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Behavior Analysis through 
Multimodal Sensing for 
Care of Parkinson’s and 
Alzheimer’s Patients 

The analysis of multimodal data collected by 

innovative imaging sensors, Internet of Things 

devices, and user interactions can provide smart and 

automatic distant monitoring of Parkinson’s and 

Alzheimer’s patients and reveal valuable insights for 

early detection and/or prevention of events related to 

their health. This article describes a novel system that 

involves data capturing and multimodal fusion to 

extract relevant features, analyze data, and provide 

useful recommendations. The system gathers signals 

from diverse sources in health monitoring 

environments, understands the user behavior and 

context, and triggers proper actions for improving the 

patient’s quality of life. The system offers a 

multimodal, multi-patient, versatile approach not 

present in current developments. It also offers 

comparable or improved results for detection of 

abnormal behavior in daily motion. The system was 

implemented and tested during 10 weeks in real 

environments involving 18 patients. 
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The United Nations predicts a 45-percent increase in the number of people aged 65 and older in 
the next 20 years in the developed world. This will likely test the financial sustainability of 
healthcare systems. Supporting increased autonomy and an independent lifestyle for the elderly, 
especially those with cognitive impairments, poses a significant challenge. 

Information and communication technology (ICT) tools support medical treatments by supplying 
a range of services for medical personalized prevention, early detection, cognitive training, and 
recommendations. Continuous evolution in size, processing capability, autonomy, and function-
ality has permitted a new range of possibilities for ad-hoc and full-time integrated healthcare 
purposes.1 These applications have attracted scientific and commercial interest in a sector that 
has been dominated in the past by expensive and/or tailored solutions. 

In this article, a complete ICT-based system to support autonomy for people with cognitive dis-
eases such as Parkinson’s and Alzheimer’s is presented. This system involves multisensory data 
capturing and processing based on various sensing technologies, including vision- and Internet 
of Things (IoT)-based devices. Additionally, advanced multimodal fusion (MF) techniques are 
applied to medical and behavioral data to extract relevant features for abnormality detection. The 
results of data analysis provide useful recommendations to stakeholders. This system is intended 
to gather signals from diverse sources not only in health monitoring (HM) environments, but 
also in quotidian patient locations to understand the user behavior and context, and then trigger 
proper actions related to medical or social decision-making. While the system can detect 12 dif-
ferent types of events, this article focuses on two of them: freezing of gait (FoG) and abnormal 
behavior in daily motion activity. 

RELATED WORK 
Some previously presented IoT-based approaches, such as Tripoliti et al.,2 required patients to 
wear a high number of sensors (such as six accelerometers and two gyroscopes), which they 
needed to attach one by one. Mazilu et al.3 was able to predict FoG episodes, but only using elec-
trocardiography (ECG) and skin-conductance (SC), which are more intrusive, tailored, and ex-
pensive solutions. Other solutions (such as Rodríguez-Molinero et al.4) used only one sensor, but 
included a dedicated development to detect FoG. 

Multiple approaches for monitoring indoor human behavior have been presented (such as Nef et 
al.5) and use different types of cameras, modalities, and system architectures. However, none 
studies the kind of patients we are focusing on. In these approaches, anomalies are detected by 
either a sudden change of behavior such as falling down (in Yang, Ren, and Zhang6) or statistical 
analysis over long time periods (in Zhou et al.7). Efros et al.8 investigate learning behavior pat-
terns based on trajectory analysis and capture the overall spatial arrangement of local motion dis-
placement vectors. Jiang, Wu, and Katsaggelos9 propose a hierarchical clustering method for 
motion trajectories analysis. There are a wide range of approaches for integrated healthcare in 
the context of smart homes5 and elderly living assistance10 that provide detection of behavior, 
but they are more focused on activity recognition than patient abnormal behavior analysis. 

Regarding the video-based monitoring field, Riboni et al.11 uses a similar approach to the one 
presented in this article. However, the sensorial system in this article allows us to extract more 
significant features to achieve better results. Forkan et al.12 presents interesting concepts, but it is 
based only on simulated data. 

