
Deep Triplet Networks with Attention for
Sensor-based Human Activity Recognition

Bulat Khaertdinov, Esam Ghaleb, and Stylianos Asteriadis
Maastricht University, Maastricht, the Netherlands

{b.khaertdinov, esam.ghaleb, stelios.asteriadis}@maastrichtuniversity.nl

Abstract—One of the most significant challenges in Human
Activity Recognition using wearable devices is inter-class sim-
ilarities and subject heterogeneity. These problems lead to the
difficulties in constructing robust feature representations that
might negatively affect the quality of recognition. This study,
for the first time, applies deep triplet networks with various
triplet loss functions and mining methods to the Human Activity
Recognition task. Moreover, we introduce a novel method for
constructing hard triplets by exploiting similarities between
subjects performing the same activities using the concept of
Hierarchical Triplet Loss. Our deep triplet models are based
on the recent state-of-the-art LSTM networks with two attention
mechanisms. The extensive experiments conducted in this paper
identify important hyperparameters and settings for training
deep metric learning models on widely-used open-source Human
Activity Recognition datasets. The comparison of the proposed
models against the recent benchmark models shows that deep
metric learning approach has the potential to improve the quality
of recognition. Specifically, at least one of the implemented triplet
networks shows the state-of-the-art results for each dataset used
in this study, namely PAMAP2, USC-HAD and MHEALTH.
Another positive effect of applying deep triplet networks and
especially the proposed sampling algorithm is that feature repre-
sentations are less affected by inter-class similarities and subject
heterogeneity issues.

I. INTRODUCTION

Human Activity Recognition (HAR) is one of the classic
problems in ubiquitous computing, human-computer interac-
tion, and ambient assisted living. Modern Activity Recognition
algorithms are used in various application areas which include
but are not limited to health monitoring [1], smart homes
[2] and manufacturing automation [3]. There are three main
approaches widely used to recognize human activities, namely
video-based, sensor-based and their combination. While video-
based HAR methods aim to identify activities given video
and/or depth data, sensor-based HAR techniques exploit time-
series data obtained through wearable devices and ambient
sensors.

Several issues arise when HAR is based on videos. First,
privacy concerns are something which should be faced while
recording video data and installing cameras in personal en-
vironments [4]. Second, a visual scene might contain other
subjects. Thus, an algorithm should also be able to identify
the relevant person. Another problem is that a real-time video-
based HAR system might only be developed in a pre-defined
scene with cameras whereas sensor-based HAR systems can be
exploited everywhere when a person wears required devices.
Despite the fact that issues described above are not related to

sensor-based HAR, there are several aspects which make it a
complex task. One of the problems is user heterogeneity, in
other words, different people may perform the same activities
in a different way which often introduces challenges in con-
structing models able to generalize [4]. Another challenge is
to make use of models to relying on features able to handle
inter-class similarities. Together, these issues constitute feature
extraction a challenging and crucial part of building a robust
HAR model.

Most recent works on sensor-based HAR utilize deep neural
networks. Architectures which are typically used for this
problem include Convolutional Neural Networks (CNNs) [5],
[6], Recurrent Neural Networks (RNNs) [7], [8] or hybrid
models containing both architectures [9], [10]. In some works,
modern frameworks such as multimodal fusion ([11], [12]) and
attention mechanisms [13] are adapted to sensor-based HAR.
In the vast majority of studies, models are trained using a
traditional end-to-end deep learning approach with a softmax
output classification layer.

Deep Metric Learning (DML), also known as similarity
learning, is a paradigm of learning deep feature embeddings
which are extensively used in various problems, mostly com-
ing from the Computer Vision domain. The idea of the
paradigm is to group examples of the same class in a manifold
while pushing examples of different classes apart from each
other [14]. This approach requires specific loss functions
which are based on distances between certain data points such
as triplet loss [15], quadruplet loss [16] or contrastive loss [17].
In this paper, we are focused on the triplet loss function and
its variations.

This study aims to apply the DML concept to sensor-based
HAR. The main motivation for exploiting DML is its pow-
erful property of extracting robust deep feature embeddings.
Therefore, DML is a potential solution to address challenging
problems in sensor-based HAR, namely inter-class similarities
and subject heterogeneity. Specifically, we introduce a novel
method for sensor-based HAR which is based on a concept
of a hierarchical triplet loss function [14]. In this method, we
explore how data points corresponding to activities performed
by different subjects are located in a feature space and later use
distances between these examples to mine informative triplets.
In such a way, we force examples of the same activities to
be closer to each other even though they were performed by
different subjects with different movement patterns. The main
contributions of our study are listed as follows:

• We apply the paradigm of DML to the sensor-based HAR
task and provide extensive evaluations for three open-
source datasets. The DML models used in this study
are based on the LSTM networks with two attention
mechanisms.

• We examine the effect of various triplet loss functions and
batch sampling techniques on sensor-based HAR models.
This includes a comparison of performance metrics as
well as visual evaluation of a manifold using the t-SNE
algorithm [18].

• We address the subject heterogeneity and feature extrac-
tion problems by designing a novel subject-based triplet
mining technique to train models with hierarchical triplet
loss and reduce the variability of activity clusters in a
manifold space.

II. RELATED WORK

Sensor-based Human Activity Recognition (HAR). The
task of sensor-based HAR might be considered as a time-series
classification problem where data is obtained through different
types of devices including Inertial Measurement Units, devices
for health monitoring measurements (e.g. heartbeat rate) and
binary sensors. In most of the studies, long-term sensor data
is segmented into short time windows [7], [9], [13]. In some
works, Fast Fourier Transform is applied to the obtained short
time-windows to get the spectrograms of the signals and treat
them as inputs of the classification algorithms [19], [11].

Recent studies in sensor-based HAR are based on Deep
Neural Networks of different CNN and RNN architectures.
In 2015, Yang et al. [5] applied CNNs with the additional
algorithm for sensor-unification to the existing datasets. This
work was later followed by studies of Ordonez [9] and
Hammerla [7], who contributed to the problem by applying
a combination of CNN and LSTM and different LSTM archi-
tectures, respectively. Concerning the latest literature, many
works make use of Attention Mechanisms [13], [20] and
Multimodal Fusion [11], [12] while dealing with sensor-based
HAR.
Feature Extraction and Subject Heterogeneity. Feature
extraction and subject heterogeneity are challenging problems
in sensor-based HAR [4]. The main reason for the feature
extraction complexity is inter-activity similarity [21]. In other
words, signals obtained from sensors might be similar for
some activities (e.g. walking and Nordic walking) which
have common movement patterns. Subject heterogeneity is
another issue related to feature extraction which arises because
samples of the same activity performed by two people might
differ significantly, thus, making activity recognition a highly
person-dependent problem.

