
Teaching Material: Stable Matching in Theory and in Practice

Bahar Rastegari, University of Bristol

EASSS 2018

What is in this document?

This document includes some background information on computational complexity, approximation
algorithms, integer linear programming and parameterised complexity. If you are not familiar with
these topics or want a quick refresher, it is a good idea to have a look at the following sections
before the tutorial. I have benefited from the references at the end of this document ([1, 2, 4]) for
writing these sections.

1 Computational complexity

Given two functions f and g, we say f(n) = O(g(n)) if there are positive constants c and N such
that f(n) ≤ c · g(n) for all n ≥ N . An algorithm for a problem has time complexity O(g(n))
if its running time f satisfies f(n) = O(g(n)) where n is the input size. An algorithm runs in
polynomial time if its time complexity is O(nk) for some constant k, where n is the input size.

A decision problem is a problem whose solution is “yes” or “no” for any input. Most problems
occurring in practice are optimisation problems: for example, given a graph G and two vertices s
and t, find a shortest path between s and t in G. Every optimisation problem has a corresponding
decision problem: for example, given a graph G and two vertices s and t, is there a path between
s and t in G with length at most k?

A decision problem belongs to the complexity class P if it can be solved by a polynomial-time
algorithm. If an optimisation problem is solvable in polynomial-time, then the corresponding
decision problem is also solvable in polynomial time.

A decision problem belongs to the complexity class NP if it can be verified in polynomial time. That
is, if given a certificate of a solution, it can be verified in polynomial time whether the certificate is
correct. Example: for the problem of finding a shortest path between s and t of length k, a list of
k vertices is a certificate. Once such a list is given, verifying the correctness is easy. Any problem
in P is also in NP and we write this as P⊆NP. One of the most important and challenging open
problems in computer science is whether P=NP.

An algorithm reduces a decision problem P to another decision problem B if it transforms any
instance α of P into some instance β of B such that (1) the transformation takes polynomial time
and (2) α is a “yes” instance of P if and only if β is a “yes” instance of B. Such a reduction implies
that B is at least as hard as P .

A decision problem P is NP-hard if every other problem in NP is reducible to P . Moreover, a
decision problem P is NP-complete if it is NP-hard and it belongs to NP. To prove that a problem
P is NP-hard it is enough to show that a problem B, already known to be NP-complete, is reducible
to P . If a decision problem is NP-complete it has no polynomial-time algorithm unless P=NP.

So what if a problem is NP-complete? Do we give up? Of course not. Various approaches have
been explored by computer scientists in order to get around a problem being NP-hard. Three of
these have been explained in the following sections.

2 Approximation algorithms

An optimisation problem involves maximising or minimising (subject to a suitable measure) over
a set of feasible solutions for a given instance. For example, the graph colouring problem asks,
given a graph G, what is the minimum number of colours required so that we can colour the vertices
of G such that no two vertices sharing the same edge have the same color.

Given an optimisation problem P , if P ’s corresponding decision problem is NP-hard it implies
that P has no polynomial-time algorithm unless P=NP. Even though NP-hardness is defined for
decision problems, sometimes we choose to be sloppy and say that P is NP-hard.

An approximation algorithm A for an optimisation problem P is a polynomial-time algorithm that
produces a feasible solution A(I) for any instance I of P . A has performance guarantee c, for some
c > 1 if

• |A(I)| ≤ c · opt(I) for any instance I (in the case where P is a minimisation problem)

• |A(I)| ≥ (1/c) · opt(I) for any instance I (in the case where P is a maximisation problem)

where |A(I)| is the size of the solution produced by A and opt(I) is the size of an optimal solution.
We say that A is a c-approximation algorithm for problem P .

3 Integer programming

In an optimisation problem we seek to maximise or minimise an objective given some constraints.
In the graph colouring problem, e.g., the constraints are that no two adjacent vertices have the
same colour, and the objective is to minimise the number of colours used. If the objective can
be specified as a linear function of certain variables, and the constraints as linear equalities or
inequalities on those variables, then we have a linear programming problem. If for a solution to be
feasible the variables need to be integers, then we have an integer linear programming problem.

An integer program is formally written as:

min cT · x

subject to Ax ≤ b

where c = (c1, c2, . . . , cn)T , x = (x1, x2, . . . , xn)T and b = (b1, b2, . . . , bm)T . A = (ai,j) (1 ≤ i ≤
m, 1 ≤ j ≤ n), the ci, bj and aij are real-valued known coefficents and the xi are integer-valued
variables. Note that we can easily translate problems in which we wish to maximise rather than
minimise the objective function into this form.

2

Linear programming is solvable in polynomial time, whereas general integer programming problem
is NP-hard. However, there are some powerful solvers out there!

3.1 Example: graph colouring

The graph colouring problem is NP-hard. Suppose that G = (V,E) and that |V | = n. Clearly, no
colouring can use more than n colours. Let us define the following binary variables:

• xv,c for all v ∈ V and all c, 1 ≤ c ≤ n. xv,c = 1 if vertex v has colour c and is 0 otherwise.

• yc for all c, 1 ≤ c ≤ n. yc = 1 if colour c is used and 0 otherwise.

We now define the following linear program:

min
∑

1≤c≤n
yc

subject to
∑

1≤c≤n
xv,c = 1 ∀v ∈ V

xu,c + xv,c ≤ 1 ∀c(1 ≤ c ≤ n)∀{u, v} ∈ E

nyc ≥
∑
v∈V

xv,c ∀c(1 ≤ c ≤ n)

xv,c ∈ {0, 1} ∀v ∈ V,∀c(1 ≤ c ≤ n)

and yc ∈ {0, 1} ∀c(1 ≤ c ≤ n)

The first line of constraints implies that each vertex must have one colour. The second line ensures
that adjacent vertices have distinct colours and the third line implies that if a colour c is used then
yc = 1. The last two lines of constraints state that variables are all binary-valued. The objective is
to minimize the number of colours used.

4 Parameterised Complexity

Parameterised complexity provides a multivariate framework for the analysis of hard problems: if
a problem is known to be NP-hard, so that we expect the running-time of any algorithm to depend
exponentially on some aspect of the input, we can seek to restrict this combinatorial explosion to
one or more parameters of the problem rather than the total input size. This has the potential to
provide an efficient solution to the problem if the parameter(s) in question are much smaller than
the total input size. A parameterised problem with total input size n and parameter k is considered
to be tractable if it can be solved by a so-called FPT algorithm, an algorithm whose running time
is bounded by f(k) · nO(1), where f can be any computable function. Such problems are said to be
fixed parameter tractable, and belong to the complexity class FPT.

It should be emphasised that, for a problem to be in FPT, the exponent of the polynomial must be
independent of the parameter value; problems which satisfy the weaker condition that the running

3

time is polynomial for any constant value of the parameter(s) (so that the degree of the polynomial
may depend on the parameters) belong to the class XP.

For further background on the theory of parameterised complexity, check these excellent books
[2, 3].

References

[1] T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. McGraw-Hill/MIT,
3 edition, 2009.

[2] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Springer London,
2013.

[3] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.

[4] David Manlove. The hospitals/residents problem and its variants. Summer School on Matching
Problems, Markets and Mechanisms, Budapest, Hungary, 2013.

4

