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Abstract

Deep Learning models, applied to a sensor-based Hu-
man Activity Recognition task, usually require vast amounts
of annotated time-series data to extract robust features.
However, annotating signals coming from wearable sensors
can be a tedious and, often, not so intuitive process, that
requires specialized tools and predefined scenarios, making
it an expensive and time-consuming task. This paper com-
bines one of the most recent advances in Self-Supervised
Leaning (SSL), namely a SimCLR framework, with a pow-
erful transformer-based encoder to introduce a Contrastive
Self-supervised learning approach to Sensor-based Human
Activity Recognition (CSSHAR) that learns feature repre-
sentations from unlabeled sensory data. Extensive experi-
ments conducted on three widely used public datasets have
shown that the proposed method outperforms recent SSL
models. Moreover, CSSHAR is capable of extracting more
robust features than the identical supervised transformer
when transferring knowledge from one dataset to another
as well as when very limited amounts of annotated data are
available.

1. Introduction
In recent years, numerous advances have been made in

the field of deep learning, which are a result of supervised
models that rely on massive amounts of annotated data.
Nonetheless, a lack of labeled data sets a major challenge
for the supervised learning paradigm. Besides, data la-
beling is a time-consuming and expensive process. These
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facts have inspired researchers to propose solutions where,
at least, feature extraction algorithms can be effectively
trained in an unsupervised manner. This paradigm is gener-
ally known as self-supervised learning (SSL).

The process of training a model within a self-supervised
framework normally consists of two stages, namely a pre-
text task and fine-tuning. In the pretext task, the encoder
is trained on unlabeled data while, during the fine-tuning
process, only the output layers of a model are trained on
features extracted by the encoder with frozen parameters.
Such a protocol of training is particularly useful when only
a small part of data is labeled.

Recently, SSL methods exploiting a contrastive learning
concept have shown outstanding performance on computer
vision tasks [3, 9, 21, 22]. This paradigm can be described
as metric learning applied to instance-level classification.
The main idea is to train a model to match different views
crafted from the same data instance during the pre-training
stage by contrasting them with views of other instances.

Various deep learning methods and approaches have
been used to address time-series classification tasks over
the recent years. In particular, sensor-based Human Activ-
ity Recognition (HAR) can also be considered as multivari-
ate time-series classification if input data is collected using
such sensors as accelerometers and gyroscopes. Sensor-
based HAR has found applications in areas of pervasive
computing [18], ambient assisting living [2, 16] and au-
tomation in manufacturing industry [20].

Data labeling is a major challenge in sensor-based HAR
as well. For instance, it is almost impossible for a person
to precisely label time-series data coming from accelerom-
eter and gyroscope sensors without using corresponding
videos. Moreover, it is even more challenging, expen-



sive and time-consuming than creating labels for videos,
since there should be a specific tool where a data anno-
tator can match time-series data and videos. There is a
limited number of works applying self-supervised learning
to the sensor-based HAR problem [6, 7, 8, 17], although
this paradigm might significantly decrease the amount of
labeled data needed for training a robust HAR model.

In this paper, motivated by the issues of data labelling
and the success of SSL in other domains, we propose a self-
supervised learning framework which combines powerful
encoder architectures for sensor-based HAR with the recent
advances in contrastive self-supervised learning, in order to
address the problem of sensor-based HAR. The contribu-
tions of this study are listed as follows:

• We introduce a Contrastive Self-supervised learning
approach to Sensor-based Human Activity Recogni-
tion (CSSHAR) which is based on the SimCLR frame-
work [3] and uses a transformer-based architecture
with one-dimensional CNNs as encoder.

• We propose using random compositions of up to five
simple time-series augmentations within a random
augmentation module in order to obtain a rich variety
of views crafted from the initial time-series instances
during the pretext task.

• Extensive experiments were conducted on three open-
source datasets, namely MobiAct, UCI-HAR and
USC-HAD, to compare the proposed framework to
its supervised version and other SSL approaches ap-
plied to sensor-based HAR. The experiments includ-
ing baseline activity recognition, transfer learning
and a scenario with limited labeled data demonstrate
the robustness of features extracted by the suggested
CSSHAR topology.

