
MULTIMODAL ATTENTION-MECHANISM FOR TEMPORAL EMOTION RECOGNITION

Esam Ghaleb, Jan Niehues, and Stylianos Asteriadis

Maastricht University, Maastricht, the Netherlands
{esam.ghaleb, jan.niehues, stelios.asteriadis}@maastrichtuniversity.nl

ABSTRACT

Exploiting the multimodal and temporal interaction between
audio-visual channels is essential for automatic audio-video
emotion recognition (AVER). Modalities’ strength in emo-
tions and time-window of a video-clip could be further uti-
lized through a weighting scheme such as attention mecha-
nism to capture their complementary information. The atten-
tion mechanism is a powerful approach for sequence model-
ing, which can be employed to fuse audio-video cues over-
time. We propose a novel framework which consists of bi-
audio-visual time-windows that span short video-clips labeled
with discrete emotions. Attention is used to weigh these time-
windows for multimodal learning and fusion. Experimental
results on two datasets show that the proposed methodology
can achieve an enhanced multimodal emotion recognition.

Index Terms— attention, multimodal learning, audio-
visual emotion recognition

1. INTRODUCTION

Emotions play a central role in human-human interaction
[1]. They are highly sophisticated sub-conscious reactions,
that are expressed through multiple cues, among which, the
most prominent ones are visual and audio signals. In Af-
fective Computing, AVER aims to efficiently capture these
subtle emotional experiences and generate the proper ac-
tions, to have a natural Human-Computer Interaction (HCI)
[2]. Applications of HCI can be found in entertainment [3],
healthcare [4], and education [5].

Multimodal perception has shown a significant impact in
terms of accurate performance [6]. However, this comes with
challenges since there is not a linear relationship between
their input and since each modality has distinct statistical
properties [1]. In addition, in AVER, modalities’ tempo-
ral dependencies and contribution to emotion perception are
not fully exploited, as both modalities’ importance varies
over-time according to emotion classes [7]. For example,
psychological studies show that the recognition speed of pos-
itive and negative emotions depends on the presentation of
audio and video modalities [8].

Recently attention mechanisms have shown great suc-
cess in a learning context in sequential data such as machine

translation [9] and question answering [10]. This research
aims to model and exploit the temporal relationship between
audio-video cues utilizing a transformer-based self-attention
mechanism. We propose a novel Multimodal Attention-
mechanism for Temporal Emotion Recognition (MATER)
framework to capture the audio-video inter-relationships. It
is adopted for multimodal fusion and learning. We address
the research question of how to efficiently utilize these signals
over-time according to each modality’s strength on emotions
to maximize the automatic AVER performance.

MATER is a modality-specific framework, where learn-
ing is based on decision-level fusion which is performed on
the prediction of each modality. This design allows the spe-
cialization of the framework to leverage the modality-specific
properties in their data-stream. In this study, we investigate
the benefit of attention mechanism for AVER. Besides, the
model is extensively evaluated against several baselines and
approaches such as Long-Short Term Memory (LSTM) and
other state-of-the-art methods. We observe that multimodal
recognition of emotions benefits from the attention mecha-
nism.

Related Work: In multimodal context, attention has
been applied for tasks such as Audio-Visual Speech Recog-
nition AVSR [11], video captioning [12], and dialog systems
[13]. For example, authors in [11] uses transformer archi-
tectures with Connectionist Temporal Classification (CTC)
loss for recognizing phrases and sentences from audio and
video signals. In [12], A self multimodal attention was
used with LSTM to boost video captioning by learning from
audio-video streams jointly. This approach exploited the
multimodal input to generate coherent sentences.

In recent years, there has been a large body of work and
interest in AVER using different approaches such as early and
late fusion of different modalities [14, 15]. In addition, atten-
tion has been applied for emotion recognition. For example,
authors in [16] utilized a self-attention mechanism to learn the
alignment between text and audio for emotion recognition in
speech. A self-attention layer was used to learn the align-
ment weights between speech frames and text words from
different time-stamps. Authors in [14] proposed a recursive
multi-attention with shared external memory based on Mem-
ory Network. Their cross-modal approach showed that gated
memory effectively achieve multimodal emotion recognition.
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Fig. 1: The proposed methodology MATER for AVER. It has two
data streams, composed of audio (fa(xa)) and video (fv(xv)) sub-
networks.