The methods used to address these problems exploit various
architectures of neural networks and approaches. Rokni et
al. [22] used transfer learning by training CNNs on training
subjects data, freezing part of the network and using a small
amount of the test data to fine-tune the top layers. In [23],
Generative Adversarial Networks (GANs) were used to aug-
ment a training set with synthesized data points which are

LSTM LSTM LSTM...

FC layer + L2
Normalization

Triplet

Triplet
embeddings

Fig. 1: The proposed baseline.

similar to examples corresponding to subjects from a test set.
Finally, Chen et al. [24] used several training protocols to
train an autoencoder model in a self-supervised manner and
preserve task-specific consistency and decrease person-specific
discrepancy.
Deep Metric Learning and Triplet Loss. In recent years,
deep metric learning has been extensively used in Computer
Vision applications such as face recognition [15], image re-
trieval [25] and person re-identification [26]. The main idea is
to learn models that extract robust feature representations in a
manifold space instead of learning class labels in an end-to-end
manner. Loss functions in deep metric learning methods are
dependant on the distance between data points grouped into
pairs, triplets or quadruplets. Moreover, they are designed in
such a way that distances between data points of the same
class are minimized while distances between different classes
are maximized.

In this paper, we make an emphasis on networks which
are trained using triplet loss. In this approach, data points are
grouped into triplets. In each triplet, there are two examples of
a positive class, so-called anchor and positive examples, and
one example of another class, a negative example. The idea is
to minimize the distance between the anchor and positive data
points while maximizing the distance between the anchor and
negative ones in an embedding space.

The main challenge which is typically addressed in recent
studies on deep metric learning with triplet loss is informative
triplet mining. At some point deep metric learning models
can only be improved using informative and hard samples
[15]. Furthermore, after several epochs, even hard triplets in a
mini-batch might not significantly contribute to the gradients
of learnable parameters because they do not consider the
global structure of data [14]. Informative sample selection
was addressed by a variety of different sampling techniques.
In 2015, Schroff et al. [15] suggested mining hard triplets
for which distances between anchor and positive examples
are larger than distances between anchor and negative ones.
This approach was later criticized in [26] because too many
outliers might be considered while only the hardest triplets are
selected. They also suggested using semi-hard samples which
exclude the easy triplets for which the difference between the
positive and negative distances is larger than a violate margin.

The methods described above are based on distances be-
tween certain data points and they do not consider the global
structure of embeddings. In 2018, Ge et al. [14] proposed an
approach, namely the Hierarchical Triplet Loss, that mines
triplets based on the class similarities obtained from embed-
dings. After each epoch, they construct a hierarchical tree
based on interclass distances. The tree is later exploited to
perform anchor-neighbor sampling and generate informative
triplets which contribute to the gradients of learnable param-
eters. Additionally, they introduced a novel dynamic violate
margin calculated using based on the hierarchical tree.

There are a few studies which exploit deep metric learning
approaches for the sensor-based HAR. For example, in [27],
Mubarak et al. applied CNNs in combination with the original
triplet loss. Also, Sheng et al. [28] used Siamese networks
to exploit CNN-LSTM combination as a backbone model
(encoder) [28]. However, these studies do not provide exten-
sive evaluations on existing sensor-based HAR benchmarks.
Besides, no studies thoroughly investigate different triplet
mining mechanisms and the latest advances of deep triplet
networks (such as Hierarchical Triplet Loss [14]) for the
sensor-based HAR problem. Moreover, in this paper, we go
beyond exploiting the existing algorithms and propose a novel
subject-based triplet mining algorithm to address the challenge
of feature extraction caused by subject heterogeneity and inter-
class similarities.

III. METHODOLOGY

A. Definitions

Human Activity Recognition task can be formulated as
a time-series classification problem. More formally, given
a sequence of signal vectors for T timestamps X =
[x1,x2, . . . ,xT], where each vector xt = [x1t , x

2
t , . . . , x

S
t]

consists of S channels, an objective is to predict a corre-
sponding label y which is associated with a certain activity.
While end-to-end deep learning models map input features
directly onto the labels using a softmax output layer, a deep
metric learning model might be considered as a function
f : RS·T −→ RD constructing feature embeddings, i.e.
transform input features into the one-dimensional vector of
size D.

This study focuses on models which use a triplet loss
function, so-called triplet networks. To use them, input data
points should be grouped into triplets {Xa,Xp,Xn} where
the first two samples, namely anchor and positive, belong to
one class and the remaining one, called negative, to another.
The original triplet loss calculated for one triplet is defined as
follows [15]:

L = ||f(Xa)− f(Xp)||22 − ||f(Xa)− f(Xn)||22 + α, (1)

where || · ||22 refers to L2-norm and α is a distance or violate
margin. By minimizing the triplet loss function, the distance
between the anchor and positive samples is also minimized,
while the distance between the anchor and negative examples
is maximized.

LSTM LSTM LSTM

FC layer with L2-normalization

...

LSTM LSTM LSTM...

...

Te
m

p
or

al
at

te
n

ti
on

LS
TM

 la
ye

rs
S

en
so

r
at

te
n

ti
on

Optional components

Components present
in all the models

...

Sensor
Attention

Node

Sensor
Attention

Node

Sensor
Attention

Node

...

...

...

Triplet

Triplet
embeddings

+ +

Fig. 2: Overview of the model architectures. The components
which are required for all the models contain the LSTM
layers and the fully-connected (FC) layer. The additional
components which were designed to improve the performance
of the baseline models are the sensor and temporal attention
mechanisms.