2. RELATED WORK

Contrastive Learning. Self-supervised learning can be
considered as a methodology to train feature extractors or
encoders without using data labels. There are various fam-
ilies of self-supervised learning approaches which are dif-
ferent in a pretext task, i.e. the first stage of training where
an encoder is trained on a complementary task without us-
ing ground-truth labels. In this paper, the emphasis is made
on contrastive learning approaches. The idea of contrastive
SSL is to train an encoder to match different representations
of the same instance using distance-based loss computed for
pairs of representations. In 2018, Oord et al. [22] intro-
duced contrastive predictive coding (CPC) and applied it to
audio, image and text data. In the case of audio signals, they
made use of the temporal nature of data and proposed train-
ing a model to identify representations of the same instance

at different timesteps. This work was later followed by con-
trastive multiview coding where authors suggested training
an encoder to match two and more views (e.g. luminance,
chrominance and depth) of the same image [21]. Finally,
Chen et al. [3] proposed a so-called SimCLR framework
which crafts two representations for each instance within
a mini-batch using simple augmentations and feeds them
into a Siamese network trained using NT-Xent (normalized
temperature-scaled cross entropy) loss.
Sensor-based HAR and SSL. While plenty of modern
deep learning methods have been used for sensor-based
HAR in a supervised manner [24, 5, 15, 28, 26, 11, 13], only
a few works have been focused on self-supervised learning.
In [6], authors compared different types of autoencoders,
including Convolutional Autoencoder (CAE), in terms of
their ability to learn feature representations. Later, masked
reconstruction models were suggested in [7] in order to use
the temporal nature of sensory data. Specifically, the au-
thors masked sensory signals to zero at certain timesteps
and trained their model to reconstruct initial signal values
on these timesteps. In 2019, Saeed et al. [17] adapted a con-
cept of transformation networks to the sensor-based HAR
task by creating a multi-task self-supervised approach. Dur-
ing the pretext task, a model was trained to identify the type
of transformation (augmentation) applied to input data in-
stances. Finally, in 2020, Haresamudram et al. [8] applied
contrastive predictive coding (CPC) to the problem and out-
performed all the methods described before. Comparing to
the CPC approach, the proposed method does not need an
autoregressive model on top of the encoder and the encoder
is trained on short time windows, not long time sequences.

3. METHODOLOGY

3.1. Definitions

The Human Activity Recognition problem can be con-
sidered as multivariate time-series classification. Specifi-
cally, at timestamp t, input signal xt = [x1t , x

2
t , . . . , x

S
t ] ∈

RS consists of S values where each is obtained using a sep-
arate sensor channel. These multichannel signals are aggre-
gated into a matrix X = [x1,x2, . . . ,xT ] ∈ RT ·S over T
timestamps. Finally, the goal is to correctly assign a label
y ∈ Y to the vector X which is associated with a certain
activity from a set of activities Y present in a dataset.

In this paper, the self-supervised learning paradigm is
exploited in order to pre-train an encoder using unlabeled
data, while class annotations are only used for fine-tuning
the model with the frozen encoder in different scenarios. In
this case, the encoder trained during the pretext task can be
considered as a function f : RT ·S −→ RD which maps ini-
tial time windows into embeddings of size D. These em-
beddings are later passed through the MLP-based model
g : RD −→ RY at the fine-tuning stage.
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Figure 1: The proposed CSSHAR framework. Pretext task: a batch of signals is passed through the random augmentation
module which generates 2 transformed views for each example. The encoder and projection head produce a representation
vector Zi which is later used for computing a view similarity matrix and the loss. Fine-tuning: labeled data is passed through
the encoder with frozen weights and only the prediction MLP parameters are optimized using cross-entropy loss.