2. METHODOLOGY

MATER as shown in Fig. 1, has two sub-networks, wherein
each time-window (a sequence of frames), we employ the en-
coder part of the transformer [9] on the visual embeddings:
Xv and another one on the audio embeddings: Xa. The novel
bi-modal framework aims to study the temporal presentation
of audio-visual cues for emotion recognition. The design of
MATER is based on the following objectives and motivations:

• Emotion display consists of on-set, apex, and off-set
phases, while the apex captures the maximum expressiv-
ity, thus, it is the segment considered in most research
works [7]. Nevertheless, it is better not to pre-define these
phases, since they depend on the emotions and the pre-
sented modalities. MATER is specialized in exploring and
utilizing modalities’ strength on these phases for better
performance.

• Research demonstrated that emotion perception might re-
quire a different amount of time for an accurate detection
[7]. Thus, these alterations could be exploited efficiently
through a temporally-trimmed framework.

2.1. Input Modalities’ Embeddings

In AVER, a dataset (D) contains n short video clips with audio
and visual (video) modalities, and each clip is annotated with
a discrete emotion Iy:

D = {(xv
1 , x

a
1 , I

y
1 ), (x

v
2 , x

a
2 , I

y
2 ), ..., (x

v
n, x

a
n, I

y
n)}

where xa,v are the embeddings extracted from the audio
or video raw-data. We took non-overlapping time-windows
of 0.25 and 0.5 seconds as inputs for audio and visual mod-
els for embeddings extraction. These embeddings are then
normalized with l2-normalization.

2.1.1. Video Embeddings

In each time-window of a video clip, faces are detected and
tracked using the Dlib library [17]. Subsequently, faces are
cropped to 96 × 96 resolution. A pre-trained VGG-M model
[18] is used to extract representations of a given face. We
used the output from the final convolutional layer which has a
512-dimensional vector. As these representations are for each
frame, we found out that mean-pooling through time-window
frames’ features have resulted in a good representation.

2.1.2. Audio Embeddings

We extract audio embeddings for a time-window using VG-
Gish [19]. VGGish is a variant of VGG models, which was
trained to generate high level and semantically useful em-
beddings for audio recordings. It was pre-trained with the
YouTube-8M dataset [20], and we use the output of the last
convolutional layer, which has 512-dimensional features.
VGGish was trained with audio raw data using a 16 kHz
mono sample rate. A spectrogram is computed using mag-
nitudes of the Short-Time Fourier Transform (STFT) with a
window size of 25 ms, a window hop of 10 ms, and a periodic
Hann window [19]. In our case, as the time-windows length
is either 0.25 or 0.5 seconds, the audio input size contains
either 48× 64 or 24× 64 log mel spectrograms. These inputs
were adapted to fit the requirements of the proposed MATER
framework.

2.2. MATER’s Components

We employ the encoder part of the transformer on each
modality’s embeddings. The encoder consists of a Multi-
Head Self Attention (MHSA) layer and followed by an
element-wise feed-forward layer. As suggested in the trans-
former [9], we also use 6 stacked encoder layers.

Positional Encoding (PE): the transformer adopts PE to
make use of the order in a sequence and its time-information,
instead of recurrence operations. It employs sine and cosine
functions of different frequencies:

PE(pos,2i) = sin(pos/100002i/dmodel)

PE(pos,2i+1) = cos(pos/100002i/dmodel)

where pos is the position and i is the dimension, which in-
dicates that each position corresponds to a sinusoid [9]. The
PEs are added to the embeddings prior to their flow to the
encoder and they have the same dimensions (dmodel) as the
embeddings.