B. Proposed Topology

In this paper, Long Short Term Memory (LSTM) net-
works are adapted to the deep metric learning approach
and trained using triplet loss functions. The baseline triplet
network consists of an LSTM layer which takes a vector
xt = [x1t , x

2
t , . . . , x

S
t] as an input signal at timestep t. In total,

there are T timesteps, thus, the shape of the input signals
is S · T . The output of the last time step is passed to a
fully-connected layer producing embeddings of size D. We
also applied L2-normalization to the outputs of the last layer
to obtain the final embeddings. The baseline triplet network
architecture is illustrated in Fig. 1.

We upgrade the baseline by adapting temporal and sensor
attention mechanisms for sensor-based HAR introduced in
[13]. The schematic overview of the models is shown in Fig.
2. As can be seen from the figure, the proposed framework
consists of three main blocks: sensor attention, LSTM layers
and temporal attention. First, input signals are passed through
sensor attention nodes. These nodes reweigh input signals

at each timestep according to their importance. Then, the
weighted signals go through up to three LSTM layers. Outputs
of LSTM layers from all the timesteps are sent to the temporal
attention block in order to obtain the final LSTM output
H . Finally, to get a feature embedding, vector H is passed
through the fully-connected layer with L2-normalization. After
all examples in a triplet {Xa,Xp,Xn} are passed through
all these steps, the triplet loss is calculated for the correspond-
ing feature embeddings {f(Xa), f(Xp), f(Xn)}. If attention
mechanisms are implemented in their continuous forms, the
loss also contains continuous regularization terms Ωα for
sensor attention and Ωβ for temporal attention (equations
(9) and (8)). In the whole architecture, the attention blocks
are optional and might be disabled. In total, the baseline
model with no attention (n) and five models with different
attention mechanisms were tried, namely: sensor attention
(s), temporal attention (t), continuous sensor attention (cs),
continuous temporal attention (ct) and both attentions in their
continuous forms (csct).

C. LSTM and Attention Mechanisms

The LSTM network is a widely used type of Recurrent
Neural Networks which can capture long-term dependencies
better than a simple RNN [29]. Zeng et al. [13] proposed
to use attention mechanisms, sensor and temporal attention,
to enhance the predicting power of LSTMs with softmax
output layers. Sensor attention is used to reweigh input sensor
channels according to their importance, whereas temporal
attention focuses on the most informative features extracted
by the LSTM layer over time. More formally, given the input
vector xt at timestep t, the reweighed signal x′

t after applying
sensor attention is calculated as [13]:

et = wT
e tanh(Wxxt +Wββt−1), (2)

βt = softmax(et), (3)

x′
t = βt � xt, (4)

where wT
e , Wx, Wβ are learnable parameters, et is an energy

vector and βt is a normalized energy vector. The attention
weights are trained using gradient backpropagation, in the
same way as other parameters of a model. It is clearly seen
from equation (2) that the energy vector et depends on
the vector βt−1 from the previous timestep. Hence, sensor
attention passes information about the previous signals through
time.

Unlike sensor attention, temporal attention does not con-
tain recursive connections. It calculates the final output of
the LSTM network by weighing hidden states from all the
timesteps. The final output of the LSTM network with tem-
poral attention H is calculated as follows [13]:

H =

T∑
t=1

αtht, (5)

αt =
exp{score(hT ,ht)}∑T
i=1 exp{score(hT ,hi)}

(6)

score(hT ,ht) = hTTWαht, (7)

where αt is an attention weight at timestep t, Wα is the only
learnable parameter and hT is the output of an LSTM at the
last timestep.

Finally, we also implemented a continuous version of both
attention mechanisms as suggested in [13], which is a form
of regularization restricting sharp differences of neighboring
attention weights. Loss terms of the continuous regularization
for temporal attention Ωtemp and sensor attention Ωtemp are
calculated as follows:

Ωtemp(α) = λ1

T∑
t=2

|αt − αt−1|, (8)

Ωsens(β) = λ2

T∑
t=2

|βt − βt−1|. (9)

D. Triplet Sampling Methods

Informative triplet selection is a crucial aspect of training a
triplet network. In this work, the emphasis is made on online
triplet mining techniques, i.e. triplets are not pre-defined before
training and, thus, are mined on the fly. We test two classical
methods for triplet mining with the original triplet loss, namely
hard and semi-hard sampling, as well as more specific and
recent anchor-neighbor sampling with the Hierarchical Triplet
Loss.

1) Hard and Semi-hard Triplets: The hard and semi-hard
triplets are mined in an online manner, i.e. these triplets are
selected based on distances between embeddings in a batch.
The semi-hard triplets contain samples which are expressed
by the following inequalities:

||f(Xa)− f(Xp)||22 − ||f(Xa)− f(Xn)||22 < α, (10)

||f(Xa)− f(Xp)||22 < ||f(Xa)− f(Xn)||22. (11)

This can be interpreted as finding those triplets for which the
distance between the anchor (f(Xa) and positive (f(Xp))
embeddings is smaller than the distance between the anchor
and negative (f(Xn)) ones but the difference between these
distances should not exceed the margin α [15]. The process of
selecting data points for a mini-batch is random: K samples
are selected for P random classes. The loss function for the
mini-batch is computed as follows [15]:

Lsh =

N∑
i

max
{

0, ||f(Xa
i)− f(Xp

i)||22

−||f(Xa
i)− f(Xn

i)||22 + α
}
,

(12)

where N is the number of valid triplets which satisfy inequal-
ities (10) and (11).

On the contrary, a triplet is classified as a hard one if the
distance between the anchor and positive examples is larger
than the distance between the anchor and negative samples
[26]. Moreover, a widely used batch-hard strategy aims to
calculate the loss on the most difficult triplets. Namely, for
each anchor signal, Xa, the hardest positive and negative

Sitting
Vacuum cleaning
Walking
Standing
Nordic walking
Descending stairs
Ascending stairs
Ironing
Cycling
Lying
Rope jumping
Running

(a) Colored activities

Subject 1
Subject 2
Subject 3
Subject 4
Subject 7
Subject 8
Subject 9

(b) Colored subjects

Fig. 3: Vanilla LSTM features visualization using t-SNE algorithm for the PAMAP2 dataset. The figure corresponds to the
same features and has been colored in terms of activities (a) and subjects (b), in order to better illustrate the problems of
inter-class similarities and person-dependent features. An activity for which subject heterogeneity has the obvious negative
effect is lying. Clusters of data points corresponding to this activity are highlighted in purple ellipses in both figures. It is
clearly seen from the right figure that most of the clusters of the activity belong to different subjects.

examples are sampled, in other words, from all valid triplets
for the anchor signal, the most similar negative and the most
different positive are selected. Finally, the loss function for the
mini-batch can be formally written as [26]:

Lbh =

P∑
i

K∑
a

max
{

0, max
p=1...k

{||f(Xa
i)− f(Xp

i)||22}−

min
j=1...p6=i,n=1...k

{||f(Xa
i)− f(Xn

j)||22}+ α
}
.