3.2. Proposed Framework

The CSSHAR framework presented in this study is
shown in Figure 1. It is based on the SimCLR approach [3]
which was introduced for representation learning in com-
puter vision tasks. Given a batch of instances without la-
bels, SimCLR, first, generates two views of each sample in
the batch by applying two transformations. Two views ob-
tained from the same instance form positive pairs, whereas
views transformed from different instances are negative
pairs. Second, this approach aims to match feature em-
beddings of positive pairs among features corresponding to
negative pairs in the batch. The metric which is normally
used as a matching score between two feature representa-
tions zi and zj is cosine similarity:

s(zi, zj) =
zTi zj

||zi||2||zj ||2
, (1)

where ||·||2 is the l2 normalization operator. In other words,
the goal of the SimCLR approach is to maximize similarity
between features extracted for positive pairs of views and
minimize similarity scores for the negative ones. The blocks
of the proposed framework are described in detail in the
following sections.

3.2.1 Random Augmentation Module

According to Chen et al. [3], compositions of data augmen-
tations enhance the quality of learnt embeddings within the
SimCLR framework. In this paper, we propose using ran-
dom data transformations which consist of several simple
time-series augmentations. Given a set of simple augmenta-
tions A = {a1, a2, . . . , aK}, all augmentations are applied
to an input signal one by one with a probability p. The sim-
ple augmentations used in this study are listed as follows:
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Figure 2: The architecture of the encoder. It takes input
time-series consisting of T timestamps and S channels. The
features extracted by the encoder also correspond to T step,
while the number of channels C is a hyperparameter of the
one-dimensional CNN. The feature representations are lat-
ter flattened into a one-dimensional vector of size TC = D
before feeding into projection or prediction MLPs.

• Jittering. Adds random Gaussian noise to signals.

• Scaling. An augmentation which multiplies input sig-
nals with values sampled from normal distribution.

• Channel shuffle. Randomly shuffle channels of mul-
tivariate time-series data.

• Rotation. Inverts the signs of the randomly selected
values in signals.

• Permutation. Splits input signals into a certain num-
ber of intervals and randomly permutes them.

In order to exclude cases when no augmentations were ap-
plied to an instance, jittering is selected as a base augmen-
tation and applied to each sample with p = 1. Different sets
of these augmentations were used to find the best combina-
tion for each dataset.



3.2.2 Transformer-like Encoder

Recent works on sensor-based Human Activity Recognition
exploit attention mechanisms in order to adaptively focus
on the most important parts of input signals [13, 26]. In
this work, we use a combination of a one-dimensional CNN
with a transformer encoder as a backbone model as shown
in Figure 2. Specifically, input signals are passed through
the one-dimensional CNN with three layers including batch
normalization [10] and ReLU activation [14]. We also ap-
ply reflective padding in order to preserve the initial length
of time-series signals. The output of the CNN is then passed
through positional encoding and the transformer encoder
containing multiple self-attention blocks. The encoded fea-
tures are then flattened in order to pass them through MLP
models.

3.2.3 Pretext task

In SSL, the pretext task is a procedure of pre-training an en-
coder without using target labels. While some methods craft
labels from data itself, contrastive approaches aim to match
different views of the same instance using metric learning
objective functions.

The pretext task implemented in this study is shown in
the upper part of Figure 1. As can be seen from the figure,
given a batch of N instances, two transformations are ap-
plied to each example using the random augmentation mod-
ule (introduced in Section 3.2.1). Hence, the batch consists
of 2N transformed views. Then, these views are consecu-
tively passed through the encoder (described in 3.2.2) and
the projection MLP which consists of 2 fully connected lay-
ers. Finally, in order to minimize cosine similarity between
feature representations zi and zj corresponding to two aug-
mented views of the same instance by contrasting it with all
the other views in the batch, we use NT-Xent loss defined
as follows [3]:

l(i, j) = −log
exp(

s(zi,zj)

τ )∑2N
k=1 I[k 6=i]exp(

s(zi,zk)