Multi-Head Self-Attention (MHSA): initially, the input of
an encoder flows through a self-attention layer. In particular,
scale dot-product attention is applied to the input of queries
(Q), keys (K), and values (V). The attention function is ap-
plied on these packed matrices as:

Attention(Q,K, V ) = softmax((
QKT

√
dk

)V ) (1)



where dk dimensionality of K, and in the encoder of the self-
attention layers it is always Q = K = V. Subsequently, multi-
head attention is performed in parallel and their output is con-
catenated as follow:

MultiHead(X) = (concat(head1, ..., headh))W
O

where headi = Attention(QWQ
i ,KWK

i , V WV
i )

Within MATER framework, as the input of each sub-network,
we have audio-visual embeddings, Xm

t , where m refers to a
modality: m ∈ {a, v}, and t represents a time-window: t ∈
{1, 2, ...T}. T is the maximum number of time-windows in a
video clip. As a result, each sub-network of a modality has a
sequence of embeddings Xm = {xm

0 , xm
1 , ..., xm

T } as input to
the encoder, which attends to each time-window “token” in a
different weight.

MHSA helps the model to learn representations from dif-
ferent subspaces at different positions. Following the MHSA
layer, each output is fed onto the position-wise feedforward
layer, independently for each time-window.

Prediction Layers: On the final output of the encoders, a
mean pooling is applied for each modality separately:

X
′v =

1

T

∑T
t=0 x

′v
it and X

′a =
1

T

∑T
t=0 x

′a
it (2)

Two fully connected (FC) layers are applied on resulted audio
(Xa) and video (Xv) representations as the prediction layers.
The predictions from the two modalities are averaged and the
network is optimized accordingly:

predictions =
1

2

∑
a,v(W

m)TX
′m + bm (3)

where W and b are the parameters of an FC.

3. EXPERIMENTS

The proposed framework’s efficiency is evaluated on two
public multimodal emotion recognition datasets, namely
RAVDESS [21] and CREMA-D [22].

RAVDESS has two sets: speeches and songs subsets. We
use the speech set as it is labeled with eight archetypal Ekma-
nian emotions [23]: anger, happiness, disgust, fear, surprise,
sadness, calmness and neutral. The dataset has 24 subjects,
12 males and 12 females, with an age range of 21-33. It con-
tains short speech video-clips of an average of 3.82± 0.34
seconds. The total number of videos is 1444.

CREMA-D consists of 7450 video clips for 91 subjects.
The video-clips’ average duration is 2.63± 0.53 seconds.
Each video is labeled with six basic Ekmanian emotions:
anger, disgust, fear, happiness, neutral, and sadness, with four
different levels (intensities), low, medium, high and unspeci-
fied. The dataset includes people with a diverse background,
in terms of gender, ethnicities, and ages.

Table 1: Evaluations’ accuracies for various scenarios. RAVDESS
and CREMA-D have an average of 3.82± 0.34, and 2.63± 0.53
seconds length video clips, respectively.

Dataset #windows Duration (seconds) PE MHSA Accuracy %

R
AV

D
E

SS

8 0.5 3 3 76.3
8 0.5 3 7 70.6
8 0.5 7 3 75.2
8 0.5 7 7 69.4
16 0.25 3 3 74.4
16 0.25 7 7 66.2

C
R

E
M

A
D

6 0.5 3 3 67.2
6 0.5 3 7 64.4
6 0.5 7 3 65.0
6 0.5 7 7 61.8
12 0.25 3 3 66.4
12 0.25 7 7 58.3

3.1. Training Details

MATER was optimized during the training phase using Adam
optimizer [24], which is a variant of Stochastic Gradient De-
scent (SGD). Cross-entropy loss is used in this optimization.
We use a batch size of 64 and the framework was trained for
300 epochs. Initially, the learning rate (lr) was set to 1e−6 and
it was reduced if it reaches a plateau state after 20 epochs.

Evaluation Protocols: For both datasets, we use subject
disjoint k-fold cross-validation. To have an equal number of
subjects per fold, RAVDESS and CREMA-D were divided
into 12 and 10 folds, respectively. In each fold, a subject’s
samples are either in a testing or a training fold. In addition,
training and evaluations conducted separately on each dataset.

3.2. Baseline Models and Results

We examine the role of attention and the PE in audio-visual
(AV) performance. A baseline model is introduced in which
the attention and the PE are removed. The six stacked en-
coders’ feedforward layers are kept which makes it a strong
baseline as well. Keeping the depth of the models (includ-
ing the baseline) the same provides a fair comparison. In
addition, the flow of the embeddings, the training, and op-
timization processes are similar across the experiments. This
baseline represents the case of averaging time-windows with-
out weighing their importance for each modality. These stud-
ies aim to check the research’s goal regarding the weighting
mechanism that the attention scheme provides. In addition, it
examines the role of PE in the framework.