TECHNICAL APPROACH AND SYSTEM SETUP 
To cope with HM requirements, the goal was to fulfill technical requirements for flexibility, 
modularity, scalability, usability, and accessibility. A three-layer architecture is proposed, as de-
picted in Figure 1. This architecture consists of three layers: a services subsystem, a high-level 
subsystem, and a low-level subsystem. The services are oriented to gather other subsystems’ in-
formation and present the relevant information to the actors involved. The high-level subsystem 
provides functionalities employing data from multiple sources such as medical inputs, digital in-
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teraction, and sensorial data to fuse information related to HM data (historical data, activity anal-
ysis, health records, and input from professionals). The outcome is a set of support decisions re-
lated to patient management. Finally, the low-level subsystem retrieves information from the 
sensors, processes the information, and delivers it to the high-level subsystem. 

 
Figure 1. Overview of the complete system architecture. 

SENSING TECHNOLOGIES 
The selected sensors provide different types of information: visual, motion, or depth. The de-
vices were chosen according to the scenarios where patients, depending on their disease and pro-
gression level, can be monitored in a multimodal environment: patient’s home, senior center, and 
rehabilitation center. The employed sensors are: 

• Multisensory band (bracelet), which provides health information (heart rate and skin 
temperature) and allows the acquisition of motion data (accelerometer, gyroscope, and 
magnetometer). 

• Binary sensor, a non-intrusive sensor placed on doors or drawers that can detect when 
they are opened or closed. It is used to delimit the patient’s behavior analysis zone 
within his or her house. 

• RGB-D (Microsoft Kinect v2) camera, which allows for extraction of depth information, 
enabling deep motion analysis to monitor user activity, status, and evolution. 

• Zenith camera, a 360-degree panoramic camera that allows a wide coverage of target 
areas such as living rooms in senior centers. Results of human tracking algorithms are 
improved with a higher view of the environment because occlusions are less present. 

• Wireless sensor network (WSN) anchors or beacons, which complement image-based 
sensors by estimating trajectory. Anchors, placed on the roof, monitor the radio signals 
from patients’ wearables in a non-intrusive manner. 

Data Collection and Handling  
An adaptive multi-sensorial application has been developed to simultaneously collect infor-
mation from multiple sensors. This tool integrates real-time data, allowing for synchronization 
and organization of the sensory measurements. To fulfill ethical requirements, the system allows 
safe storage of information with a privacy-by-design approach. Figure 2 depicts the architecture 
and interconnection of sensors. 
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Figure 2. Architecture of the health tracking low-level subsystem. Modularity is guaranteed as the 
system is able to provide inferences, even when only partial information is available. 

Sensor Preprocessing and Calibration 
To fuse the information gathered from the diverse data sources, three preprocessing tasks must 
be performed: filtering signals from sensors to reduce noise (especially relevant to RGB-D Ki-
nect), calibrating sensors, and homogenizing spatial coordinates. 

Skeleton Smoothing  
The RGB-D camera (Microsoft Kinect v2) sensor is able to provide several data types, such as 
RGB, depth, infrared, and body skeleton detection and tracking. The latter feature is important 
due to the wide range of potential applications. More specifically, the Kinect sensor provides a 
set of 25 joint points, each with its corresponding spatial coordinates (x, y, z), in addition to a 
confidence value (reliability of measurements) for each detected person. However, several fac-
tors such as body self-occlusion and fast movement can affect the quality of skeleton tracking. 
Specifically, when the skeleton’s joints are occluded, they often appear to be shifted in space too 
quickly, in an unnatural manner. To address this issue, the Tobit-Kalman filter13 is employed to 
smooth the skeleton data and reduce the Kinect’s error, preventing skeleton joint location errors 
from being propagated to the subsequent methods that use Kinect skeleton data, such as activity 
recognition and abnormal behavior detection (ABD). 

Device Calibration and Trajectory Extraction 
To fuse the information from the sensors, all aforementioned devices must be calibrated in a 
common spatial coordinate system. A typical calibration scenario for the proposed system is 
shown in Figure 3. In practice, the xy-plane of the new coordinate system is the room floor, and 
the z-axis is vertically located as depicted in this figure. The process consists of three steps: se-
lecting a common coordinate system (manual), obtaining the rotation and translation matrix for 
the cameras, and performing the calibration for the WSN using the mentioned reference system. 

