for the autonomous 
self-adaptation of the whole system,

– intention-propagation-based prediction is a form of 
cooperation, which helps to solve these problems, but not 
completely

• made recommendation for traffic design

• other forms of cooperative intelligent road transport 
support systems might be needed



guaranteed benefit in intention aware online routing games



GUARANTEED BENEFIT OF 

ONLINE REAL-TIME DATA IN THE 

ONLINE BRAESS PARADOX

• the conjecture is the following: if 

simultaneous decision making is prevented in 

SNIP online routing games, then the benefit 

of online real-time data can be guaranteed

• first step:

– SNIP online routing game over a Braess network

– with a single incoming flow, and 

– we prove that in this game the worst case benefit 

of online real-time data is not more than 1+1÷225

László Z. Varga. Benefit of Online Real-time Data in the 

Braess Paradox with Anticipatory Routing. In Samuel 

Kounev, Holger Giese, and Jie Liu, editors, 2016 IEEE 

International Conference on Autonomic Computing, ICAC 

2016, Würzburg, Germany, July 17-22, 2016, pages 245–

250. IEEE Computer Society, 2016. link

https://doi.org/10.1109/ICAC.2016.68


GUARANTEED BENEFIT OF 

ONLINE REAL-TIME DATA IN THE 

ONLINE BRAESS PARADOX

• ce1=1+x÷10,  ce2=15,  ce3=7.5,  ce4=15,  ce5=1+x÷10

• the minimum following distance gape on all edges is 0.1



GUARANTEED BENEFIT OF 

ONLINE REAL-TIME DATA IN THE 

ONLINE BRAESS PARADOX

• ce1=1+x÷10, ce2=15, ce3=7.5, ce4=15, ce5=1+x÷10

• Proposition 1. 
The actual travel time on edge 
e1 is always the same as the 
predicted travel time

• Proposition 2. 
The actual arrival time at 
vertices v1 and v2 is always the 
same as the predicted arrival 
time



GUARANTEED BENEFIT OF 

ONLINE REAL-TIME DATA IN THE 

ONLINE BRAESS PARADOX

• ce1=1+x÷10, ce2=15, ce3=7.5, ce4=15, ce5=1+x÷10

• Proposition 3. 
The actual arrival time at vertex v3

on path p1=(e1;e4) is always the 
same as the predicted arrival time

• Proposition 4. 
If an agent selects the path 
p2=(e1;e3;e5), then the predicted 
travel time on edge e5 for this 
agent is less than or equal to 7.5



GUARANTEED BENEFIT OF 

ONLINE REAL-TIME DATA IN THE 

ONLINE BRAESS PARADOX

• ce1=1+x÷10, ce2=15, ce3=7.5, ce4=15, ce5=1+x÷10

• Proposition 5. 
The actual and the predicted 
travel time on path p1=(e1;e4) is 
always less than or equal to 
r1÷10+16

• Proposition 6. 
If r1<65, then the agents always 
select the path p2=(e1;e3;e5), and 
the travel time on p2 is always
less than or equal to 9.5 + 2*r1÷10



GUARANTEED BENEFIT OF 

ONLINE REAL-TIME DATA IN THE 

ONLINE BRAESS PARADOX

• ce1=1+x÷10, ce2=15, ce3=7.5, ce4=15, ce5=1+x÷10

• Proposition 7. 
If r1≥65, then the travel time on 
path p3=(e2;e5) is always less 
than or equal to r1÷10+16.1

• Proposition 8. 
If r1≥65, then the travel time on 
path p2=(e1;e3;e5) is always 
less than or equal to 
2*r1÷10+9.6



GUARANTEED BENEFIT OF 

ONLINE REAL-TIME DATA IN THE 

ONLINE BRAESS PARADOX

• ce1=1+x÷10,  ce2=15,  ce3=7.5,  ce4=15,  ce5=1+x÷10

• the cost of non-online strategy: 
2*r1÷10 + 9.5

• If r1<65, then the worst case is
(2*r1÷10 + 9.5)÷(2*r1÷10 + 9.5)

• If r1≥65, then the worst case on 
path p3=(e2;e5) is 
(r1÷10+16.1)÷(2*r1÷10 + 9.5)

• If r1≥65, then the worst case on 
path p2=(e1;e3;e5) is 
(2*r1÷10+9.6)÷(2*r1÷10 + 9.5)



CONCLUSIONS

• a model for the metric and analysis of autonomous 
adaptation based on online real-time data

• it is known that autonomous self-adaptation with these 
strategies
– sometimes make the system fluctuate, 

– sometimes some agents pay a price for the autonomous 
self-adaptation of the whole system,

• we have shown that intention-propagation-based 
prediction
– is a form of cooperation, which helps to solve these 

problems

– guarantees the worst case benefit of online data in the 
SNIP online routing game over the Braess network.