These comparisons were tested on different numbers of
time-windows. Due to different lengths of video-clips in
CREMA-D and RAVDESS, the number of windows was set
differently. We use sets of {8, 16} and {6, 12} time-windows
for RAVDESS and CREMA-D, respectively. As shown in Ta-
ble 1, we notice that the best performance on both datasets is
achieved when using MATER with the PE and the attention,
where the accuracy reaches 76.3% and 67.2% for RAVDESS



Table 2: AV accuracies of MATER and other related work.

Approach CREMA-D RAVDESS
Human Perception: AV 63.6 80.0

Dual Attention with LSTM: AV [14] 65.0 58.3
Metric Learning for AVER [25] 66.5 (not available)

MATER: AV+PE+MHSA 67.2 76.3

and CREMA-D, respectively. PE enhances the performance
since it gives the system the time and the order information,
where the improvement over using only the attention is at
least 1%. This information is further utilized through the
MHSA. Moreover, PE’s impact is more obvious when the
number of time-windows is large.

In the baseline results of the framework, in case of not
using both the PE and the attention, we observe that the
performance drop by at least 5% and 3% for RAVDESS
and CREMA-D, respectively. This gap increases when the
number of time-windows is doubled, where the improvement
reaches at least 8%.

Comparisons to other methods: previous work results
in both datasets, including human performance, are presented
in Table 2. MATER results in this table are obtained us-
ing the attention, with 8, and 6 time-windows for CREMA-
D and RAVDESS, respectively. Our approach outperformed
both human-perception and the recently published results in
[14, 25]. In [14], the performance (65.0% and 58.3.% accu-
racies) was obtained by combining facial and audio temporal
features with LSTM using Dual-Attention. In [25], a metric
learning approach was applied to fuse audio-video modali-
ties. MATER’s results show its efficiency for enhanced joint
multimodal learning and fusion. Another reason behind these
improvements is that MATER deals with the interaction of
the multi-modal data over-time using the time-windows seg-
ments. This makes the framework weighs and evaluates the
importance of the two modalities per emotion across time.

Confusion Matrices (CMs). CMs displayed in Fig. 2
show the achieved performance of our approach on RAVDESS
and CREMA-D classes and the degree in which each emo-
tion was confused to the other ones. The x-axis represents
the intended emotions, and the y-axis shows the predicted
emotions. Without exception, the diagonal elements have
the highest accuracies, which indicates the high classification
accuracy of the intended emotions. More importantly, the
improvement margin over the baseline is more obvious in
emotions such as anger and neutral.

In terms of MATER performance on emotions, anger,
neutral, disgust, and happiness have higher accuracy detec-
tion, compared to fear and sadness. While we notice that,
e.g., fear and sadness were confused with other emotions
in varied ratios. These results are also compatible with the
reported human perception and confusion in [22, 21].

Ablation study. Table 3 introduces the accuracies of the
underlying Audio (A) and Video (V) modalities, within the
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Fig. 2: CM between true and predicted labels.

Table 3: Multimodal and individual performance of MATER with
and without attention.

Dataset Attention A V AV

RAVDESS 3 59.2 58.2 76.3
RAVDESS 7 60.7 56.0 69.4

CREMA-D 3 57.5 51.7 67.2
CREMA-D 7 56.0 49.0 61.8

framework. These results show the sub-modalities’ contribu-
tion in the performance of the framework. They show that the
accuracy is significantly increased when using both audio and
video modalities. The improvement is at least 10% over the
uni-modal perception. Notably, attention helps in the multi-
modal fusion due to the weighting mechanism of the modal-
ities over-time. This highlights the essential role of multi-
modal perception to obtain enhanced emotion recognition.

4. CONCLUSION

This research highlights the importance of exploiting audio-
video signals’ temporal strength for emotion recognition. We
utilize the attention mechanism on audio-visual embeddings
over time-windows to leverage their properties for emotion
recognition. Evaluation of two datasets shows that the pro-
posed method with the attention mechanism improves the per-
formance over the baseline significantly. They show the ad-
vantage of weighing the contribution of each modality.
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