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Abstract

Accessing large, manually annotated audio databases in an effort to create robust models for emotion recognition is a notably
difficult task, handicapped by the annotation cost and label ambiguities. On the contrary, there are plenty of publicly available
datasets for emotion recognition which are based on facial expressivity due to the prevailing role of computer vision in deep
learning research, nowadays. Thereby, in the current work, we performed a study on cross-modal transfer knowledge between
audio and facial modalities within the emotional context. More concretely, we investigated whether facial information from videos
could be used to boost the awareness and the prediction tracking of emotions in audio signals. Our approach was based on a simple
hypothesis: that the emotional state’s content of a person’s oral expression correlates with the corresponding facial expressions.
Research in the domain of cognitive psychology was affirmative to our hypothesis and suggests that visual information related to
emotions fused with the auditory signal is used from humans in a cross-modal integration schema to better understand emotions. In
this regard, a method called dacssGAN (which stands for Domain Adaptation Conditional Semi-Supervised Generative Adversarial
Networks) is introduced in this work, in an effort to bridge these two inherently different domains. Given as input the source
domain (visual data) and some conditional information that is based on inductive conformal prediction, the proposed architecture
generates data distributions that are as close as possible to the target domain (audio data). Through experimentation, it is shown that
classification performance of an expanded dataset using real audio enhanced with generated samples produced using dacssGAN
(50.29% and 48.65%) outperforms the one obtained merely using real audio samples (49.34% and 46.90%) for two publicly
available audio-visual emotion datasets.

Keywords:

1. Introduction

Scientists in the domain of cognitive psychology have long studied the relationship between facial and vocal cues
in humans [1] [2]. In particular, researchers suggested that infants, during the development of their auditory and
visual perceptions, fuse facial cues together with audio information in an effort to better discriminate and recognize
emotions. In the same spirit, authors in [3] performed a study of how deaf people perceive sounds of phonemes by
eliciting their visual perceptual system with the purpose of performing lipreading (or speech-reading). In a similar
manner, concerning the emotional cross-modal relationships, prosodic speech information (linguistics variation in
speech like pitch tempo, loudness, etc.) and its correlation with facial features have been intensively studied in [4] [5]
[6]. The cardinal outcome of these works was that speech prosodic information is associated with other social cues
such as facial expression, body language or tone tempo. In particular, authors in [6] suggested that speech prosodic
information could be extracted merely using facial cues. Hence, a worthwhile research question that is inspired by
the theoretical conducted research is whether the connection between the audio-visual information could be examined
from the emotional point of view. In this regard, we re-frame the question as: Does the emotional state content of a
persons’ voice correlate with their facial expression?
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(a) Audio modality.

(b) Face modality.

Figure 1: An instance of the symbiotic audio-visual modalities from a CREMA-D dataset video clip.

In the light of the aforementioned cognitive research, we intend to transform the same questions posed from
the cognitive psychologists into the domain of emotion recognition and Domain Adaptation (DA) from the computer
science perspective and place the following question: Is it possible to transfer knowledge between facial expressions to
mere audio? The importance of this question lies in the fact that, while emotion recognition through facial expressions
has been studied extensively [7] [8] [9], emotion recognition through other modalities such as audio has produced
fewer advancements concerning classification results [10]. An important reason behind this is the fact that there are
not a lot of publicly available datasets for audio emotion recognition compared to the abundance of data that exists
regarding facial expressivity. Therefore, generating training models for emotion recognition through audio modality
can be a rather challenging task and requires the generation of new robust datasets. Meanwhile, the engineering of
such big and complex corpora is not always a straightforward and feasible task.

In order to facilitate these limitations, Domain Adaptation (defined also as Transfer Learning) algorithms are
fostered from researchers with the objective of developing classification methods for specific modalities by exploiting
data from other similar ones coming from rich available datasets [11] performing the same in-hand task [11][12].
These techniques were inspired by the human behavior and the way that the learning process is materialized in human
brain by “re-using” previous knowledge to handle new situations.

In the case under consideration, abundant emotional annotations for predicting emotional states from visual in-
formation are available. Therefore, traditional machine learning algorithms could be employed in order to develop
efficient classifiers. However, sparse datasets available from the audio modality constrain this task. Training a clas-
sifier by using only the sparse available dataset of audio could be proven insufficient. Nonetheless, the datasets from
both modalities are associated, since they are attributed to the same emotions and, therefore, to the same classification
task. Yet, the distributions of face and audio modalities are not comparable, so the dense dataset from face cannot
be directly employed into the emotion recognition classification task from audio. In the meantime, as aforesaid, it is
already suggested from the cognitive psychologists that these two modalities are related to each other, thus, a mapping
between these two domains could be attained. This mapping can be obtained using DA techniques and it can serve
not only to improve the accuracy of the audio classification using facial information but also to expand or create new
audio emotion-related datasets.