τ )
, (2)

where τ is a temperature parameter and s(zi, zj) is a cosine
similarity (Equation 1) between representations zi and zj
returned by the projection MLP. The loss function for the
whole batch can be written as follows:

L =
1

2N

N∑
k=1

(l(z2k, z2k−1) + l(z2k−1, z2k)). (3)

In the equation above, the loss value is computed for all pos-
itive pairs present in a batch in a symmetric way. According
to Equation 3, for representations z2K and z2K−1 forming
a positive pair, losses l(z2k, z2k−1) and l(z2k−1, z2k) are
computed. The difference between them is in the negative

pairs similarity scores present in the denominator of Equa-
tion 2, i.e negative pairs formed with representation z2k are
used in l(z2k, z2k−1), whereas for l(z2k−1, z2k) negative
pairs include embedding z2k−1.

3.2.4 Fine-tuning routine

Fine-tuning is the last stage when embeddings generated by
a pre-trained encoder are used in order to train a simple clas-
sification model with available labeled data. The fine-tuning
routine exploited in this work is shown in the lower part of
Figure 1. The projection model is dropped and the encoder
is used for feature extraction. Notable, encoder parame-
ters are frozen during the fine-tuning stage. The only model
which is trained is a prediction MLP which takes features
from the encoder and outputs. In our study, the prediction
MLP consists of three layers with ReLU activation [14] and
dropout [19].

4. EVALUATIONS

4.1. Datasets and Pre-processing

Three datasets which were exploited in previous works
on SSL for sensor-based HAR, namely MobiAct [23], UCI-
HAR [1] and USC-HAD [27], are used in this study. The
pre-processing steps applied to these datasets are also based
on the related works [7, 8, 17]. Initially, raw accelerom-
eter and gyroscope signals are downsampled to 30Hz and
segmented into 50% overlapping time-windows of 1 sec-
ond length. Then, the training, validation and test splits are
created based on subjects. Finally, signals are normalized
to have zero mean and unit variance per channel based on
training data.
MobiAct. This dataset was collected via a smartphone lo-
cated in a pocket and consists of accelerometer, gyroscope
and orientation (ignored in this work) signals. The second
version of the dataset containing 11 activities performed by
61 subjects was used in this study. As proposed in [17],
20% of subjects are randomly sampled for the test split,
while 20% of the remaining subjects are selected for the
validation set.
UCI-HAR. Collected using a smartphone fixed on waists,
the dataset consists of gyroscope and accelerometer signals
corresponding to 12 activities and 30 users. As in [8], we
used 6 main activities from the dataset. Splitting routine for
UCI-HAR is the same as for the MobiAct dataset.
USC-HAD. The USC-HAD dataset consists of accelerome-
ter and gyroscope data for 12 activities performed by 14 par-
ticipants. The splitting protocol for this dataset is adapted
from [7] and supervised HAR works: sensor data from sub-
jects 11 and 12 was used for validation, while data from
subjects 13 and 14 - was used as a test set.



4.2. Implementation Details

Augmentations. The random augmentation module applies
each augmentation from a pre-defined set with probability
p = 0.5. In order to avoid views without any transforma-
tion applied, we used jittering augmentation as a mandatory
transformation with p = 1. We tested possible combina-
tions of augmentation sets from applying jittering only and
composing transformation using all five augmentations in
order to find the best combination for each dataset. For the
MobiAct dataset the best set is {Jittering, Scaling, Rota-
tion}, for USC-HAD and UCI-HAR – {Jittering, Scaling,
Permutation}.
Encoder properties and pretext setup. Since the used
datasets have different sizes, we presume that different sets
of hyperparameters would lead to the best performance. For
the one-dimensional CNN encoder, we fixed the kernel size
to 3, while the number of output channels was changed
over [32, 64, 128] (better for UCI-HAR and USC-HAD) and
[64, 128, 256] (MobiAct) for three layers of the network.
The number of heads in multi-head attention was set to 8
while the number of attention blocks was tuned over 6 (best
for MobiAct), 8 (UCI-HAR) and 10 (USC-HAD).
Pretext setup. The encoder is pre-trained within the pro-
posed contrastive learning framework using LARS opti-
mizer [25] for 200 epochs. This optimizer is suggested
in [3] in order to stabilize training with large batch sizes
which were set to 256 for UCI-HAR and USC-HAD and
512 for MobiAct before obtaining transformed views. The
projection MLP consists of 1 layer with ReLU activation
and output layer which returns projected representations for
loss calculation. The number of neurons in both layers are
equal and tuned over 256 (optimal value for UCI-HAR),
512 (USC-HAD) and 1024 (MobiAct).
Fine-tuning. The prediction model consists of 2 hidden
layers of 256 and 128 neurons with ReLU activation and
dropout (p = 0.2) and output layer with softmax activa-
tion. The model parameters are optimized with Stochas-
tic Gradient Descent with Adaptive Moment Estimation
(ADAM) with the default parameters (ε = 10−8,β1 = 0.9,
β2 = 0.999) [12].