(13)
2) Hierarchical Triplet Loss and Anchor-Neighbor Sam-

pling: Unlike the original triplet loss with hard and semi-hard
batch sampling, Hierarchical Triplet Loss (HTL) with Anchor-
Neigbor (AN) sampling introduced in [14] exploits the global
data distribution when mining triplets and calculating loss with
a dynamic violate margin.

The main concept of the HTL approach is a hierarchical
tree. The hierarchical tree is a specific data structure which
stores information about distances between all pairs of classes
in a dataset. It is constructed based on inter and intra-class
distances. The inter-class distance for classes p and q is
calculated as:

dinter(p, q) =
1

npnq

∑
i∈p,j∈q

||f(Xi)− f(Xj)||22, (14)

where np and nq are the number of examples in classes p and
q, respectively. The intra-class distance of class p is computed
as follows:

dintra(p) =
1

n2p − np

∑
i∈p,j∈p

||f(Xi)− f(Xj)||22, (15)

Each leaf node of the tree corresponds to a certain class
label. Then, two classes p and q are merged at a level l of the
tree when the distance between these classes dinter(p, q) is
smaller than a merging threshold dl for this level. The merging
threshold for level l is computed as follows:

dl =
l(4− d0)

L
+ d0, (16)

where L is the maximum number of levels or depth of a tree.
Hence, every pair of classes is merged at a certain level l ∈
[1, L]. In equation (16), d0 refers to the zero-level threshold
which is calculated as the average intra-class distance:

d0 =
1

C

C∑
c=1

 1

n2c − nc

∑
i∈c,j∈c

||f(Xi)− f(Xj)||22

=

1

C

C∑
c=1

dintra(c),

(17)

where nc is the number of examples in class c and C is the
number of classes in a dataset. The zero-level threshold is not
used to merge classes and only needed to compute dl.

Ge et al. [14] suggest pre-training a deep metric learning
model using the original triplet loss so that data will not have
the random distribution before training with HTL. The tree
and distances are exploited to mine triplets using the anchor-
neighbor sampling approach and calculate the dynamic margin
for each positive-negative pair of classes in a triplet. The
anchor-neighbor sampling algorithm benefits from the global
data distribution stored in the tree and exploits it to mine
triplets for a mini-batch. The first step of the anchor-neighbor
sampling is to randomly select K classes. Then, for each of
them, the M closest classes are sampled using the inter-class
distances stored in the tree. Thus, since for each of K classes
we sample M more neighboring ones, the total number of
the selected classes is equal to K · (M + 1). Finally, T data
points are randomly extracted for each of the selected classes.
As a result, the total number of data points in a mini-batch is
K · (M + 1) · T .

The novel term in HTL function is the dynamic violate
margin: while in the original triplet loss the violate margin
is fixed, the dynamic violate margin αz is different for each
pair of positive and negative classes and computed based on
the hierarchical tree as follows:

αz = β + dlya,yn
− sya (18)

Activity 1

Activity 2

Activity 3

Activity 4

Subject 1

Subject 2

Subject 3

Subject 4

K = 2
M = 1
T = 4
Batch Size = K(M + 1)T = 16

(a) A toy example setup

Sampled mini-batch

(b) sampled data points

Mini-batch during training

(c) data points during training and loss calcu-
lation - subject information is not used

Fig. 4: A toy example of an iteration of the subject-based sampling. Assume, a dataset consists of 4 subjects and 4 activities,
thus, the total number of activity-subject combinations is 16. Thus, the hierarchical tree has 4 nodes, one per activity. According
to figure (a), K is set to 2, hence, 2 activity-subject combinations are selected randomly. Suppose, these are activity 3 from
subject 3 and activity 4 from subject 1 (circled in black). Then, for each of them, the M farthest activity-subject combinations
with the same activity but different subject labels are selected using distances between subclusters. In the figure, these are the
second and third subjects for activities 3 and 4, respectively (circled in blue). As a result, K ·(M+1) = 2·(1+1) = 4 subclusters
were selected for the mini-batch. Finally, from each of these subclusters, T = 4 data points should be taken randomly. Hence,
as shown in figure (b), one batch contains 16 examples. However, during the process of training, the information about subjects
is not used (figure (c)), so, the dynamic violate margin is calculated for activity classes based on the hierarchical tree.

where β is a constant, dlya,yn
is the merging threshold (equa-

tion (16)) for the tree level at which anchor a and negative n
classes were merged and sya is the intra-class distance of the
anchor class a computed according to equation (15). Finally,
the value of the Hierarchical Triplet Loss on a mini-batch is
calculated as follows:

Lh =
1

2N

N∑
i

max
{

0, ||f(Xa
i)− f(Xp

i)||22

−||f(Xa
i)− f(Xn

i)||22 + αz

}
,

(19)

where N is the number of triplets in the mini-batch. The
detailed algorithm of anchor-neighbor sampling and training
with HTL is available in [14].

The hierarchical tree is built before each epoch of training
based on the training set embeddings. Hence, distribution of
data is observed before a new epoch of training and stored
in the hierarchical tree. It is important to mention that the
hierarchical tree is not altered during the epoch and classes
are not merged during training. In other words, the tree is
only used to store information about inter-class distances, mine
triplets and compute the dynamic violate margin for each pair
of positive and negative examples in a mini-batch.

E. Subject-based sampling

Besides applying existing sampling techniques, we intro-
duce a novel subject-based triplet mining algorithm which
aligns with the HTL concept and exploits information about
subjects and their similarities.