In the current work, we adopted a Generative Adversarial Networks (GANs) algorithm in order to study these
cross-modal relationships between the symbiotic modalities of video (shown in Figure 1) and perform Domain Adap-
tation. In recent years, explosive popularity has emerged in the domain of GANs [13] which became one of the most
promising developments in Deep Learning. The preliminary idea of GANs can be framed as follows: Given a vector
of random noise z, the whole process endeavors to accomplish a good approximation of the data distribution in hand
(in our case, represented as the target domain) by learning a mapping between the noise distribution and that domain.
GANs usually consist of two different neural networks which compete with each other in a min-max manner. These
networks are called Generator G and Discriminator D and they are depicted in Figure 2. An illustrative example of
how GANs function is introduced in [13]. In this work, the target is to train a network G that, given a noise vector
z, is able to generate new samples derived from the MNIST dataset domain (target domain) by trying to approximate
the desired distribution. In the meantime, D tries to decide whether the generated samples are genuine or not.
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Figure 2: Initial version of the Generative Adversarial Networks.

Starting from the above-mentioned architecture (the so-called vanilla architecture), the scope of the proposed re-
search is to modify it and adapt it to the needs of our goals. The desired objective is to develop a framework that
will be able to not only generate data in the target domain but also to convert source samples into target domain ones.
Thereby, several modifications were needed in the classical version of GANs for the sake of formalizing a system that
will be able to perform as such. Recent advancements in GANs suggested several modifications that make them more
suitable for the field of Domain Adaptation and audio-visual cross-modal mapping and provide fertile inspiration to
the current work. A cardinal influence was the work done in [14] [15] and, particularly, the one in [16] where a con-
ditional deep Generative Adversarial Network was proposed with the aim of performing image-to-image translation.
In that modified version of GANs, a U-Net [17] architecture was proposed with a view to learning the domain shift
between two different image datasets that share some characteristics. Contrary to the work done in [16], we propose a
semi-supervised architecture, the so-called dacssGAN (Domain Adaptation Conditional Semi-Supervised Generative
Adversarial Network) where the input of the generator contains, apart from the source modality data, conditional
semi-supervised information extracted using a facial expression classifier (based on convolutional neural networks)
and it is processed using conformal prediction (CP) [18] [19]. Conformal prediction is a framework for credible ma-
chine learning, constituting a methodology for obtaining error calibration in classification and regression tasks. This
framework is based on hypothesis assumptions in an effort to provide rigorous error calibration. It allows obtaining
confidence values for any class label given a test instance. In the current work, the implementation of CP is performed
in order to provide robust conditional information as input to the proposed dacssGAN architecture.

On the whole, a synopsis of the current work’s contributions is summarized as follows:

• The challenging task of heterogeneous semi-supervised domain adaptation between the symbiotic audio-visual
modalities in the affective understanding context is explored.

• A novel label-agnostic architecture for GANs based on conditional information extracted using conformal pre-
dictions is introduced.

• Inductive conformal prediction [20] is evaluated with a view to remedying the high implementation cost of the
traditional conformal prediction approach.

• A regulation mechanism over the generator that consists of an auxiliary classifier was opted in an effort to
impose the emotion states over the generated samples.

• The evaluation of the domain adaptation procedure was performed by implementing a data augmentation
schema (similar to [21] and [22]) where generated and real samples were fused together and emotion recognition
was performed in this expanded dataset.

• An ablation study was performed in an attempt to investigate the capability of different architectures, loss
functions and the performance of different conditional inputs to the presented GAN approach.
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Finally, the structure of the remainder of this paper is as follows: In Section 2, several definitions and the related
work on Domain Adaptation (DA), GANs and CP are presented. Section 3 describes the introduced DA method that
is based on the proposed dacssGAN while in Section 4 the experimental protocol, dataset and results are presented
and analyzed. Finally, Section 5 contains the conclusion and the future work of this study.

2. Related work

In this section, some related works regarding the fields of Domain Adaptation (along with a definition of its
terminology), GANs, audio-visual relationships and conformal prediction are presented.

2.1. Domain adaptation definitions

For readability purposes, this sub-section introduces a Domain Adaptation terminology dictionary which will help
readers understand the concepts and methodologies used in the remainder of the paper. Primarily, the term domain
Ddomain is defined by using the following two notions. Firstly, the feature spaceX, which contains all possible instances
while X = {x1, x2, ..., xn} ∈ X is a subset of the feature space and contains the in-hand available learning sample
vectors. Secondly, the feature distribution probability of the learning samples features is defined as P(X). Then, the
classification task, denoted as T , is introduced. Two new terms should be defined in that case. Firstly, the label space
Y and, secondly, the classification function f (X), which can be used to map a new unknown input feature vector
xnew ∈ X to the label space Y. In particular, if the machine learning problem under study is the classification task
of emotion recognition through facial expressions using six basic emotional states (happiness, sadness, fear, disgust,
anger and neutral), then the feature space X is represented from all possible values (between 0-255) that the pixels
of the images from the facial domain could take, while the labels yi ∈ Y are represented from the aforementioned
six basic emotions. It should be also stressed that for two different classification tasks, the feature domains and the
feature distribution probability can be vastly different.

