Temporal Triplet Mining for Personality Recognition

Dario Dotti, Esam Ghaleb and Stylianos Asteriadis
Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, The Netherlands
{dario.dotti, esam.ghaleb, stelios.asteriadis} @maastrichtuniversity.nl

Abstract— One of the primary goals of personality computing
is to enhance the automatic understanding of human behavior,
making use of various sensing technologies. Recent studies have
started to correlate personality patterns described by psycholo-
gists with data findings, however, given the subtle delineations of
human behaviors, results are specific to predefined contexts. In
this paper, we propose a framework for automatic personality
recognition that is able to embed different behavioral dynamics
evoked by diverse real world scenarios. Specifically, motion
features are designed to encode local motion dynamics from the
human body, and interpersonal distance (proxemics) features
are designed to encode global dynamics in the scene. By using
a Convolutional Neural Network (CNN) architecture which
utilizes a triplet loss deep metric learning, we learn temporal, as
well as discriminative spatio-temporal streams of embeddings to
represent patterns of personality behaviors. We experimentally
show that the proposed Temporal Triplet Mining strategy
leverages the similarity between temporally related samples
and, therefore, helps to encode higher semantic movements or
sub-movements which are easier to map onto personality labels.
Our experiments show that the generated embeddings improve
the state-of-the-art results of personality recognition on two
public datasets, recorded in different scenarios.

I. INTRODUCTION

Extensive studies in the field of psychology showed that
attitude, mood, and personality are directly connected to
human behavioral patterns [22]. Since these human char-
acteristics are often subtle, the affective computing field
still faces several challenges. With the recent advances in
computational resources and data availability, attention is
now shifting towards personality analysis (i.e. mapping data
findings to personality labels), more intensively than in the
previous years. Recent works show that personality and, in
general, affective computing, can contribute significantly to
several applications in areas like surveillance [13], Human-
Computer Interaction [14], and healthcare [11]. Furthermore,
the mapping of behavioral patterns to personality labels
allows systems to be more interactive and adaptive [2],
avoiding unnecessary effort in manual interaction ensuring
smoother and more personalized interactions.

Recent personality computing applications achieved reli-
able results in analyzing faces [18], body postures [15], and
multimodal information [23]. Despite this growing attention,
most of the models focus mainly on specific contexts where
behaviors can be mapped ad-hoc to personality labels. For
example, facial expressions can be linked to personality
attributes for applications like job screening [24], however,
the user position has to be constantly in front of the camera
in a quiet environment. Recently, authors in [16] proposed
a CNN model for personality recognition using body and
contextual information in different scenarios. Motion and
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Fig. 1: High level description of the proposed model. The general
goal of our approach is to create an embedding space optimized for
the personality recognition task. During training time, the model is
encouraged to match similar short-term spatio-temporal descriptors
using the proposed TISML framework to create discriminative
behavioral sequences with varied temporal relation (bottom row,
right).

context samples are extracted in time windows, and mapped
to personality labels, yet, the temporal correlation of human
motion dynamics is not exploited. Building on these findings,
in this paper, we propose a novel framework that further
expands the use of body information, context learning and
their interaction in time, using Deep Metric Learning (DML)
[12]. As stated by [12], DML on human motion data im-
proves the measurement of motion similarities. Hence, by
adding the temporal analysis to our DML framework, we
help the system to discover higher semantic movements that
enhance the discovery of discriminative personality patterns,
and therefore, improve the personality recognition task.

In Fig. 1, we show a high level description of the proposed
model. The analyzed data is composed of people performing
activities in certain scenarios. Every person is different in the
way they act and move (indicated by the empty shapes; top
left), however, there exist common behavioral patterns that
can be categorized into discrete personality classes (indicated
by colored shapes; top left). Human motion, as well as
proxemics features, are extracted in a time-window approach
(top right of the figure).