The proposed method aims to address the crucial problems
of sensor-based HAR: subject heterogeneity and inter-class
similarities. To illustrate these problems, we trained a simple
model containing one Vanilla LSTM layer with a softmax
output layer on the PAMAP2 dataset (described in Section

IV-A) and visualized LSTM features in a two-dimensional
space using the t-SNE algorithm (Fig. 3a). It can be clearly
seen from the figure that some pairs of activities are not well
separated. For example, the walking activity does not have
a good separation from the Nordic walking activity (yellow
and green clusters). Also, some activities do not form a single
cluster and spread over the manifold as a group of subclusters.
A good example is the laying activity (circled in purple). In
Fig. 3b, we colored the same data points based on the subject
information, i.e. each color in the right figure corresponds to
a certain subject from the dataset. What is obvious is that the
subclusters of the lying activity are obtained from different
subjects. A similar situation is related to the sitting, Nordic
walking and standing activities. The presence of such subject-
based subclusters perfectly illustrates the problem of subject
heterogeneity.

As for the original HTL algorithm, the suggested subject-
based triplet mining approach is making use of the global
data distribution while selecting triplets for each mini-batch.
However, the major difference and novelty of the proposed
approach is that it takes into account data instances belonging
to the same activities which may differ significantly due to
inter-subject differences. Specifically, we propose to include
hard examples corresponding to the same activity class and
different subjects into a mini-batch using the hierarchical tree
and distances between them (Section III-D2). While sampling
classes and data points for a mini-batch, we use distances
between subclusters corresponding to activity-subject combi-
nations. However, training cannot be done for these activity-
subject combinations considered as classes because, in that
case, a model treats data points corresponding to the same
activities but different subjects as different classes and, thus,
will push them apart from each other. It is crucial that only the
original activities are considered as labels during training, i.e.

Algorithm 1: Training with Subject-based sampling
Input: Model f pre-trained using original triplet loss,

training set {Xi, si, yi}Ni=1, where s is a
subject, y is an activity label and N is the
number of data points, number of epochs ne,
sampling hyperparameters K, M and T .

while epoch < ne do
Compute distances between all activity-subject

subclusters and build hierarchical tree H on Y
activity classes;
i = 0;
while i < N do

Randomly select K activity-subject
combinations;

For each pair, select the M farthest
activity-subject combinations with the
computed distances.;

For each of K · (M + 1) combinations,
randomly select T data points;

Run the model on the mini-batch containing
K · (M + 1) · T selected examples and
compute the Hierarchical Triplet Loss Lh with
dynamic violate margin computed based on
tree H according to equation (19);

Backpropogate gradients and update learnable
parameters of model f ;

i += K · (M + 1) · T ;
end
epoch + = 1;

end

the triplet loss is calculated for activity classes (not activity-
subject combinations). Hence, the hierarchical tree is built
based on activity labels and used for dynamic violate margin
calculation (equation (18)) in the HTL function.

The complete algorithm for training a deep metric learning
model with the subject-based sampling approach is described
in Algorithm 1. At each iteration of the algorithm, the first
step of sampling is a random selection of K activity-subject
combinations from different activity classes. The next step
is to find M farthest activity-subject combinations with the
same activity label for each of the K combinations, using
the distances between subclusters formed by activity-subject
combinations. The last step of sampling is to randomly take
T data points for the selected K · (M + 1) activity-subject
combinations. This will result in having a mini-batch of
K · (M + 1) · T data points belonging to K original activity
classes. A detailed toy example of an iteration of the subject-
based sampling algorithm is shown in Fig. 4.

IV. EVALUATIONS

A. Datasets

In this study, we use three open-source datasets which
contain multi-activity data collected from various subjects. The

pre-processing procedure is the same for all the datasets. First,
long time-series chunks are segmented into overlapping time
windows. Secondly, the datasets are normalized to zero mean
and unit variance per channel. It is important to mention that
test samples were segmented without overlapping.
PAMAP2. The PAMAP2 dataset [30] consists of 12 activities
performed by 9 subjects. The activities in this dataset include
basic movements, household activities and more unusual ac-
tivities (e.g. rope jumping). Data is recorded at a frequency
of 100 Hz using accelerometers, gyroscopes, magnetometers
and heart rate sensors. We follow the recommendation of the
dataset publishers to ignore the second accelerometer and in
total use 28 channels. In this study, we use the typical pre-
processing protocols from [7] and [13] so that we downsample
data to 33.3 Hz and extract time windows of 5.12 seconds with
1-second overlap. We also use data obtained from subjects 5
and 6 as validation and test sets, respectively.
USC-HAD. The USC-HAD dataset [31] contains signals ob-
tained from accelerometer and gyroscope sensors both having
three degrees of freedom, i.e. 6 signals have been recorded
per time step. In total, 14 subjects were involved in data
collection performing 12 simple activities such as walking
in different directions, running, jumping, etc. We use pre-
processing and test protocols exploited in [20], i.e. the dataset
was downsampled to 33.3 Hz, the length of time windows is
1 second with 50% overlapping and data from subjects 13 and
14 was used as a test set.
MHEALTH. The MHEALTH dataset [32], [33] was recorded
using 3-axis accelerometers, gyroscopes and magnetometers
placed on chest, ankles and arms. The dataset consists of
measurements collected from 10 subjects while performing 12
activities. For this dataset, we keep the initial frequency of data
(50 Hz), use time windows of 1 second with 50% overlapping
and exploit data from subjects 9 and 10 as validation and test
sets, respectively.

B. Implementation Details

The models implemented in this paper are described in
Section III-B and shown in Fig. 2. The hyperparameter tun-
ing was performed on the validation sets of the datasets.
All the hyperparameter values tried in the experiments are
summarized in Table I. In the table, the optimal set of
hyperparameters is highlighted for each dataset. Parameters of
the models were optimized using Stochastic Gradient Descent
with Adaptive Moment Estimation (ADAM) with the default
parameters (ε = 10−8,β1 = 0.9, β2 = 0.999) [34]. All
the models were trained for 100 epochs. The learning rate
is decreased twice after each 10 epochs period with no
performance improvement. Training with HTL requires pre-
training with the original triplet loss, so the best models on
validation sets were fine-tuned with HTL for 10 more epochs.
For all our models including the LSTM baseline trained with
the original triplet loss, we fix the size of the LSTM hidden
state vectors to 512. For all the triplet networks, we kept
the size of a mini-batch close to 128. Specifically, we fixed
hyperparameters P = 6 and K = 20 for the original triplet

Attention type Number of layers Embedding size Violate margin Initial learning rate Triplet sampling method

Original Triplet Loss n, s, cs, t , ct, csct 1, 2 , 3 256, 512 , 1024 0.2 , 0.5, 1.0 10−3 , 10−4, 10−5 hard , semi-hard

Hierarchical Triplet Loss n, s, cs, t , ct, csct 1, 2 , 3 256, 512 , 1024 dynamic 10−3, 10−4, 10−5 anchor-neighbor, subject-based

TABLE I: Hyperparameters used for training. The attention types are encoded as in Section IV-B. The optimal hyperparameters
for the PAMAP2 dataset are highlited in bold; for USC-HAD - underlined; for MHEALTH - in gray boxes.