Initially, the RGB-D sensor is calibrated as follows: 

• First, 10 points are defined whose distance to the sensor center is inferred using the dis-
tance from the infrared sensor.  
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• Next, 15 points on the floor are located, whose location is manually measured.  
• For the selected points above, a singular value decomposition (SVD) method is applied 

to transform the 3D coordinates given by the RGB-D camera into the custom (manually 
defined and measured) 3D coordinates. As a result, the corresponding rotation and 
translation matrices are obtained that transform the RGB-D camera coordinate system to 
the custom one. 

 
Figure 3. General overview of the calibration process. 

This coordinate system is therefore employed as reference for the sensing submodules Zenith 
camera and WSN. The WSN is able to obtain the received signal strength indicator (RSSI) of 
packets forwarded from the bracelets to estimate the patient’s location. However, this infor-
mation is strongly affected by propagation effects such as multipath and reflections. This work 
employs a combination of two techniques: fingerprinting and kernel density estimation.14 

The fingerprinting calibration process for WSN is as follows: 

• First, a division of the scenario into square cells is manually performed. The spatial co-
ordinates of this division must agree with the Kinect coordinates system. 

• Next, sensors are deployed in the center of every cell for a predefined time (we used 5 
minutes). In this period, the WSN beacons collect RSSI information for this area. 

• Finally, Step 2 is repeated for every cell. 

The result of this process is a complete dataset of measurements of the monitored room. This da-
taset is employed in the position estimation by comparing the RSSI measurements with statistics 
of the fingerprint dataset. The patient position is estimated using kernel functions that correlate 
RSSIs sensed with a particular fingerprint cell distribution. A Kalman filter is used in combina-
tion with bracelet sensors (accelerometer, gyroscope, and magnetometer) to smooth the final es-
timated trajectory.15 

Zenith calibration is divided into three steps. The first step is required when intrinsic, extrinsic, 
and distortion parameters of the camera are unknown. Using a chessboard pattern, it is possible 
to estimate these values, taking at least 15 pictures of the pattern in different positions and incli-
nations. The second is quite similar to the Kinect camera calibration, allocating points along the 
monitored room and proceeding similarly to the selection of the points in the image knowing the 
real-world coordinates in your reference system and training a classifier (we used a support vec-
tor machine) with at least 1,000 images of people in the monitored area. 

The fused information gathered by the diverse sensors improves the accuracy of patient tracking. 
As an example, the RGB-D sensor provides better tracking accuracy than the Zenith camera, due 
to the depth information. However, it has a limited range of detection (up to 5 m) compared to 
the Zenith or WSN coverage. 
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USER BEHAVIOR ANALYSIS AND PATIENT 
MONITORING 
According to the patient’s required level of attention, different types of activities have been 
deemed able to be monitored using the system presented in this article. The types of sensing that 
the system enables are: 

• Daily motion. Monitors daily motion patterns and assesses whether they are usual. 
• Dream (night motion). Detects nighttime motion patterns. 
• Patient disoriented confusion wandering. Detects whether a patient is disoriented or 

confused. 
• Sign of apathy. Detects whether a patient is spending too much time on a couch or in 

bed. 
• Number of visits to the bathroom. Counts the number of visits to the bathroom. 
• Patient leaving the house. Detects when a patient is leaving the house. 
• Patient disoriented and leaving the house. Detects when a patient is disoriented, con-

fused, or wandering and is leaving the house. 
• Fall down. Detects that a patient fell down. 
• FoG. Detects patient freezing of gait. 
• Festination. Detects patient festination. 
• Loss of balance. Detects loss of balance in patients.  
• Movement evolution. Evaluates therapy-related exercises of a patient. 

While it is possible to use all these types of sensing with the presented approach, in this article, 
we focus on explaining in detail the results obtained in FoG and daily motion sensing. 