convergence to the equilibrium in intention aware online 

routing games



EQUILIBRIUM WITH PREDICTIVE 

ROUTING IN THE ONLINE 

BRAESS PARADOX

• the conjecture is the following: if 
simultaneous decision making is prevented in 
SNIP online routing games, then the system 
converges to the static equilibrium
– there is a time limit after which the difference from 

the static equilibrium does not exceed a relatively 
small value

• first step:
– SNIP online routing game over a Braess network

– with a single incoming flow, and 

– we prove the convergence of this game

László Z. Varga. Equilibrium with Predictive Routeing in the 

Online Version of the Braess Paradox. IET Software, 

11(4):165–170, August 2017. link

http://dx.doi.org/10.1049/iet-sen.2016.0168


EQUILIBRIUM WITH PREDICTIVE 

ROUTING IN THE ONLINE 

BRAESS PARADOX

• ce1=1+x÷10,  ce2=15,  ce3=7.5,  ce4=15,  ce5=1+x÷10

• the minimum following distance gape on all edges is 0.1

• propositions from previous slides hold



EQUILIBRIUM WITH PREDICTIVE 

ROUTING IN THE ONLINE 

BRAESS PARADOX

• ce1=1+x÷10, ce2=15, ce3=7.5, ce4=15, ce5=1+x÷10

• Proposition 9. 
If the traffic flow on edge e1 is 
below r1÷2, then path p3=(e2;e5) is 
not selected

• Proposition 10. 
If r1≤132, then if the traffic flow on 
edge e1 is below r1÷2, then path 
p1=(e1;e4) or p2=(e1;e3;e5) is 
selected and the actual travel 
time on these paths is not more 
than 22.6



EQUILIBRIUM WITH PREDICTIVE 

ROUTING IN THE ONLINE 

BRAESS PARADOX

• ce1=1+x÷10, ce2=15, ce3=7.5, ce4=15, ce5=1+x÷10

• Proposition 11. 
If r1 ≤ 132, then the traffic flow 
on edge e5 is never above 66

• Proposition 12. 
If r1 ≤ 132, then the actual 
travel time on path p3=(e2;e5) is
not more than 22.6



EQUILIBRIUM WITH PREDICTIVE 

ROUTING IN THE ONLINE 

BRAESS PARADOX

• ce1=1+x÷10,  ce2=15,  ce3=7.5,  ce4=15,  ce5=1+x÷10

• Proposition 13. 
If r1 ≤ 132, then the actual 
travel time on path p1=(e1;e4) is 
not more than 22.6

• Proposition 14. 
If r1>132, then if the traffic flow 
on edge e1 drops below r1÷2, 
then path p1=(e1;e4) is selected



EQUILIBRIUM WITH PREDICTIVE 

ROUTING IN THE ONLINE 

BRAESS PARADOX

• ce1=1+x÷10, ce2=15, ce3=7.5, ce4=15, ce5=1+x÷10

• Proposition 15. 
If r1>132, then after some finite 
time the path p2=(e1;e3;e5) will 
never be selected

• Proposition 16. 
If r1>132, then after some finite 
time the traffic flow will
alternate between paths 
p1=(e1;e4) and p3=(e2;e5)



EQUILIBRIUM WITH PREDICTIVE 

ROUTING IN THE ONLINE 

BRAESS PARADOX

• ce1=1+x÷10,  ce2=15,  ce3=7.5,  ce4=15,  ce5=1+x÷10

• Proposition 17. 
If r1>132, then after some finite 
time the traffic flow on edge e1 will 
remain between r1÷2−1 and 
r1÷2+1, and the travel time on 
both p1=(e1;e4) and p3=(e2;e5) will 
be between r1÷20+15.9 and 
r1÷20+16.1

• Theorem. 
After some time, the travel times 
are at most the same as in the 
routing game model plus 0.1



CONCLUSIONS

• proved that the travel times in this online version 
of the Braess paradox is close to the Nash 
equilibrium of the classic Braess paradox

• there may be only a small additional travel time 
increase, which is due to the atomic nature of the 
traffic flows

• the coordination established by the intention-
propagation-based prediction among the agents 
entering the network in a sequence is good 
enough to reduce the excessive swing of the 
system caused by the utilisation of real-time 
information



prediction methods in intention aware online routing games



EQUILIBRIUM WITH DIFFERENT 

PREDICTION METHODS

• up to now, we assumed that the intention 
aggregation service can tell the future exactly 

• we have seen that 
– „considerable” overtake may occur in non intention 

aware online routing games (see „single flow 
intensification”)

– „slight” overtake may occur in intention aware online 
routing games

• telling the exact future needs to know what the 
intention of the consequent agents will be in the 
future → complex computation

• simpler prediction methods are needed

László Z. Varga. Two Prediction Methods for Intention-

aware Online Routing Games. In Proc. of 5th International 

Conference on Agreement Technologies, Évry, France, 14-

15 December 2017, paper no.6. in the pre- proceedings. 

Springer-Verlag, 2017. link

https://eumas2017.ibisc.univ-evry.fr/program.php


INTENTION-AWARE PREDICTION 

METHODS – DETAILED METHOD

• detailed prediction method

– takes into account all the intentions already 
submitted to the central service, 