Model PAMAP2 USC-HAD MHEALTH
Baselines

Softmax LSTM baseline 0.792 0.49 0.442
Triplet LSTM baseline (ours, Fig. 1) 0.811 0.535 0.376

Recent benchmarks
DeepConvLSTM [9] 0.748 0.46 -
b-LSTM-S [7] 0.868 - -
LSTM with continuous sensor and
continuous temporal attention [13] 0.8996 0.553 0.48

Transformer-like architecture [20] different pre-processing 0.55 -
Proposed Triplet Networks with the best performance (ours)

OTL HTL-AN HTL-SB OTL HTL-AN HTL-SB OTL HTL-AN HTL-SB
Triplet LSTM with temporal attention 0.904 0.893 0.884 0.54 0.581 0.596 0.648 0.641 0.656
Triplet LSTM with continuous temporal attention 0.902 0.874 0.881 0.612 0.592 0.628 0.55 0.504 0.519

TABLE II: F1-scores of the best models trained with the triplet loss along with the baselines and recent benchmarks which
used the same training and evaluation protocols. For the proposed models, we report three values per architecture: Original
Triplet Loss (OTL), HTL with anchor-neighbor sampling (HTL-AN) and HTL with subject-based sampling (HTL-SB). Note:
- means that results are not available.

loss (described in Section III-D1), and K = 4, M = 2, T = 10
for the HTL (Sections III-D2 and III-E).

The experiments were conducted on NVIDIA Titan X GPU
with 12 GB memory. It is important to note that Deep Metric
Learning (DML) models mighty require more time for training
than softmax-based models. For example, using Titan X on
pre-processed data of the PAMAP2 dataset, one epoch of
training DML models with subject-based sampling and HTL
takes about 5 minutes. On the other hand, an epoch of training
softmax-based models with attention takes 2 minutes. During
inference and classification, the evaluation of DML models
using the extracted training embeddings is efficient. Moreover,
classification methods such as K-Nearest Neighbour (KNN)
can be employed on the training and validation embeddings
without the need for a GPU.

C. Evaluation Protocols and Experimental Setup

The proposed models generate feature representations of the
input signals. Thus, it is required to use another algorithm
which will map feature embeddings onto activity labels. Since
DML models aim to group the data points corresponding
to the same class together and separate different classes in
the embedding space, the kNN algorithm which makes use
of distances between data points is used in this study as a
classifier for the obtained feature embeddings. Based on the
conducted experiments, we noticed that the value of k does
not affect model performance significantly, so we fixed k = 7,
which is optimal in terms of metrics and computational costs.

After each epoch of training, the models are assessed on
a validation set of a dataset. The model weights are saved if
the model has improved its performance. Therefore, we test
the model with weights shown the best performance on the
validation set. The performance of the models is assessed using
the average macro F1-score.

D. Results and Baseline Comparisons

In this study, we compare the proposed DML models
against recent architectures based on the traditional end-to-
end learning approach which follow the same pre-processing
steps and evaluation protocols for the selected datasets. Table
II aggregates the values of F1-scores corresponding to the
baselines, recent benchmarks and the proposed models applied
to the PAMAP2, USC-HAD and MHEALTH datasets. It is
crucial to mention that some of the works used different
pre-processing and validation protocols (e.g. Transformer-like
architecture presented in [20] for the PAMAP2 dataset) or
different set of labels (such as InnoHAR [10] for the PAMAP2
dataset). The results in such cases were not included into
the table. In addition, we evaluated the best LSTM model
with continuous sensor and continuous temporal attention
from [13] on the MHEALTH and USC-HAD datasets with
hyperparameters suggested in the paper in order to compare
its performance against our triplet models.

First, the baseline model, illustrated in Fig. 1, outper-
formed the end-to-end Vanilla LSTM baseline by about 2% on
PAMAP2 and 4% on USC-HAD, however, it fell behind on the
MHEALTH dataset. More importantly, we improved the state-
of-the-art results on all the datasets using the proposed triplet
networks paradigm. Specifically, triplet models with temporal
attention have shown the best performance among all the
topologies with attention. For instance, the DML model with
temporal attention has the highest F1-score on the PAMAP2
and MHEALTH datasets while the triplet LSTM with contin-
uous temporal attention outperformed all the benchmarks on
the USC-HAD dataset.

Interestingly, fine-tuning with the HTL function and the
proposed subject-based sampling algorithm significantly im-
prove the performance of the triplet networks on the USC-
HAD (about 8%) and MHEALTH (more than 17%) dataset

Sitting
Vacuum cleaning
Walking
Standing
Nordic walking
Descending stairs
Ascending stairs
Ironing
Cycling
Lying
Rope jumping
Running

(a) Original triplet loss with batch-hard sampling

Sitting
Vacuum cleaning
Walking
Standing
Nordic walking
Descending stairs
Ascending stairs
Ironing
Cycling
Lying
Rope jumping
Running

(b) Hierarchical triplet loss with subject-based mining

Fig. 5: Visualization of feature embeddings for the PAMAP2 training set obtained by the best models trained with the triplet
loss. The subject-based mining method integrated into the HTL concept improves the structure of activity clusters.

lying sitting standing walking running cycling Nordic
walking

ascending
stairs

descending
stairs

vacuum
cleaning ironing rope

jumping
average
distance

Original Triplet Loss 0.115 0.168 0.17 0.162 0.156 0.184 0.165 0.204 0.218 0.219 0.185 0.175 0.177
HTL with
subject-based sampling 0.065 0.086 0.096 0.078 0.125 0.079 0.122 0.109 0.114 0.186 0.095 0.097 0.104

TABLE III: Intra-class distances for PAMAP2 activities clusters produced by the triplet networks shown the best performance.

comparing to the presented benchmark models. Although the
models trained with HTL and subject-based sampling have
not outperformed the one trained with the original triplet loss
on the PAMAP2 dataset, the proposed algorithm improved
activities’ representations, as elaborated in Section IV-E. The
obtained results support the hypothesis that it is possible to
benefit from subject information and triplets containing data
points obtained from subjects with different behaviour patterns
are informative and contribute to model training.