The framework is trained through the Temporal Iden-
tification Similarity Metric Learning (TISML) component,
which contains two signals: The first one is an identifica-
tion signal based on personality labels, while the second
one is a similarity signal based on Deep Metric Learning
(DML). The general goal of the DML approach is to bring



samples with similar labels (positive examples) closer to-
gether, while pushing apart samples with different labels
(negative examples). Additionally, in the training stage, our
intuition is to select temporally related positive examples to
encourage the model to generate embeddings with temporal
relation while maintaining a high discriminative power for
personality recognition. The bottom of Fig. 1 illustrates
the training process, where, before training, samples are
randomly distributed in the embedding space (bottom left).
Our proposed approach employing TISML helps the model
to generate temporally, as well as semantically related em-
beddings (bottom right).

We found that learning the temporal similarity allows
the model to assemble longer sequences that contain higher
semantic value than the input features. Moreover, as we do
not add any constraint on the temporal relations, the model
automatically learns sequences of varied temporal lengths
(bottom right of the figure). As the same human movements
can be performed at varying speeds and durations, our
results are relevant in improving the similarity measurements
of human motion to select more discriminative personality
patterns. Finally, our contributions are as follows:

« We build a novel deep framework that learns tempo-
ral and discriminative motion patterns in real-world
scenarios. We experimentally show that our generated
embeddings perform better than state-of-the-art short-
term motion samples.

« Using TISML, we encode the relation of temporally ad-
jacent spatio-temporal samples, hence, without introduc-
ing any temporal constraint or alignment during training
time, motion dynamics carrying similar semantic values
are matched via deep metric learning.

« Extensive experiments are conducted to investigate the
relation between local motion features, global context
features and their interactions in time using two real-
world datasets.

II. RELATED WORK

Body information and personality. Recent works showed
that body expressions are a powerful personality indicator
[20], [16]. Moreover, human body communication can be
better integrated with (visual) sensing technologies as it is
more robust to camera positioning, noise and occlusions
[15]. Authors in [6] investigate nonverbal behavioral cues
using optical flow and Neural Networks for personality
and leadership recognition. Authors in [15] extracted
body information using skeleton tracking methods, and
learned body motion dynamics using an Autoencoder-LSTM
framework. In the recent paper proposed by [16], body
motion information as well as context features are fused in
a CNN framework for personality recognition in different
scenarios. Features are extracted every n frames and mapped
independently to personality labels.

Context information and personality. How people use
and share their interpersonal space has been shown to be
a discriminative cue for personality understanding [34].

Interpersonal distance has been studied extensively in social
scenarios [34], additionally, in a recent study proposed by
[16], authors linked the use of personal space to personality
patterns also in a nonsocial environment (i.e. when people
are not surrounded by others). Given these findings, we
further study the temporal interaction between body motion
and context features for improved personality recognition
performance.

Deep Metric Learning. DML has become popular with
the advances and success of deep learning [8]. It projects
embeddings produced by mapping functions (f(x)) such as a
CNN, onto a manifold space where similar samples are closer
while the dissimilar ones are placed apart from each other.
In this space, a Euclidean distance between two samples
d(f(xi), f(xj) = || f(x:) —f(xj)||§) can be employed directly
as a distance metric, for classification or retrieval tasks.
Deep learning can be used explicitly in learning mapping
functions for metric learning through a set of non-linear
transformations, with a metric loss to exploit the similarity
and dissimilarity between data samples [21].

The common learning procedure of DML frameworks
includes the selection of positive and negative examples
using the class labels [27]. Recently, DML has also been used
in self-supervised learning where the similarity is indicated
using data attributes [32], [4]. Authors in [4] apply DML
to construct a motion dictionary capturing the high-level
similarity between the sequence of motions that vary in
terms of joint-angles, timing, and ordering. The proposed
framework is trained using a triplet-loss strategy, where
positive examples are motion words that appear temporarily
close in the training data. Authors in [12] proposed a metric
objective to measure the similarity of two motion sequences
to address the limitation of standard triplet-based DML when
dealing with human motion data. They aim to enforce the
separation of embeddings with respect to the means of
associated distribution moments (time-windows). Similarly,
we propose a triplet-loss learning framework to improve the
similarity measurements of motion features for personality
recognition.