4.3. Baseline Activity Recognition

In order to evaluate the quality of extracted embed-
dings, the baseline sensor-based HAR scenario is employed.
Specifically, the proposed CSSHAR encoder is first trained
on unlabeled data within the pretext task. Later, the encoder
parameters are frozen and only the prediction model is fine-
tuned on the whole training set with the original activity
labels. We compare the performance of our SSL model in
terms of mean F1-score against models reported in [8].

Additionally, we evaluated the identical transformer ar-
chitecture trained in a supervised end-to-end manner. The
supervised transformer model is composed of the same

blocks as the suggested SSL model, namely the encoder
containing CNN and transformer and the prediction MLP
model. The encoder of the supervised model was not pre-
trained via the pretext task and its parameters were not
frozen while training on labeled data.

Mean F1-Score
Method Type MobiAct UCI-HAR USC-HAD
DeepConvLSTM [15] Sup. 82.4 82.83 44.83
Transformer (ours) Sup. 83.92 95.26 60.56
Multi-task SSL [17] SSL 75.41 80.2 45.37
CAE [6] SSL 79.58 80.26 48.82
Masked Reconstruction [7] SSL 76.81 81.89 49.31
CPC [8] SSL 80.97 81.65 52.01
CSSHAR (ours) SSL 81.13 91.14 57.76

Table 1: F1-scores for the baseline activity recognition task.

The mean F1-scores for the models are aggregated in Ta-
ble 1. In the table, sup. values in the type column refer to su-
pervised methods. As it can be seen from the table, the pro-
posed model outperforms all the previous SSL approaches.
While for the MobiAct dataset the performance is compa-
rable to the CPC approach, improvements on the UCI-HAR
and USC-HAD datasets are more significant and make up
approximately 9% and 5.75%, respectively. While compar-
ing the suggested model to supervised models, it is clear
that the supervised transformer is more powerful feature ex-
tractor in the scenarios when huge amounts of annotated
data are available and shows performance higher by about
3-4% on all the datasets comparing to CSSHAR. It is worth
mentioning that the proposed SSL model significantly out-
performs DeepConvLSTM trained in a supervised manner
on the UCI-HAR and USC-HAD datasets. The obtained
results demonstrate that the proposed CSSHAR framework
is capable of extracting robust feature embeddings without
using data labels.

4.4. Semi-supervised Scenario

As it was mentioned before, sensory data labeling is an
expensive and time-consuming process. That is why we
implement a semi-supervised learning scenario when very
limited annotated data is available. For this purpose, simi-
larly to [7, 8, 17], we conduct a series of experiments when
k ∈ {1, 2, 5, 10, 25, 50, 100} labeled examples per class are
randomly sampled from the training set and used to train the
supervised and SSL models and compare their performance.
The proportion of training data available varies within the
following rates: 0.0149% – 1.49%, 0.0314% – 3.14% and
0.0342% – 3.42% for the MobiAct, UCI-HAR and USC-
HAD datasets, respectively.