E. Feature extraction and feature embeddings visualization

The major advantage of metric learning is that, instead of
learning activity classes directly, models learn effective feature
representations in a manifold space. Hence, the DML models
can be particularly useful for feature extraction.

Fig. 5 demonstrates feature representations of the PAMAP2
training set data points in a two-dimensional space using the
t-SNE algorithm. The left part of the figure is obtained for the
best model (with temporal attention) trained with the original
triplet loss and batch-hard sampling strategy. It is clearly seen
that class separation is more explicit as well as individual
activities are better grouped than for the LSTM baseline
with softmax output (Fig. 3a). However, subject heterogeneity
still affects the quality of the obtained feature embeddings
since several activities (lying, sitting, Nordic walking) are
still represented as the number of clusters spread over the
manifold. Fig. 5b shows the embeddings obtained using the
Hierarchical Triplet Loss with the proposed subject-based
sampling algorithm. It is obvious that almost all the classes are
grouped visually better, although the F1-score for the model is
lower (Table II). In particular, the lying activity data points (in
purple) which were spread over the manifold space for both
softmax (Fig. 3a) and original triplet loss (Fig. 5a) models are
now concentrated in one area of the feature space. This shows
that the proposed subject-based triplet mining approach has a
potential to address the subject heterogeneity problem.

Furthermore, in order to support the findings from em-
beddings visualization, intra-class distances were computed
according to equation (15) for each activity cluster in the
PAMAP2 dataset for both best models: trained with original
and hierarchical triplet loss functions (shown in Table III).
According to the table, all intra-class distances for the model
trained using hierarchical triplet loss and subject-based triplet
mining are lower than for the original triplet model. As a
result, the average intra-class distance is decreased by about
40%. These results also illustrate that the proposed subject-
based triplet mining algorithm has a positive effect on features
extracted by triplet networks and attempts to address the
problems of subject heterogeneity and inter-class similarities.

V. CONCLUSION

In this paper, we address the major problems of sensor-based
HAR, namely subject heterogeneity and inter-activity similar-
ity. This is done by adapting triplet networks to sensor-based
HAR and proposing a novel subject-based triplet sampling
algorithm which uses information about subject similarities
while mining informative triplets. The proposed LSTM-based
baseline triplet model was upgraded by attention mechanisms.
The results of the experiments have shown that triplet networks
not only improve the quality of recognition but also are
capable of constructing robust feature representations less
affected by subject heterogeneity and inter-class similarities.
The future work on deep metric learning for sensor-based
HAR might include experiments with different encoders, such
as Transformers, as well as more thorough evaluations of
classifiers built on top of the extracted feature embeddings.

ACKNOWLEDGEMENT

This work has been funded by the European Union’s Hori-
zon2020 project: PeRsOnalized Integrated CARE Solution
for Elderly facing several short or long term conditions and
enabling a better quality of LIFE (PROCareLife), under Grant
Agreement N.875221.

REFERENCES

[1] M. Panwar, D. Biswas, H. Bajaj, M. Jobges, R. Turk, K. Maharatna, and
A. Acharyya, “Rehab-net: Deep learning framework for arm movement
classification using wearable sensors for stroke rehabilitation,” IEEE
Transactions on Biomedical Engineering, vol. PP, pp. 1–1, 02 2019.

[2] P. Skocir, P. Krivic, M. Tomeljak, M. Kusek, and G. Jezic, “Activity
detection in smart home environment,” Procedia Computer Science,
vol. 96, pp. 672–681, 12 2016.

[3] R. Grzeszick, J. M. Lenk, F. M. Rueda, G. A. Fink, S. Feldhorst,
and M. ten Hompel, “Deep neural network based human activity
recognition for the order picking process,” in Proceedings of the
4th International Workshop on Sensor-Based Activity Recognition
and Interaction, ser. iWOAR ’17. New York, NY, USA:
Association for Computing Machinery, 2017. [Online]. Available:
https://doi.org/10.1145/3134230.3134231

[4] K. Chen, D. Zhang, L. Yao, B. Guo, Z. Yu, and Y. Liu, “Deep learning
for sensor-based human activity recognition: Overview, challenges and
opportunities,” ArXiv, vol. abs/2001.07416, 2020.

[5] J. B. Yang, M. N. Nguyen, P. P. San, X. L. Li, and S. Krishnaswamy,
“Deep convolutional neural networks on multichannel time series for
human activity recognition,” in Proceedings of the 24th International
Conference on Artificial Intelligence, ser. IJCAI’15. AAAI Press, 2015,
p. 3995–4001.

[6] A. Ignatov, “Real-time human activity recognition from
accelerometer data using convolutional neural networks,” Applied
Soft Computing, vol. 62, pp. 915 – 922, 2018. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1568494617305665

[7] N. Y. Hammerla, S. Halloran, and T. Plötz, “Deep, convolutional,
and recurrent models for human activity recognition using wearables,”
in Proceedings of the Twenty-Fifth International Joint Conference on
Artificial Intelligence, ser. IJCAI’16. AAAI Press, 2016, p. 1533–1540.

[8] Y. Zhao, R. Yang, G. Chevalier, X. Xu, and Z. Zhang, “Deep residual
bidir-lstm for human activity recognition using wearable sensors,”
Mathematical Problems in Engineering, vol. 2018, p. 7316954, Dec
2018. [Online]. Available: https://doi.org/10.1155/2018/7316954

[9] F. Ordóñez and D. Roggen, “Deep convolutional and lstm recurrent
neural networks for multimodal wearable activity recognition,”
Sensors, vol. 16, no. 1, p. 115, Jan 2016. [Online]. Available:
http://dx.doi.org/10.3390/s16010115

[10] C. Xu, D. Chai, J. He, X. Zhang, and S. Duan, “Innohar: A deep neural
network for complex human activity recognition,” IEEE Access, vol. 7,
pp. 9893–9902, 2019.