III. THE PROPOSED FRAMEWORK

We propose a framework to encode local motion dynamics
from the human body in combination with global interper-
sonal distances (proxemics) to encode personality-dependent
behavioral patterns. Our work employs DML to map spatio-
temporal descriptors to an optimized latent space, where,
behaviors with discriminative power are learned and grouped
together whereas non-informative sequences are positioned
far apart. As human behaviors are very dynamic and change
according to the situation, it is very difficult to find semantic
similarities between them [12]. Therefore, a novel Temporal
Triplet Mining (TTM) strategy tailored for behavioral data
is proposed. We argue that taking advantage of the triplet
mining scheme, short-term spatio-temporal descriptors are
implicitly matched creating longer sequences with higher
semantic value. As a result, our embedding space encodes



Skeleton Motion
Joint ID

Frame sequence n

Interpersonal
Distance

Ccunexs ID

Frame sequence n

/ ) yz
(mp) ((m.p) B /[ pos ! "
FoR () i | neg |/ np—l S5 ) N Lrisae m
— " i
: i )1
Hard ;i m A
Negatives ./
neg pos

TISML

Semi-Hard ..
Negatives n{z
Margin {? n?

Fig. 2: The proposed Architecture. Two descriptors representing the skeleton temporal motion as well as the spatial interaction are extracted
every frame sequence n. The descriptor images show the evolution over time (x-axis) of the reference information (y-axis). The reference
information is joints motion evolution for the person descriptor and proxemics to the surrounding contexts for the context descriptor. Deep
CNN models are then used to obtain a compact representation of each spatio-temporal information. The outputs of the CNN models are
concatenated and fed into the proposed learning framework TISML. An effective Temporal Triplet Mining (TTM) is employed to select
temporally related positive samples encouraging the model to learn meaningful behavioral sequences that bear a higher discriminative
power. Finally, a double objective loss function Lyjsy; is adopted for personality recognition and personality retrieval.

behavioral patterns of varying sizes optimized to retrieve
personality-conditioned behaviors.

Fig. 2 shows our framework architecture, where skeleton
motion, as well as proxemics descriptors, are extracted for
every frame sequence of size n. As the two descriptors
describe the motion and the spatial dynamics of a sequence,
two separate CNN architectures are leveraged to obtain
compact representations of the input features. The obtained
representations are concatenated and fed to the Temporal
Identification Similarity Metric Learning (TISML) loss com-
ponent. TISML aims to project the concatenated motion
(m) and proxemics (p) embeddings produced by the two
CNNss (which serve as mapping functions of the raw features)
flmp) (xlmp)y R onto a shared feature space R? in
which similar features are positioned closely and dissimilar
ones are put far apart from each other based on data similarity
and personality class. To do so, within TISML, a simple
but effective Temporal Triplet Mining (TTM) is proposed to
facilitate the overall learning effort.

A. Motion Features

In this work, skeleton information is extracted from every
frame using the OpenPose library proposed by [9]. As this
method does not provide a skeleton re-identification function,
following [16], a frame by frame tracking information is
added. Then, local temporal information is extracted from
every skeleton joint in terms of joint motion and rotation.
As explained in [19], similarities between short-term motions
are easier to learn in respect to long-term sequences as they
embed less noise. For every detected joint j at a frame
f, we compute its spatial as well as rotation evolution
in a narrow frame sequence of length n. By combining
all the skeleton joints in a sequence nj> .y, we obtain a
matrix of size J x n, where J is the total number of the
detected joints. The generated matrices describe the motion
in 3D Cartesian coordinates. Lately, numerous works showed
that, by converting from Cartesian to Cylindrical coordinates

[33], a more invariant motion descriptor could be obtained.
Therefore, following [16], 3D Cartesian motion values are
transformed into 3D Cylindrical values.