Activity Recognition: Identification, Methods, and Use 

Patient Identification and Association of Measurements 
Patient concurrency is important in some scenarios such as the senior center and rehabilitation 
room (for group therapy). This raises a challenge, as high-precision “singularization” and associ-
ation of the sensor measures are required for efficient monitoring and behavior detection. Vision-
based systems are generally constrained because of environmental lighting conditions, and per-
formance can be affected by occlusions. So, a person identification stage must be performed. 

We tackle this issue with the proper combination of sensor features to individualize patients with 
unique data identifiers. Specifically, an association stage of depth sensors, WSN, and smart-
bands (bracelets) have been employed. Kinect can detect up to six people simultaneously, as well 
as the RGB image to be tracked. Moreover, WSN can obtain a unique person identifier from the 
bracelets (in particular, the MAC address) used as an identification parameter. 

Based on the aforementioned features, the association process of the diverse sensors for person 
individualization is as follows: Using bracelet measurements from accelerometers, gyroscopes, 
and magnetometers and applying the well-known Madgwick filter, it is possible to extract iner-
tial features (yaw, pitch, and roll) that allow for estimating the patient orientation. Information is 
compared to the same features obtained from Kinect and Zenith cameras. Munkres algorithm 
was implemented to associate the orientation (yaw) and arm angle deviation (pitch) extracted 
from the estimated routes as a function of the error. The outcome of this process is the associa-
tion list of the available sensor data for a particular patient (identified by the band information). 

Activity Recognition: Using the Multimodal System Sensors 
There are several activities, such as daily motion and sign of apathy, that can be detected using 
trajectory information. The goal is to learn patterns that allow us to classify normal and abnormal 
behaviors for both Parkinson’s and Alzheimer’s patients using movement trajectories. 
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The trajectory feature extraction step consists of obtaining different types of descriptors, which 
reflect the occupation level of each region in a scene and capture motion characteristics such as 
speed, acceleration, and curvature (motion features) or combines them for obtaining a fused spa-
tiotemporal descriptor. 

Next, an improved feature representation is obtained by feeding the trajectory descriptors to a 
Sparse AutoEncoder (SAE) algorithm,16 which proved useful in estimating the underlying data 
distribution and producing more meaningful and compact features. For finding different behavior 
patterns, we use an unsupervised approach that employs clustering algorithms to assign labels to 
data samples. Finally, users are allowed to validate the clustering results and define what is nor-
mal and what is abnormal for a considered scenario. The validation is obtained using two classi-
fiers: SVMs or the Logistic Regression classifier. 

Information from binary sensors can be employed to support the analysis of particular activities 
(such as to infer sleep quality based on the number of visits to the bathroom). Furthermore, the 
fusion of trajectories extracted from cameras with binary sensors permits assessment of the inter-
action of patients with their environment, yielding disorientation/confusion/wandering detection. 

Besides patient location detection by the adoption of WSN, a patient’s wearable can be used to 
identify the patient’s movement. By employing the accelerometer, gyroscope, and magnetometer 
sensors, the user’s movement can be estimated. By combining this information with the patient 
3D skeleton coordinates, fall, FoG, festination, and loss of balance can be detected. Finally, the 
proposed platform can track and evaluate patients’ movements during their rehabilitation exer-
cises, record their performance, and assess their evolution. 

ABD in Daily Motion Using a Fusion and Probabilistic Model 
The MF submodule is in charge of retrieving the data from low-level subsystems such as ABD 
and HM, fusing this information, and generating an output that is sent to the module responsible 
for making the decisions regarding the patient’s health status. Furthermore, it saves data results 
in the electronic health record (EHR) where the patient-specific profile is stored. The fusion pro-
cess of the inputs takes into account the reliability of each information source, using a weighted 
probabilistic model where each modality is weighted according to its contribution in the fusion 
scheme. An example of the fusion model for computing the probability of a patient, having the 
ID i, being in an apathy state is shown in the following equation. 