In this scenario, the CSSHAR encoder is frozen after the
pretext task and only the prediction MLP model is fine-
tuned on the selected instances. In case of the supervised
model, it is trained on the sampled signals in an end-to-end
manner without pre-training. For each k, the experiment is
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Figure 3: Average F1-scores with 95% confidence intervals for the semi-supervised learning scenario.

repeated 10 times. The average F1-score with the 95% con-
fidence intervals are drawn in Figure 3. We also illustrate
the performance of a random transformer with the same
architecture. In this case, sampled instances are passed
through the randomly initialized and frozen transformer in
order to obtain features. These features are then used to
train the prediction model. The random transformer can be
considered as CSSHAR without the pretext task.

What can be seen from the figure is that both super-
vised transformer and the SSL transformer (CSSHAR)
show about the same performance when k > 25. How-
ever, from confidence intervals for the average value of
F1-score, it is also clear that the supervised transformer is
much more volatile and, hence, less robust than the pro-
posed self-supervised model. For example, for the UCI-
HAR dataset, the lowest F1-score value for the supervised
transformer when k = 100 is 44.43%, while for CSSHAR
it is 77.9%. Furthermore, for the USC-HAD dataset, confi-
dence intervals of random and supervised models intersect
almost for all the values of k. It is also crucial to mention
that, unlike CSSHAR, the supervised transformer model
completely fails when only very limited data (k < 10) is
available and for all the datasets performs at about the same
level as the random encoder.

4.5. Transfer Learning

The final evaluation scenario exploited in this study is
transfer learning. In this experiment, encoders pre-trained
on one dataset are evaluated on other datasets. As in [6], we
pre-train the SSL encoder on the MobiAct dataset within
the pretext task and fine-tune the prediction model on the
remaining datasets. The performance of the SSL models
was also compared to the supervised transformer model.
In case of the supervised models, the encoder is trained in
an end-to-end manner on the MobiAct dataset and frozen.
Hence, only the prediction model is trained on the remain-
ing datasets. The F1-scores for our SSL and supervised
models and the models presented in [7] obtained in the
transfer learning scenario are shown in Table 2.

Mean F1-Score
Method Type UCI-HAR USC-HAD
DeepConvLSTM [15] Sup. 73.68 25.57
Transformer (ours) Sup. 86.62 39.8
Multi-task SSL [17] SSL 73.89 31.35
CAE [6] SSL 84.15 51.66
Masked Reconstruction [7] SSL 81.37 46.19
CSSHAR (ours) SSL 88.26 48.73

Table 2: F1-scores for the transfer learning scenario.

According to Table 2, CSSHAR outperforms all SSL
models for the UCI-HAR dataset and performs worse only
than the CAE model on USC-HAD. What can also be
clearly seen is that the proposed model demonstrates bet-
ter performance than the identical transformer-based model
pre-trained on the MobiAct dataset in a supervised manner
on both UCI-HAR and USC-HAD datasets by about 1.5%
and 9%, respectively. These findings illustrate a high poten-
tial of the CSSHAR model to learn effective feature repre-
sentations on unlabeled datasets and transfer its knowledge
to new unseen data.

5. Conclusions and Future Work

In this paper, the powerful encoder based on transformer
architecture is combined with the modern approach to the
contrastive self-supervised learning approach in order to ad-
dress the sensor-based HAR problem. The findings of our
experiments demonstrate that the proposed model outper-
forms previous SSL methods and shows more robust per-
formance in the semi-supervised and transfer learning sce-
narios compared to the identical supervised model.

There is a criticism in the literature regarding negative
pairs in contrastive approaches since they might be obtained
from the same class [4]. As for future work, it might be
interesting to adapt methods that do not rely on negative
pairs or suggest a technique that could decrease the effect
of negative pairs coming from the same class.



References
[1] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. Reyes. A

public domain dataset for human activity recognition using
smartphones. In Proceedings of the 21th International Eu-
ropean Symposium on Artificial Neural Networks, Compu-
tational Intelligence and Machine Learning, page 437–442,
2013.
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