Finally, to leverage the learning power of CNN models,
we utilize motion image clips, in which we treat Cylindrical
coordinate values as pixel values in an image [5], [19].
Hence, the values are converted between 0 and 255 using
a linear transformation and the matrices are reshaped to be
suitable for a CNN architecture. Fig. 2, top stream, shows
the motion descriptor construction, where given a skeleton
sequence of size n, frame by frame motion values (x-axis)
of all the detected joints (y-axis) are organized in a motion
image. In this example, the highest motion values (yellow
color) correspond to the skeleton arms.

B. Interpersonal Distances (Proxemics)

In this work, we aim to build a general system that could
follow the users in different situations (i.e. at home or at
a social event), hence, in addition to local skeleton motion
image, we build interpersonal distance (proxemics) images
that can be applied to both social as well as nonsocial
scenarios.

Social Proxemics. For the social scenario, for every
detected subject in the scene, we compute the Euclidean
distance between the current subject s and the rest of the
subjects S present in the scene. Specifically, we use as a
reference point the joint j’, which corresponds to the body
torso (empirically chosen as the most robust to noise), and
we compute the Euclidean distance between the coordinates
of ji and ]’S By combining the interpersonal distances
between subjects within the frame sequence n, we obtain a
matrix of size S x n, where S is the total amount of subjects
in the dataset. Please note that, to overcome the problem of
finding different amounts of subjects in the scene at different
times, we construct the images considering the total amount
of subjects in the dataset . In the situation when not all
the subjects are present in the scene, the maximum distance



values are assigned.

Nonsocial Proxemics. For the nonsocial scenario, we use
the intuition proposed in [16], in which proxemics is intended
as “the way people use their personal space in relation to
objects”. There exist several studies showing how people
engage with objects as they engage with other humans
(called Anthropomorphism). Therefore, an interesting idea is
to extract how people move and interact with the surround-
ings (i.e. proxemics towards objects instead of people). For
example, we hypothesize that an Overcontrolled personality
that has a high level of the Conscientiousness trait is more
meticulous in the searching of objects than a Resilient
personality.

Following [16], fist we locate semantic regions of the
scene in an unsupervised way. Given a discrete set of r
regions, we compute the Euclidean distances between the
position of the subject s and the semantic regions r for
every frame sequence n, obtaining a final matrix » X n.
Finally, the final values are transformed into Cylindrical
coordinates, converted between 0 and 255 using a linear
transformation and the matrices are reshaped to be suitable
for a CNN architecture. Fig. 2, bottom stream, shows the mo-
tion descriptor construction process, where, the interpersonal
distance between the given subject s and the context entities
( r in the nonsocial scenario and S in the social scenario ) are
depicted on the y-axis and temporal information is depicted
on the x-axis.

IV. TEMPORAL IDENTIFICATION SIMILARITY METRIC
LEARNING (TISML)

A. Definitions

In this study, a given sequence of motion and proxemics
features of a subject s (x?(m’p )) is associated to a discrete label
(vs) to estimate the corresponding subject personality label.
Each frame sequence is represented by motion and proxemics
embeddings f("P) (x?<m’P )), where f(™P) denotes the motion
and proxemics mapping function. For simplicity, we refer
to fmp) (x?<m’p )) as f(x), which includes both motion and
proxemics embeddings.

B. Formulation

TISML optimizes f(x") to generate embeddings correlated
with a personality class. In our work, the personality learning
task is guided through two signals, the first signal is a
similarity measure based on a DML loss which positions
semantically related embeddings closer to each other (de-
creasing the intra-class variations) and positions the seman-
tically unrelated embeddings far apart (increasing the inter-
class variations) [4]. We apply DML based on the triplet loss
strategy.

Triplet loss uses triplet sets: {f(x%),f(x}1), f(x}2)},
where f(x?) is an anchor (baseline), f(x}]) is a positive
(similar) sample to f(x}), and f(xj_) is a negative sample
(i.e. different label) to f(x?). As shown in (1), the optimiza-
tion procedure aims to minimize the distance between the an-
chor (baseline) input to a positive sample while maximizing

the distance from the anchor to the negative sample within
a margin [27].