Pi(apathy) = wa PABD(apathy) + wh PHM(apathy) + we PEHR(apathy) 

Different modalities are taken into consideration, while their confidence level is provided by 
their associated probability measure. The weights associated with each modality are used to 
compensate uncertainties. In our approach, we initially set the EHR associated weight to 0.7 
(we), if the patient has a form of depression and to 0.3 otherwise. Next, the ABD and HM 
weights were set to 0.5 (wa) and 0.4 (wh) in the first case and otherwise to 0.8 and 0.5, while the 
obtained result is normalized to a probability value. The HM modality has a lower weight in 
comparison to the ABD, due to its reliability, as cameras and especially depth sensors are better 
at predicting the patient condition than the wearable sensors. Finally, weights were optimized 
based on the classification error, a process that accounts for the variability between patients. In 
the training process, the ground truth labels are provided by professionals, the psychologist in 
case of apathy, or the neurologist in case of confused behavior.  

Provided that enough training data will be available, a better fusion model, such as a Bayesian 
network (BN) model can be used. The BN model will be trained and used to infer the high-level 
information regarding the patient’s health status based on observable variables provided by the 
low-level subsystems (such as heart rate, level of activity, and time spent interacting with the 
digital platform). In case the training data will not be sufficient to train the BN model, condi-
tional probabilities are set using expert knowledge derived from the project users. 

In Figure 1, the input and output modules of the MF module can be found. For processing pur-
poses, data storage is needed in the MF module, while the data processing stages consist of data 
preprocessing, feature extraction, and fusion techniques. Afterwards, the biological information 

20January–March 2018 www.computer.org/multimedia



  

 IEEE MULTIMEDIA 

of the patients will be stored into the EHR. Furthermore, these measurements will be available 
for the decision support tool (DST) to create recommendations and related systems. 

FoG Detection 
One of the examples of the proposed system use is FoG detection, as shown in Figure 4. FoG 
refers to a state in which a patient with Parkinson’s disease experiences a sudden lack of move-
ment despite his or her willingness to move. It typically occurs in specific situations, such as 
when starting to walk, stepping through a doorway, attempting to turn a corner, or approaching a 
chair. It typically lasts a few seconds, and it is very important to be detected, because FoG epi-
sodes are unpredictable and greatly increase the chance of falling. Furthermore, an increase in 
FoG episodes needs to be reported to the physician. 

 

 
Figure 4. (Upper left) patient skeleton during a FoG episode detected by Kinect. (Upper right) 
patient tracked by Zenith camera. (Lower left) FoG detection from Kinect data. (Lower right) FoG 
from inertial measurement unit (IMU) sensor data. 

The detection of the FoG action, which is a specific movement pattern of patients’ limbs, is car-
ried out by employing a recurrent neural network (RNN). The RNN has been trained using the 
movement information captured by the multisensory bands, along with the annotations for these 
movements provided by the physicians.  

Regarding the feature extraction procedure, a sliding window approach along each axis (x, y, z, 
magnitude) was employed. The short-time Fourier transform of the raw acceleration values 
within each window is calculated, and the resulting spectrum forms the feature vector used to 
train the RNN. 
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TESTING AND RESULTS 

Methodology 
The experiments were performed in several sessions during 10 weeks with a total of 18 patients 
between the ages of 55 and 94, and they were gender-balanced. The control group was composed 
of elderly people without cognitive problems (volunteers). The experimental group was made of 
patients classified into three groups according to their illness stage (severe, moderate, or initial). 
Patients were informed of the procedure, as well as the type of data that was going to be col-
lected. However, participants were not notified about the hypothesis nor the expected results to 
guarantee unbiased samples. 

Initial testing of the system and training of classifiers was done in laboratory testing with pa-
tients and a control group related to abnormal behavior, and then applied to our patients captured 
data in the installations mentioned. In the case of FoG, testing was performed with a pre-rec-
orded dataset from real patients. 

Testing and Results for ABD in Daily Motion and FoG 
The system was tested and validated for indoor monitoring and was able to learn movement pat-
terns such as repetitive behavior based on the anomalies of the patients behaviors. This infor-
mation is extracted from the trajectories from Zenith, Kinect, and WSN sensors. The algorithms 
were tested with a dataset recorded for 24 days in 10 weeks of experimentation. Diverse feature 
descriptors in both spatial descriptors and fused descriptors were employed. In our experiments, 
700 sample trajectories were split into five classes, one of them representing the abnormal be-
havior and accounting for 30 percent of the samples. The accuracy for discriminating between 
normal and abnormal behaviors was 98.4 percent, while precision (98.7 percent) and recall (98.3 
percent) were high, showing that our proposed methodology was successful and reliable. The 
adopted testing method consisted of a 10-fold cross validation approach. 