In addition, the terms source and target domain are introduced. Source domain is considered a space which
contains data that will be used in order to perform the transfer of knowledge. For the current work, the facial expression
modality is defined as the source domain. Formally, the source domain can be defined as DS = (XS ,YS , P(XS )) (with
XS ⊂ XS, the feature set which is subset of the feature space that represents the source data). On the other hand,
the target domain is the sub-domain that needs to be enhanced through transferred knowledge stemming from the
source domain. This domain is defined as: DT = (XT ,YT , P(XT )) (with XT ⊂ XT , the feature set that is subset of the
feature space that represents the target data). In the same spirit, a definition for source and target classification tasks
could be defined as follows: Insofar as the first is concerned, the source task TS is the classification task that can be
trained using the data from the source domain DS while for the latter, the classification task TT is the one that can be
applied using the target domain data DT . The classification task for each domain consists in calculating the predictive
classification function for each case: fS (XS ) and fT (XT ). This is done by incorporating the feature vectors from the
training set and learn the relation between the feature vectors and the corresponding labels. By definition, the scope
of Domain Adaptation is to extract the knowledge from the source task and to apply this knowledge on the target
task. This transfer of knowledge is implemented with the purpose of improving the performance of the classification
task in the target domain by incorporating knowledge from the source domain, thus improving the performance of the
predictive classification function fT (X).

Having defined basic terms associated with Domain Adaptation, several emerging scenarios arise regarding the na-
ture of the available data and the way that DA could be utilized. For the source and target domains DS = (XS ,YS , P(XS )
and DT = (XT ,YT , P(XT )), the emerging cases for the DA are correlated to the following conditions: XS , XT ,
TS , TT and P(XS ) , P(XS ). In the case that the source and target domains are not the same (XS , XT ), the
approach is defined as Heterogeneous Domain Adaptation while if XS = XT and P(XS ) , P(XS ) the approach is
defined as Homogeneous Domain Adaptation.

Another division between the DA approaches is associated with the availability in label information. There are
three main scenarios: supervised, semi-supervised and unsupervised Domain Adaptation. As far as the first is con-
cerned, both source and target domains contain dense datasets with fully available label information. In the second
case, there exist some small amount of label information or there is no label information regarding the target domain
but there is an auxiliary way to calculate them (likewise with the usage of a classifier). Finally, in the last case there
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is a lack of information concerning labels in the target domain and any auxiliary classifier. In the framework of the
current work, the applied the Domain Adaptation schema could be characterized as a heterogeneous semi-supervised
approach.

2.2. Domain Adaptation related work

The work done in [11][12] introduced state of the art approaches for Domain Adaptation while the works in [23]
[24] address state of the art approaches for visual Domain Adaptation. Most of the recent approaches could be roughly
categorized into two groups depending on whether they are deep-learning based or not.

In the former case, deep-learning based approaches, several works have been presented. For example, authors in
the work titled Domain-Adversarial Training of Neural Networks (DANN) [25] facilitate Domain Adaptation from the
learning representation perspective. They attempt to jointly learn representations for both source and target domain
samples by introducing a neural network that is having as loss function a domain divergence loss (H-divergence)
that calculates the distance between the two domains. This loss was coupled together with classification loss that
is using the supervised information exclusively from the source domain. Inspired from this work, authors in [26]
proposed VRADA model (which employs variational recurrent adversarial networks) for the purpose of capturing and
transferring temporal latent dependencies across domains via domain-invariant representations (for real-world health-
care time-series data). The work done in [27] facilitates the implicit discourse classification problem in a principled
adversarial manner. A deep learning architecture was established which was composed from a network (i-CNN) that
extracts embeddings related to implicit input and a network (a-CNN) that extracts embeddings for the same implicit
input enhanced with explicit connectors. Furthermore, an adversarial network (discriminator) judges whether the
inputs comes from the i-CNN or a-CNN. Finally, on top of the previous networks, a final CNN network performs
the final discourse classification. Authors in [28] propose a covariant multimodal attention based multimodal domain
adaptation neural network (MDANN). In that work authors tried to investigate whether it is possible to perform
domain adaptation that can transfer knowledge from one multimodal dataset to another one. That was done by trying
to learn a common feature representation for multiple modalities and mitigate inter-domain divergence by applying
jointly adversarial loss among the different modalities.