Lein(F(0), D), FT) = £ = FOD) 15—
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The second signal in our work is an identification signal,
which classifies a given embedding into one of the given
personality type labels (e.g. Y=3). The identification signal is
achieved by an n-way softmax-layer to predict the probability
distribution over the n-personality labels [31]. In our work,
the network is trained to minimize the cross-entropy that
servers as the identification loss and is defined as:

Y
Ligen (f(x5),5,0) = =} —pilogpi )

i=1
where f(x”) refers to the mapping functions that produced
the motion and proxemics embeddings, y is the target class,
and 6 denotes the parameter of the softmax layer. p; is the
target probability distribution, where p; = 0 for all i except
pi =1 for the target class i. pi is the predicted probability
distribution. Finally, the optimization of the network is

achieved through the joint loss and formulated as follows:

argmin Lyzsmr = Lsim + Lident 3)
flm.p)

The goal of this formulation is to optimize the proposed
behavioral descriptors mapping the function f (m.p) during the
training process to generate temporal personality-related em-
beddings. This strategy utilizes, simultaneously, the similar-
ity measure between short-term descriptors through Lg;,,, and
the supervised class information through the identification
signal Ljg.n;. Note that the two losses are equally weighted.

C. Temporal Triplet Mining (TTM)

A prominent problem when using the triplet mining strat-
egy is that the possible number of triplet sets could be ex-
tremely large, and training the DML can be challenging and
prohibitively expensive. As a result, one of the main chal-
lenges in the triplet loss based DML is the slow-convergence
during the training process. Without a careful and smart
strategy to select the triplets, DML could only learn to map
correctly easy sequences with little discriminative power.
Therefore, in this work, we adopt a semi-hard triplet-sets
mining strategy to guide the training process during the
selection of the triplet sets. Moreover, as temporally adjacent
short-term descriptors are likely to belong to the same
semantic behavior, we propose a Temporal Triplet Mining
(TTM) strategy.

The training process is displayed at Fig. 2 (TTM). For
a given anchor f(x7) at a frame sequence n, we restrict
the selection of its positive samples to the temporal vicinity
(i.e. within a temporal window ¢). For example, if we set
t =3 centered to the anchor temporal position 7, the positive
samples will be selected at n — 1 and n+ 1. Regarding the
negative samples, they are randomly chosen from other per-
sonality classes and could be from any time-window. Clearly,



the choice of 7 is critical to obtain the best optimization
performance and its impact is discussed in the experiments
section (Sec. VI-C).

The optimization process is based on the online DML
where the selection of triplet sets is based on mini-batches
in each iteration during the training phase [28], [30]. Specif-
ically, at every batch, we compute the loss on all the triplets
that satisfy the constraint expressed in eq. 4. As also shown
in Fig. 2 (TTM), the loss is computed on the hard-negative as
well as semi-hard negative samples. A crucial step is to not
take into account the easy negatives (i.e. d(f(x?), f(x}=)) >
d(f(x?), f(x)) + margin) which would give a small loss,
and therefore, yielding little information to the learning
procedure.

d(f(x), f(7)) <d(f(x), f(F)) +margin - (4)

Since the proposed TTM minimizes the distance between
samples in the temporal vicinity, adjacent short-term seman-
tically related descriptors are aggregated forming an informa-
tive series of sequences with different lengths. One advantage
of this approach is that unlike approaches like Dynamic-
Time-Warping (DTW), we do not need any explicit time
synchronization or alignment to find similarities between
sequences of different lengths [12].