– then it computes what will happen in the 
future if the agents execute the plans 
assigned by these 
intentions, 

– the feedback is based 
on the predicted 
travel conditions
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INTENTION-AWARE PREDICTION 

METHODS – SIMPLE METHOD

• simple prediction method

– also takes into account all the intentions 
already submitted to the central service, 

– then it computes what will happen in the 
future if the agents execute the plans 
assigned by these intentions

– however the feedback 
is based on the 
latest predictions 
for each road
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EXPERIMENTAL SET-UP
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MEASUREMENTS
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EVALUATION

• The goal of the experiments was to test the following 
hypotheses: 

[H1:] Any of the above intention-aware predictive routing 
performs better than the non predictive routing. 

[H2:] The detailed prediction method performs better 
than the simple prediction method, because the detailed 
method gives more precise predictions.

[H3:] The intention-aware prediction methods limit the 
fluctuation of the congestions in the multi-agent system.

[H4:] The traffic converges to the equilibrium with the 
intention-aware prediction methods.
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EVALUATION

• [H1:] Any of the above intention-aware predictive routing 

performs better than the non predictive routing. 

– maximum travel times in the steady flow experiment

– average travel times in the steady flow experiment

102

✓



EVALUATION

• [H2:] The detailed prediction method performs better than the 

simple prediction method. 

– maximum travel times in the steady flow experiment

– average travel times in the steady flow experiment
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EVALUATION

• [H3:] The intention-aware prediction methods limit the fluctuation 

of the congestions in the multi-agent system. 

steady flow, flow value 50

non predictive

detailed

simple
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EVALUATION

• [H4:] The traffic converges to the equilibrium with the intention-

aware prediction methods.

• not fully confirmed, because the average travel times are higher 

than the equilibrium

• however we cannot expect that the equilibrium can be achieved 

exactly, because previous formal proof says that the travel times 

can come near to the equilibrium only within a threshold

– average travel times in the steady flow experiment
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CONCLUSION

• we have defined two intention-aware prediction 
methods for online routing games and evaluated 
them in a real-world scenario

• the experiments confirmed that
– the routing strategies using intention-aware prediction 

methods limit the fluctuation of congestions in online 
routing games, 

– and they make the system more or less converge to the 
equilibrium

• the convergence to the equilibrium needs further 
investigations

• unexpected result is that the simple prediction 
method performs better at higher traffic flow values 
than the detailed prediction method
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Discussion – Autonomous Car 

Routing



NON-COOPERATIVE GAMES:

MINORITY/CHICKEN GAME 

• agents who end up on the minority side win

• if every agent deterministically chooses the 
same action, then every agent is guaranteed 
to fail

• mixed strategy
– model of diverse human behaviour, but not to 

control autonomous cars 

• chicken game



COOPERATIVE DECENTRALISED 

AUTONOMOUS ADAPTATION

• coordination and communication is fostered by some 
kind of service of the infrastructure, but the control 
remains at the agents

• service / intention awareness
– the  agents send their intentions to the service

– the service forecasts the future traffic situation based on 
the current traffic state and the intentions

– the agents use this forecast to plan their 
trips

• the online navigation software like 
Google Maps and Waze know the 
intentions of the agents and could use 
this information to make predictions



INTENTION AWARE 

ONLINE ROUTING GAMES

• if the agents try to maximise their predicted utility, then
– in some networks and in some cases the traffic may be 

worse off by exploiting real-time information and prediction 
than without

– there is no guarantee on the equilibrium

• however, it is verified that in a small but complex 
enough network, the agents might just slightly be 
worse off with real-time data and prediction

• currently the conjecture is that if simultaneous decision 
making among the agents is prevented, then intention 
aware prediction can make the traffic converge to the 
equilibrium in bigger networks as well

László Z. Varga. How Good is Predictive Routing in the 

Online Version of the Braess Paradox? In ECAI 2016 - 22nd 

European Conference on Artificial Intelligence, 29 August-2 

September 2016, The Hague, The Netherlands, volume 285 

of Frontiers in Artificial Intelligence and Applications, pages 

1696–1697. IOS Press, 2016. link

http://dx.doi.org/10.3233/978-1-61499-672-9-1696


CENTRALISED ADAPTATION

• central control authority for geographical 
territories

• autonomous car checks in at the control 
authority, and the control authority would tell 
the exact route to follow to the destination

• similar to the operation of airports

• the autonomous car becomes something 
similar to a remote controlled car

• the users of the autonomous cars may not 
accept this concept



DISCUSSION

• autonomous cars → optimal traffic ?

• decentralised autonomous adaptation

– cannot be verified if the agents autonomously follow 
their preferences to adapt to their environment

• autonomous adaptation using intention aware 
prediction

– there is no guarantee on the equilibrium, although in 
some conditions there is hope

• centralised adaptation

– feeling of a remote controlled car ?

• else …
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