Regarding the latter case, non-deep learning approaches, authors in [29] tackle the homogeneous domain adap-
tation task in an unsupervised manner by trying to spot correspondences between samples in the source and target
domains. The correspondences were obtained by treating the source and target samples as graphs and using a convex
criterion to match them. The criteria used were first-order and second-order similarities between the graphs as well as
a class-based regularization. Experiments performed in several image classification datasets as well as in toy datasets.
Similarly, authors in [30] authors accommodated the same task by considering also higher-order similarities. In the
work presented in [31] titled Optimal Transport for Domain adaptation authors accommodated the unsupervised and
semi-supervised Domain Adaptation problem as in [29] graph matching problem by trying to bring close source and
target modality by using Monge-Kantorovich (alternatively called as Wasserstein) distance coupled together with sev-
eral regularizers and by using generalized conditional gradient (GCG). Finally, in [32] a hybrid version of Deep neural
networks and graph matching approaches was developed. Neural networks were employed to extract domain invariant
representations, that used graph matching loss as the domain discrepancy metric.

2.3. Generative Adversarial Networks

In this sub-section, state of the art techniques for Generative Adversarial Networks which influence our work are
presented. In conditional GANs introduced in [15], networks G and D were conditioned to some variables c that rep-
resent the label information of the class. The model was not only managed to generate data that represent those labels
but also improved the quality of the generated data. Similarly, in [14], a modified version of the initial GANs which
makes use of Deep Convolutional Neural Networks for the G and D network was proposed. Authors in [33] presented
an approach to learn how to translate an image from a source domain XS to a target domain XT without having any
available paired information among these two domains. The main objective of the approach was to learn a mapping
G : XS → XT such that the distribution of images from G(XS ) domain is equivalent with the distribution XT using an
adversarial loss. Since that mapping is highly under-constrained, authors banded it together with an inverse mapping
F : XT → XS and introduced a cycle consistency loss to force F(G(XS )) ≈ XS (and vice versa). Qualitative and
quantitative results were delivered on several tasks where paired training data were not available. In DiscoGAN [34],
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authors tried also to uncover cross-domain relations given unpaired data (that were representing two different image
domains). Authors proposed a method based on GANs that learns to discover relations between different domains.
Using these uncovered relations, the proposed network effectively transferred style from one domain to another while
maintaining important image features such as orientation and face identity. Cycle-Consistent Adversarial Domain
Adaptation or CyCADA [35] proposed a novel discriminatively-trained technique. It suggests that GANs, combined
with cycle-consistency constraints, are surprisingly effective at mapping images between domains, even without the
use of aligned image pairs. CyCADA transforms image domains at both pixel and feature levels and enforces cycle-
consistency constraints while leveraging a task loss. To validate this approach, the authors applied their model in a
variety of visual recognition and prediction tasks. In [36], authors tried to establish a bridge between the definitions
of GANs and Variational Autoencoders (VAE) by reformulating the definition of GANs, which translates the gener-
ation of samples as performing posterior inference. In that way, several state of the art approaches from VAE can be
transferred to GANs and vice versa.

2.4. Audio-Visual relationships
The state of the art audio-visual studies that mainly influence our study are presented in this sub-section. An

interesting study of cross-modal relationships of audio and visual cues was introduced in [37] where conditional
GANs were applied with the purpose of generating one modality while another modality was given as an input. In
order to do so, authors introduced two separate networks (image-to-sound and sound-to-image) in order to perform
cross-modal generations in both ways. Inspired by this work, authors in [38], built a model called Cross-Modal Cycle
Generative Adversarial Model in an effort to perform cross-modal mappings between image and audio. Authors
in [39] introduced a system that performs audio-video synchronization between mouth and speech in a video. To
facilitate the task, a two-stream network was implemented by having one network dedicated for audio and one for
video and coupled together by using the constructive loss that is judging whether or not the embeddings from the
two streams belong to a synchronized video pair or not. Similarly in [42], a audio-visual study was performed with
the purpose of performing temporal synchronization. Likewise in [39] a two stream network using constructive loss
function was implemented. In contrast with that work, the negative pairs were chosen to be within the same videos
and furthermore, authors employed 3D CNN with the purpose of learning spatio-temporal features that can model
the correlation between face and audio modalities. In [40], an audiovisual approach for the emotion recognition in
the wild challenge was introduced. This approach contains two pre-processing steps. Firstly, a voice activity detector
based on Recurrent Neural Network (RNN) that returns only the speech segments from the videos, then secondly, a lip
activity detection returns only the segments where the speech is in-line with the person seen in the video. Afterwards,
low level descriptors and Mel Frequency based features were used to extract useful information from audio, while
local binary patterns (LBP) were employed for extracting features from video. Finally, mono-model and multi-modal
emotion classification were performed by using Support Vector Machines. The same authors recently published an
open source toolbox that could be employed for studying these audio-visual relationships [41].