V. IMPLEMENTATION DETAILS

We use the Keras [10] and Tensorflow frameworks [1]
for all computations in this work. As the datasets used are
recorded using different frame rates, we experimentally set
the frame sequence duration to n = 180 and n = 90 frames
for the nonsocial dataset and the salsa dataset respectively
(note that due to different frame rate both of the sequences
contain 6 seconds of data). For our image descriptors, we
resize the final images to a 32 x 32 image to be a suitable
input for the CNN architecture. Since our descriptor is not a
real image, this dimensionality has the advantage of not being
computationally expensive while still preserving the discrim-
inative information. Given the motion as well as proxemics
images as input, the VGG19 architecture [29], pre-trained on
ImageNet [26], is adopted for feature extraction and learning.
Although CNN models demonstrated to learn discriminative
and generic features applicable in novel domains [19], early
convolutional layers learn more low-level generic features,
while higher convolutional layers learn more task-specific
features.

Moreover, as our features describe temporal information,
they are not optimized for standard pooling strategy. Hence,
we extract a compact representation from the Conv3 layer
and, following [19], we apply the Temporal Mean Pooling
(TMP) to exploit the temporal information in our spatio-
temporal image descriptors. The output descriptors are con-
catenated, and fed to two Fully-Connected Layers with Batch
normalization. Finally, our embeddings dimension of size
128 are used as input to our TISML.

Training. The proposed framework is trained on a Nvidia
TITAN V GPU for 80 epochs. The batch size is obtained
from two parameters: the number of randomly selected

anchors a and the size of the temporal-window ¢. In order
to obtain batches containing a balanced amount of data for
each personality labels, we set a = 15 (i.e. 5 anchors for
each label), while ¢ is set to be t = 5 (more details on
this parameter selection in section VI-D). We use Adam
optimizer with a 7e — 6 learning rate and the margin in the
triplet loss is set to O.1.

VI. EXPERIMENTS

To evaluate the proposed study, we present personality
recognition experiments on two public datasets recorded in
different scenarios.

A. Datasets and Labels

The Salsa dataset [3] contains multimodal data from two
social events (30 minutes each) in an university scenario.
The two parts contain the same participants recorded during
a poster session as well as a cocktail party. Their personality
scores were collected using the Big-Five personality ques-
tionnaire [17].

Personality in a nonsocial context dataset [15] provides
video data of 45 participants in an unconstrained indoor
scenario. Every subject performed six tasks resembling Ac-
tivities of Daily Living (ADL) and filled the short version of
the Big-Five personality questionnaire [25].

Personality labels: We use as labels the three personality
categories provided by [16]. In this model, the Big Five
personality traits (Extraversion, Agreeableness, Conscien-
tiousness, Neuroticism and Openness) are projected onto
three semantically higher categories called personality types
[7] (Resilient, Overcontrolled and Undercontrolled). This
model has the advantage of representing the commonly
used one-dimensional independent traits (e.g. high/low Ex-
traversion independent from high/low Neuroticism) as mul-
tidimensional dependent factors. For example, the Resilient
personality type is represented by high Extraversion and
Openness traits, and low Neuroticism. This multidimensional
representation of personality behaviors was shown to be more
similar to human judgments of behavioral characteristics
[18].

B. Evaluation protocol

As our TISML framework contains two objective func-
tions (i.e. Lg;, and Ljg., ), following the experimental setup
described in [31], we use the prediction of the softmax
layer when comparing to the state-of-the-art results on the
personality labels. On the other hand, the discriminative
power of the generated embeddings is evaluated separately,
as to the authors’ knowledge this is the first work that
employs a DML strategy for personality recognition. In all
of our experiments (e.g. Table I and Table II), we follow
a leave-subjects-out based evaluation, in which a set of 6
subjects for the nonsocial dataset, and a set of 3 subjects for
the salsa dataset, are left out from the training procedure and
used only for testing. All results are reported in terms of fl
score. We compare our performance against various state-of-
the-art results for both datasets, note that we report only the



TABLE I: F1 score on the personality recognition task using
different triplet mining strategies.