[11] H. Ma, W. Li, X. Zhang, S. Gao, and S. Lu, “Attnsense: Multi-level
attention mechanism for multimodal human activity recognition,” in
Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19. International Joint Conferences on
Artificial Intelligence Organization, 7 2019, pp. 3109–3115. [Online].
Available: https://doi.org/10.24963/ijcai.2019/431

[12] J. V. Jeyakumar, L. Lai, N. Suda, and M. Srivastava, “Sensehar:
A robust virtual activity sensor for smartphones and wearables,”
in Proceedings of the 17th Conference on Embedded Networked
Sensor Systems, ser. SenSys ’19. New York, NY, USA: Association
for Computing Machinery, 2019, p. 15–28. [Online]. Available:
https://doi.org/10.1145/3356250.3360032

[13] M. Zeng, H. Gao, T. Yu, O. J. Mengshoel, H. Langseth, I. Lane, and
X. Liu, “Understanding and improving recurrent networks for human
activity recognition by continuous attention,” in Proceedings of the 2018
ACM International Symposium on Wearable Computers, ser. ISWC ’18.
New York, NY, USA: Association for Computing Machinery, 2018, p.
56–63. [Online]. Available: https://doi.org/10.1145/3267242.3267286

[14] W. Ge, W. Huang, D. Dong, and M. R. Scott, “Deep metric learning with
hierarchical triplet loss,” in Computer Vision – ECCV 2018, V. Ferrari,
M. Hebert, C. Sminchisescu, and Y. Weiss, Eds. Cham: Springer
International Publishing, 2018, pp. 272–288.

[15] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified embed-
ding for face recognition and clustering,” in 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015, pp. 815–823.

[16] W. Chen, X. Chen, J. Zhang, and K. Huang, “Beyond triplet loss: A
deep quadruplet network for person re-identification,” in 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017,
pp. 1320–1329.

[17] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction
by learning an invariant mapping,” in Proceedings of the

2006 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition - Volume 2, ser. CVPR ’06. USA:
IEEE Computer Society, 2006, p. 1735–1742. [Online]. Available:
https://doi.org/10.1109/CVPR.2006.100

[18] L. van der Maaten and G. Hinton, “Viualizing data using t-sne,” Journal
of Machine Learning Research, vol. 9, pp. 2579–2605, 11 2008.

[19] W. Jiang and Z. Yin, “Human activity recognition using wearable sensors
by deep convolutional neural networks,” in Proceedings of the 23rd
ACM International Conference on Multimedia, ser. MM ’15. New York,
NY, USA: Association for Computing Machinery, 2015, p. 1307–1310.
[Online]. Available: https://doi.org/10.1145/2733373.2806333

[20] S. Mahmud, M. T. H. Tonmoy, K. Bhaumik, A. Rahman, M. A. Amin,
M. Shoyaib, M. Khan, and A. Ali, “Human activity recognition from
wearable sensor data using self-attention,” 02 2020.

[21] A. Bulling, U. Blanke, and B. Schiele, “A tutorial on human
activity recognition using body-worn inertial sensors,” ACM
Comput. Surv., vol. 46, no. 3, Jan. 2014. [Online]. Available:
https://doi.org/10.1145/2499621

[22] S.-A. Rokni, M. Nourollahi, and H. Ghasemzadeh, “Personalized human
activity recognition using convolutional neural networks,” AAAI 2018,
01 2018.

[23] E. Soleimani and E. Nazerfard, “Cross-subject transfer learning
in human activity recognition systems using generative adversarial
networks,” CoRR, vol. abs/1903.12489, 2019. [Online]. Available:
http://arxiv.org/abs/1903.12489

[24] K. Chen, L. Yao, D. Zhang, X. Chang, G. Long, and S. Wang, “Distri-
butionally robust semi-supervised learning for people-centric sensing,”
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
pp. 3321–3328, 07 2019.

[25] H. O. Song, Y. Xiang, S. Jegelka, and S. Savarese, “Deep metric learning
via lifted structured feature embedding,” in 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 4004–
4012.

[26] A. Hermans, L. Beyer, and B. Leibe, “In defense of the triplet loss for
person re-identification,” ArXiv, vol. abs/1703.07737, 2017.

[27] M. Abdu-Aguye and W. Gomaa, “Robust human activity recognition
based on deep metric learning,” in ICINCO (1), 01 2019, pp. 656–663.

[28] T. Sheng and M. Huber, “Siamese networks for weakly supervised
human activity recognition,” in 2019 IEEE International Conference on
Systems, Man and Cybernetics (SMC), 2019, pp. 4069–4075.

[29] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, p. 1735–1780, Nov. 1997. [Online]. Available:
https://doi.org/10.1162/neco.1997.9.8.1735

[30] A. Reiss and D. Stricker, “Introducing a new benchmarked dataset for
activity monitoring,” in 2012 16th International Symposium on Wearable
Computers, 2012, pp. 108–109.

[31] M. Zhang and A. Sawchuk, “Usc-had: a daily activity dataset for
ubiquitous activity recognition using wearable sensors,” 09 2012, pp.
1036–1043.

[32] O. Banos, R. Garcia, J. A. Holgado-Terriza, M. Damas, H. Pomares,
I. Rojas, A. Saez, and C. Villalonga, “mhealthdroid: A novel framework
for agile development of mobile health applications,” in Ambient Assisted
Living and Daily Activities, L. Pecchia, L. L. Chen, C. Nugent, and
J. Bravo, Eds. Cham: Springer International Publishing, 2014, pp. 91–
98.

[33] O. Banos, C. Villalonga, R. Garcı́a, A. Saez, M. Damas, J. Holgado-
Terriza, S. Lee, H. Pomares, and I. Rojas, “Design, implementation and
validation of a novel open framework for agile development of mobile
health applications,” BioMedical Engineering OnLine, vol. 14, p. S6, 08
2015.

[34] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in Proceedings of the 3rd International Conference on Learning
Representations (ICLR), 2014.