2.5. Conformal prediction
In this sub-section, state of the art techniques for conformal prediction and the works that mainly influence our

study are presented. In [18], the initial formulation of the conformal prediction is presented. Conformal prediction
was proposed as a more rigorous and efficient way to extract confidence of the prediction of a classifier. Authors
introduced two important definitions for their approach. Firstly, the nonconformity measure, a value that is calculated
based on the classifier prediction, was defined. Secondly, given this value and a calibration set, the second term
that was established is the p-value defined as the improved prediction confidence of the whole conformal prediction
approach. In [43], an extension of the initial formulation of the algorithm is introduced. This technique was noted
as inductive conformal prediction. In this case, the data used to validate the approach is split into three sets, the
training bucket which is used to train the classifier, the calibration set used for calculating the nonconformity values
and finally, the test set which is the data used to calculate the conformal prediction values. Furthermore, in contrast
with the initial conformal prediction, the training of the classifier occurs just once at the beginning. Cross conformal
prediction [44] is a modification of the previous approach for more efficient results. In this case, a split between
training and calibration set is performed in a cross-validation manner in K steps and then, in each case, the calculation
of the p-values of the test set is done. Finally, the final p-values of the test set are the average of the K different values.
More details about the implementation of the CP for the current work can be found in Section 3.1.
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Figure 3: Complete architecture of the dacssGAN approach.

3. DacssGAN approach

In this section, the proposed dacssGAN approach is discussed in detail. The overall architecture of the approach
can been seen in Figure 3. While in Figures 4a and 4b two different architectures were implemented for the network G
and were examined during the ablation study in sub-section 4.4 are depicted. GANs, as mentioned before, consist of
two networks, a generator G and a discriminator D. Given a noise vector z as an input to the network G and a dataset
of samples that comes from the target domain distribution XT = {x1, x2, ..., xn} ⊆ DT , network G is calibrated to
generate unseen samples that resemble that distribution, while D is trained to examine whether the generated samples
are genuine or not. The whole training procedure is occurring in an adversarial fashion implemented as a min-max
algorithm. The initial formalization of that game could be framed with the following equation:

min
G

max
D

V1(D,G) = Ey∼XT (x)[log D(x)] + Ez∼Pz [log(1 − D(G(z)))] (1)

where y ∈ XT (samples coming from target domain DT ) corresponds to the data that we want to approximate while
z ∈ Pz corresponds to the distribution domain that the noise vector z is sampled from. However, the objective in the
current work is to implement a domain shift and calculate a transformation between source (Ds) and target domain
(DT ). Thereby, instead of having as input to the G network the noise vector z ∈ Pz, samples that are distributed from
the source domain XS = {x1, x2, ..., xn} ⊆ DS should be utilized. However, if we proceed by neglecting completely the
noise vector z, that may result in the development of a network that only produces deterministic outputs. Thus, noise
vector z should be fused together with the source domain samples in G [45]. Consequently, Equation 1 becomes:

min
G

max
D

V2(D,G) = Ey∼XT [log D(y)] + Ez∼Pz,x∼XS [log(1 − D(G(x, z)))] (2)

where x are samples derived from the source domain (x ∈ XS ) and y are samples belonging to the target domain
(y ∈ XT ). Additionally, since the goal is to generated data that approximate the target domain XT ⊆ DT conditioned to
emotional information, Equation 2 could be easily re-framed for the conditional scenario as:

min
G

max
D

V3(D,G) = Ey∼XT [log D(y)] + Ez∼Pz,x∼XS [log(1 − D(G(x|c, z)))] (3)

where the input in G network is conditioned to variable information c. In the current framework, we examined the
possibility of having three alternative sources of conditional information as input to the network G namely: class label
information, prediction of a classifier (trained using datasets that derived from source domain XS ), and conformal
predictions [19]. The latter is a technique that has been used for error calibration in classification settings. It is
analyzed in more details in sub-section 3.1. Furthermore, similar to [17], in our study we investigated the possibility
of combining the initial GANs objective with a more classical loss, such as L1 distance [46]. The discriminators task
remains the same, however, the generator is deputed to not only fool the discriminator but also be near the ground
truth output in an L1 manner (that, in our case, is calculated in a pixel-wise manner). It was found [17] that L1 norm
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(a) The architecture of the network G (ED). (b) The architecture of the network G (U-NET).