Triplet mining strategy Salsa  Nonsocial
Random triplet mining RTM  72.0% 71.6%
Triplet mining through TTM  75.6% 74.9%

results from [16] that used the same experimental protocol
as ours (i.e. leave-subjects-out, and f1 accuracy).
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Fig. 3: (a) Temporal Tripet Mining (TTM) Embeddings. (b) Ran-
dom Triplet Mining (RTM) Embeddings. TTM helps in creating
a more explicit separation between the personality classes (red,
blue, green). Moreover, short-terms spatio-temporal descriptors are
temporally aligned via TISML creating higher semantical sequences
that are easier to map to personality labels.

C. TMM versus Random Triplets Mining (RTM)

In this section, we investigate the effect of selecting
positive samples that are temporally related to the anchor
(as explained in section IV-C). To do so, we compare the
proposed TTM approach (section IV-C) to a standard random
positive selection (RTM). In RTM, we select random samples
from other subjects with the same personality. Formally,
given an anchor f(x?) with a personality label y;, positive
samples f(x}) are chosen given the following constraints:
Ys+ =Ys and s+ # 5.

The results are reported in Table I. Results show that
selecting random samples from different subjects with the
same personality ensures the model to learn similarities
invariant to the identity of a subject. However, as the samples
embed only short sequences (90 or 180 frames depending
on the dataset) the discrimination between the personality
classes is harder. On the other hand, selecting triplets with
temporal constraint forces the model to learn similarities
over samples further away in time, and therefore, learning
more comprehensive behaviors which results in a stronger
personality recognition performance.

Furthermore, in Fig. 3, we provide a visual example of
the embeddings generated through different triplet mining
strategies. In particular, Fig. 3a depicts the short-term spatio-
temporal descriptors of 5 batches from the nonsocial dataset
[15] encoded via the proposed TTM, while Fig. 3b shows
the short-term spatio-temporal descriptors of the same 5
batches encoded using RTM. It is easy to notice that the
separation between the Y = 3 personality classes (depicted
using red, blue, and green color) is more explicit in Fig.
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Fig. 4: Parameters investigation.

3a, confirming the results of Table I. Moreover, TTM em-
beddings are organized in sequences of varying lengths, as
can be noticed in the subclusters formed in Fig. 3a, while
the embeddings generated by RTM do not present any visible
structure. As the short-term sequences are temporally aligned
during the TISML learning, more discriminative behavioral
patterns are determined to enhance the overall understanding
of personality displays.

D. Impact of Time-window Selection

As explained in section IV-C, the temporal range of the
time-window ¢ is crucial to capture the affective behaviors of
the analyzed subjects. Positive samples that are temporally
too far away from the anchor risk to carry little similarity, and
therefore, deceive the final goal of aggregating semantically
related descriptors. On the other hand, positive samples
that are too temporally close to the anchor risk to be “too
similar”, and therefore, yield an insignificant contribution to
the learning objective.

In Fig. 4a, we show the impact of the time-window
selection. The nonsocial dataset [15] contains data of subject
performing problem-solving activities in an indoor environ-
ment. As the subjects are moving to complete the given
tasks, the behavioral data contains several active and fast
interactions, hence, selecting positive samples in a large time-
window range, (e.g. t = 11), is not beneficial (blue line).
As a matter of fact, fast interactions have a short duration,
and therefore, highly informative samples have to be selected
from a shorter time-window (e.g.  =5). On the other hand,
the Salsa dataset [3] contains interaction from a poster
session and a cocktail party in a university environment.
As subjects are engaged in social interactions, movements
are slower and the impact of longer time-windows is less
visible. Given the results, t = 5 is selected for the rest of the
evaluation in both datasets.



=== Proxemics Motion ~ mmE Motion-proxemics

Salsa Nonsocial

Fig. 5: Ablation study to evaluate the contribution of the input
features. The framework is trained solely on motion, proxemics,
and on both motion and proxemics features.