The occupancy histogram (OH) descriptor achieved a good accuracy of 97.4 percent and was 
able to capture the correlation between activity patterns and the specific spatial regions where 
they are usually performed. A spatial division of the 3D scene in n = 8x6x2 blocks was used, 
while the temporal window was set to 2 minutes. However, the best results were obtained for the 
motion descriptor, optimized using the SAE representation,16 proving its benefits at increasing 
the accuracy of the classification method in relation to the raw features. 

The trained behavior detection model was applied on activity data of the recorded patients, both 
healthy people and those with Parkinson’s disease, for discriminating between normal activities 
and repetitive or confused behaviors, elicited in a spontaneous manner. Examples of normal ac-
tivities used were preparing tea or coffee and writing a grocery list after checking the food sup-
plies, while the confused behavior was obtained by asking the participants to look for an item not 
present in the room.  

The results were satisfactory, as overall accuracy for four tasks was 84.12 percent, while the ac-
curacy of the normal activities (81.3 percent) was slightly worse than that of the confused behav-
ior (86.95 percent). For the patients with Parkinson’s disease, we also took advantage of the 
medical information, which supported the sensory analysis.  

Figure 5 depicts the trajectories of one healthy elderly person and one Parkinson’s patient. The 
person with Parkinson’s disease stops more often while performing the activity (he is in a me-
dium stage of the disease, having a score of 3 on the Hoehn and Yahr scale17). When discriminat-
ing normal and abnormal behavior, a precision of 98.7 percent and recall of 98.3 percent was 
achieved, outperforming the precision (89.8 percent) and recall (96.4 percent) in Riboni et al.11 

Concerning FoG, the well-known Daphnet dataset was used to allow comparison to other works. 
The dataset contains 3D acceleration measurements from three sensors attached to the ankle, 
knee, and waist of 10 Parkinson’s patients that experienced FoG.18 The data was recorded while 
the patients were walking back and forth in a straight line, randomly, and into and out of rooms. 
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In total, 8 hours and 20 minutes of data was recorded, containing more than 200 recorded freez-
ing incidences. 

 
Figure 5. Trajectories of (left) a healthy elderly person and (right) a person diagnosed with 
Parkinson’s disease. 

The leave-one-out cross-validation method was selected for evaluating the classification perfor-
mance, achieving average specificity and sensitivity values across patients equal to 0.91. The 
standard deviation of the sensitivity and specificity was 0.11 and 0.05 respectively, indicating 
good generalization of the model despite the low number of the dataset’s users. The results are 
comparable to other works such as Rodríguez-Molinero et al.,4 with slightly better results (mean 
sensitivity of 0.96 and specificity of 0.94) using a tailored device but on a different dataset. The 
versatility of our approach allows us to adapt to 12 different patient activities.  

CONCLUSION 
Our complete, integrated healthcare approach based on multiple ICT solutions can support care 
of elderly people with cognitive impairments such as Parkinson’s and Alzheimer’s disease by 
monitoring, reporting, and recommending useful information regarding their daily activity. On 
the one hand, a sensor-based approach—including WSN, smart-bands, binary sensors, Zenith 
cameras, and RGB-D technologies—recognizes physical anomalies. On the other hand, a subsys-
tem transforms the way context and human behavior is reasoned by fusing the information from 
multiple sources and providing recommendations to the patients and other stakeholders. The MF 
techniques presented here guarantee the modularity of the entire system by allowing its operation 
even in cases where not all presented sensors are available. This offers the versatility to identify 
different activities and events related to the evaluation of the patient’s health status. The results 
are promising compared to other works.  

Concerning future lines of research, the implementation of novel models based on advanced 
techniques will be useful for assessing the precision and recall of the techniques described in this 
work. Additionally, we must validate the approach with relevant results for the rest of the pre-
sented activities, as well as improve FoG detection by using our own dataset and testing new 
classifiers and MF techniques. 
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