Figure 4: Different tested architectures for the network G.

encourages less blurring in the results than other metrics like L2 norm. The L1 loss function that was implemented
for our framework is formulated as:

L1(G) = Ey∼XY ,x∼XS ,z∼pz(z)[||y −G(x, z)||1] (4)

The complete optimization schema that derives after combining Equations 3 and 4 is formulated as follows:

min
G

max
D

(V3(D,G(x|c, z)) + L1(G(x|c, z))) (5)

Hitherto, the system made use of some conditional information about the label, however, during the experimental
phase it was found that by just adding this conditional variable c is not efficient enough to produce genuine sam-
ples from the target domain (that also represent the desired emotional states). Thereby, we decided to add an extra
Network Q = fT (xgenerated ∈ G(x|c, z)) that is producing an error based on the correct or wrong classification of the
emotional states. This model Q is presented in Figure 3 as “Classifier”. By using this network, we managed to solve
a problem emerged in that framework, the conditional information inputted in the network G was not itself sufficient
of reproducing well the class information in the generated samples. The proposed network Q is a CNN network with
an architecture similar to that used in the network D. However, they differ in the last layer that in the classifier case
outputs the predicted emotion state for the input audio samples instead of the binary decision provided by the network
D. The input of this network is the output samples of G and the cross-entropy error was passed to the Generator
optimization in tandem with Formula 5. Intuitively, we want to calibrate and influence the output of the network G by
considering its capability to reproduce samples that are not only governed from the target domain XT distribution but
also represent as good as possible the class information that the samples of the XT are associated with. In the work
presented in [47] and [48], authors already introduced an extra classifier in the whole training process of GANs. In
our approach, the introduced error of the classifier, the cross-entropy of the generated samples from the network G,
could be denoted as:

LC = E[log(P(xk |D(G(x|c, z)))] (6)

where xk denotes the probability of a sample to belong to the specific class k. Eventually, the complete loss function
is the summary of Equation 6 and 5:

min
G

max
D

(V2(D,G(x|c, z)) + L1(G(x|c, z)) + E[log(P(xk |G(x|c, z))]) (7)

3.1. Semi-supervised GANs using conformal prediction

The conditional information c that has been applied as a supplementary input of the network G (together with
the vector noise z) in the classical version of conditional GANs was mainly associated with the label information
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(c = yi ∈ Y) of the target domain samples (x ∈ XT ). However, these labels are not always available, and being
able to construct a network G regardless of the label information is one of the main objectives in the current paper.
Having said that, the very first approach that was fostered to displace the conditional label information was to make
use of a trained classifier fS (XS ) that related to source classification task TS . This classifier will output the prediction
confidence that depicts the probability for each sample of being associated with each class (yi ∈ Y that represent in
our case every different emotion, denoted in Equation 7 as c). In this respect, by neglecting the class information in the
input of the network G, we could state that our generator is operating in a semi-supervised and class-agnostic manner.
Apart from this though, as we already mentioned, we investigated the efficiency of conformal prediction [19] as a way
to output a better class-confidence and use it as the conditional information that is fed into the network G instead of
simply use the classifier prediction output. The CP framework is a probabilistic approach focused on post-processing
of classification results for more reliable predictions. The CP framework combines a methodology of algorithmic
randomness and hypothesis testing to provide error calibration in online settings. For the sake of being more concrete,
an illustrative example of the way CP functions is described: Given a dataset XD = {(x1, yp), (x2, yp), ..., (xn, yp)}
(where p ∈ {1, 2, ...,w} with w the number of classes), a classifier f (X) and a new test data point xn+1, the hypothesis
that xn+1 is assigned to a specific class label c = yp ∈ Y is adopted. Having defined the test hypothesis, a re-train
process for the adopted classifier f (X), with D ∪ {xn+1, yp} is performed. Subsequently, a nonconformity function for
all the data points XD = {(x1, x2, ..., xn)} is re-computed assuming this hypothesis true. That nonconformity function
is correlated with the chosen classifier that was selected. In [49], several nonconformity measures that correspond
to several classifiers are presented. For the case of CNN the nonconformity measure could be framed as (with the
following two cases):

ayp

n+1 =

1 − oyp

n+1

−oyp

n+1 + maxi=1,..,w,i,p oyi

n+1

(8)

where oyp

n+1 denotes the output of the last layer of the CNN for the specific class and in particular, corresponds to the

softmax output function of the CNN architecture. The maxi=1,..,M,i,p oyi

n+1 corresponds to the higher value among all
conformity hypothesis excluded the case that i , p. In the current approach, we used the second part of the Equation
8 as the established nonconformity measure. The next step of the approach was to define the p-value measurement,
given in Equation 9:

p(ayp

n+1) =
count{i ∈ {1, ..., n + 1} : ayP

i ≥ ayP

n+1}

n + 1
(9)

where ayP

n+1 denotes the nonconformity measure of xn+1 when it is assumed that it belongs to class label c = yp.
This test hypothesis is performed with all available classes (and the corresponding p-value for each hypothesis is
calculated). It is obvious that the p-value is highest when all nonconformity measures of training data belonging to
class c = yp are lower than that of the new test point xn+1, which points out that xn+1 is most conformal to the class
c = yp. This process is repeated by performing the null hypothesis for all the class labels, and the highest p-value is
used to decide the actual class label to be assigned to xn+1. Considering p j as the highest p-value and pk as the second
highest p-value, p j is called the credibility of the decision while 1 - pk represents the confidence of the classifier’s
decision.