E. Ablation study

An ablation study was conducted to verify the contribution
of the chosen input descriptors (Fig. 5). In this experiment,
the framework is trained using a single input descriptor per
time (i.e. skeleton motion or proxemics features), or using
the combination of the two cues as displayed in Fig. 2. The
results show that TISML achieves higher accuracy using the
two descriptors combined, confirming our initial hypothesis
and, thus, it will be used in the rest of our experiments.

F. Embedding Evaluation

To evaluate the discriminative value of the generated
embeddings (f(x7)), we use the conventional K-Nearest
Neighbor (KNN) classifier with Euclidean distance. Fig. 4b
shows the results of several K for the personality recognition
task on the analyzed datasets. Good performance is obtained
when K is set to higher values, in a range between [25,100].
For example, at kK = 50, we obtain 73.5% and 72.8% f1-score,
for both, Salsa and non-social datasets, respectively.

G. Baseline Comparison

We compare our performance against various state-of-the-
art results for both datasets. For a fair comparison, Table
Il is organized according to the input features. The first
part of the table indicates the performance of methods that
uses solely skeleton motion features. In particular, LSTM,,
proposed by [15] uses an Autoencoder-LSTM framework to
learn skeleton motion dynamics. Clips + MTLN, proposed
by [19], uses similar skeleton motion descriptors as input
to a CNN framework called MTLN. EL-LMKL [6] was
proposed for leadership recognition as well as personality
trait recognition using optical-flow motion information. As
ElI-LMKL uses optical flow-based features, it cannot be
applied to the nonsocial dataset.

In the second part of Table II, we report the performance
obtained using motion-proxemics features. In particular,
Person-Context CNN [16] maps short-term motion-context
descriptors to personality labels using a multi-stream CNN
framework.

Additionally, to evaluate the effect of each term in our ob-
jective function Lysyr (equation 3), we also train the model
with individual loss functions, Lg;, and Ljg.., separately.
The results of this evaluation are indicated as “Similarity
Signal” when trained using the first term Lg;,,,, while we refer
to the results as “Identification Signal” when the model is
trained using the second term Ljge;-

TABLE II: F1 score on the personality recognition task using
different features of TISML compared to baselines and other
approaches.

Feature Type Method Salsa Nonsocial
- LSTM,; [15] 59.6% 55.3%
S EL-LMKL [6] 61.2% -
§ Clips+MTLN [19] 68.5% 70.7%
TISML (ours) 72.3% 71.2%
.6 Person-Context CNN [16] 73.0% 72.6%
_5 £ TISML with only Identification Signal (ours) 68.2 67.7
o § TISML with only Similarity Signal (ours) 73.2 73.0
=& TISML (ours) 75.6%  T4.9%

Results show that the proposed TISML framework
achieves higher results in all the tested feature settings.
Specifically, we achieve higher results compared to the state-
of-the-art models that use only motion by 3.8% for the salsa
dataset and by 0.5% on the nonsocial dataset. When using
skeleton motion and proxemics, we improve the personality
recognition state-of-the-art results by 2.6% on the salsa
dataset, and by 2.3% on the nonsocial dataset.

Furthermore, the TISML trained using a double objective
loss reaches higher performance results than when trained
using individual signals, proving that using a double term is
beneficial to create more informative embeddings leading to
better recognition performance on both datasets.

VII. CONCLUSION

In this paper, we propose a model that analyzes human
behavioral patterns from different real-world scenarios to
tackle the personality recognition task. Using a CNN frame-
work, we extract compact representations of local skeleton
motion features, as well as interpersonal distance features.
The learning task is accomplished using the novel TISML
component. In TISML, a Temporal Triplet Mining (TTM)
strategy is employed to leverage the similarity between
temporally adjacent short-term descriptors as they are likely
to belong to the same semantic behavior and, thus, have
higher chances to lead to robust modeling of personality
labels. Finally, a double term objective function is used
for personality recognition and personality retrieval tasks.
Experiments show that our framework generates embeddings
that are aligned in temporal sequences and therefore, creates
more meaningful behavioral patterns that improve state-of-
the-art results.
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