Algorithm 1 Pseudo-code for the conformal prediction process [49].
1: Given a training set D = (xi, yp), ..., (xn, yp), xi ∈ X, number of classes yp ∈ Y = y1, y2, ..., yw and a classifier f (X):
2: Get a new unlabeled sample xn+1.
3: for all class labels y j, where j = 1, ..., w do
4: Assign label y j to xn+1.
5: Re-train the classifier f (X), with D ∪ {xn+1, y( j)}.
6: Compute nonconformity measure value, ay j

i with i = 1...., n + 1 to compute the p-value
7: end for
8: Output the conformal prediction based on the p-value prediction regions.

9
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On the whole, the methodology is summarized in Algorithm 1. However, as it was already mentioned before, in the
current approach, we made use of the inductive conformal predictions that is introduced in [20], where a set of size
l = n−r was denoted as training set and a set of size r that is denoted as the calibration set of the conformal prediction.
For a new xn+1 now the calculation of p-value is occurring without the re-training of the classifier f (X) but just with
directly comparing its nonconformity value of that sample with the nonconformity values of the calibration set.

In the light of the above, the calculated p-values were given as input to the proposed dacssGAN architecture instead
of directly using the outcome of the classifier fS (XS ), as illustrated in Figure 3. The rationale behind using inductive
CP was the high complexity (computational) cost of the initial conformal prediction algorithm in combination with
a GAN architecture. Additionally, experimental tests resulted in similar behaviours when using inductive CP in our
dacssGAN approach in comparison with the plain version of the CP algorithm. The turning of the calibration set
size r, was based on techniques that could be traced in the literature and are described in [20]. Those techniques are
referred in that work as query function. In an effort to efficiently reduce the computational cost, we decided to employ
as a query function the random split of the sets and make a comparison of the classification performance with the
performance of the initial conformal prediction algorithm.

3.2. Mode collapse problem and remedies

One of the most profound drawbacks of GANs algorithm is the so-called “Mode collapse”. Mode collapse is a
phenomenon where the network G generates a limited diversity of samples, or even the same samples, regardless of
the input. Authors in [50] presented mode collapse and provided a precise explanation about the reasons why the
phenomenon occurs. Since training is a stochastic process, due to the randomness introduced with vector z, during the
early stages in training, the generated samples will deviate depending on z ∈ P(z) and the samples drawn from x ∈ X.
In other words, the gradients back-propagated to the network G will deviate between training steps relying on input
information.

However, in practice, there exists a single fixed point for the weights that network G considers as the optimum
ones for the generation process regardless of the input information we fed into it and there is nothing in the objective
function that explicitly forces the network G to generate different samples given a different input. For its part, Network
D eventually is not imposing any more variety in the generated samples or forcing the partially collapsed G to a
different direction.

Possible remedies that are proposed in the literature (mainly in [51] [52] [53]) and which were proven extremely
useful during the experimental procedure for the current work were: input normalization, batch normalization, and
the use of LeakyRelu [54] as activation function in all the networks of the proposed architecture. Further remedies
that were implemented in the current approach to mitigate the mode collapse phenomenon were the application of
soft and noisy labels (in the case that the conditional variable c was represented from the real label information, see
“Supervised conditional GAN” in Section 4.3) [53] when they appear as inputs to the network G, as well as adding
some noise to the input data (in all the networks) [53]. Finally, the last remedy that was utilized is the implementation
of Adagrad [53] as the optimizer for all networks of the dacssGAN architecture.

3.3. Calculation of spectrograms

Motivated by several works dealing with audio classification tasks [55] [56] [57], it was decided to extract and
make use of spectrogram representation (instead of making use of the raw audio signals for the target domain XT ) for
the feature extraction process. A spectrogram is a visual depiction of the spectrum of frequencies from a signal (audio
signals in our case) and its fluctuations over time. In that manner, the whole approach of knowledge transfer could
be transformed into an image-to-image translation task, that will also make easier the implementation of our GAN
architecture. Additionally, it also facilitates the qualitative inspection of the generated spectrograms produced during
experimental results. The whole process of extracting spectrograms given raw audio is detailed in [58].

Finally, the spectrograms extracted from audio signals were narrowed using a fixed size (with three alternative
configurations) of 28 × 28, 56 × 28 or 112 × 28. That fixed size was established by always starting from the middle
part of the spectrogram and symmetrically keeping the surrounding region (that roughly corresponds to auditory
information of 0.2, 0.5 and 1 second respectively) in order to avoid initial of final silence appearing in some file. In
Figure 5a, samples of spectrograms extracted from the CREMA-D dataset are visualized.
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(a) Samples of extracted spectrograms. (b) Samples of aligned and cropped faces.

Figure 5: Real samples derived from the CREMA-D.

3.4. Face cropping and alignment

As described in Section 4.1, in this work we made use of CREMA-D dataset. Using the data included in this
dataset, the following strategy to extract the facial features was employed. Firstly, faces were tracked and facial
landmarks were obtained using the Ensemble of Regression Trees (ERT) method described in [59]. ERT provides
efficient and precise landmark positions in demanding settings, such as varying illumination and poses, with solid and
high performing tracking in real-time. Using the face tracking, each face was aligned by registering it in reference to
pre-defined facial landmarks, namely, eyes centers, nose, mouth, and chin, to a canonical frame through a similarity
transformation [60]. Facial images were cropped and re-sized to a fixed resolution that was chosen to be 28 × 28. In
Figure 5b, instances of the CREMA-D database after the whole cropping and alignment processes are shown.

4. Experimental phase

4.1. Datasets

In this sub-section, the datasets that were utilized for evaluating the framework by training the networks G, D and
Q as well as imposing the class-related information of emotional context that governs audio-visual data are presented.
In this regard, the whole architecture was tuned by making use of the CREMA-D [61] and RAVDESS [62] datasets
in two independent evaluation procedures. It should be noted that both CREMA-D and RAVDESS, during the whole
experimental phase, were balanced with the purpose of containing approximately the same amount of data samples
for each class. Both datasets were split into four different sets.

• Insofar as the first is concerned (this set was denoted as S 1), was mainly utilized in order to train the classifier
from the source domain fS (xS ) to perform facial expression recognition, with the purpose of using it for the
semi-supervised GANs.

• Secondly, the set S 2 was used with a view to calibrating the classifier by calculating the p-values of conformal
prediction (Equation 9).

• Thirdly, the samples in a set denoted as S 3 were used for retrieving their p-values and using them for training
the dacssGAN architecture (networks G, D and Q).

• Finally, the rest of the subjects, grouped as the set S 4 were used for the testing of the whole approach.

4.1.1. CREMA-D
CREMA-D is a large-scale multimodal emotion expression dataset made public recently on GitHub1. It encom-

passes 7442 videos from 91 actors (43 females and 48 males). Their age varies between 20 and 74 and they stem
from a diversity of races and ethnicities (African American, Asian, Caucasian, Hispanic). Actors were requested to
pose 12 sentences that are associated with six different emotions (anger, disgust, fear, happy, neutral, and sad) with

1github.com/CheyneyComputerScience/CREMA-D
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four different levels of intensity (Low, Medium, High and Unspecified). The dataset’s annotations are based on the
presented videos that were shown up to the participants. The actors that participate in the CREMA-D dataset were
requested to rate the emotions and their levels based on the combined audiovisual presentation, video only, and audio
only. Each participant rated 90 unique clips, 30 audio, 30 visual and 30 audio-visual. 95% of the videos have, at least,
8 ratings. The dataset is a result of an effort to generate standard emotional stimuli for neuro-imaging studies which
require a wide range of intensity and separation for visual and auditory modalities presentation.

4.1.2. RAVDESS
RAVDESS is an audio-visual affect-related (derived from speech and song segments) dataset recently made pub-

lic2. The database is gender balanced consisting of 24 actors and it includes posed emotions regarding speech (in-
cluding calm, happy, sad, angry, fearful, surprise, and disgust) and songs (with calm, happy, sad, angry, and fearful
labels). In our experiments, we made use only the speech segments. Each expression is produced at two intensity lev-
els. All cases are available in face-and-voice, face-only, and voice-only formats. The set of 7356 recordings were each
rated 10 times on emotional validity, intensity, and genuineness. Ratings were provided by 247 individuals who were
characteristic of untrained research participants from North America. An additional set of 72 individuals provided
test-retest data.

4.2. Metrics for evaluating generated samples

Three different metrics have been applied in an attempt to evaluate the quality of the generated samples. Firstly,
the classification performance of the data augmentation schema was assessed as the first metric. In that case, we fused
real samples from the original dataset with the ones generated from our architecture and we extracted the classifi-
cation performance of the expanded set. This was done with the aim of testing whether the generated spectrograms
encompass efficiently the emotion recognition performance and whether can improve the classification performance
of the initial real dataset. In this sense, we can perceive data augmentation as an affordable alternative to easily expand
audio-related datasets.

Secondly, in an attempt to evaluate the quality of the generated samples, the Inception Score (IS) [63] was utilized
as an evaluation measurement. The approach made use of an Inception network pre-trained on performing emotion
recognition in real spectrogram datasets. This pre-trained model was applied to the generated samples in an effort to
compare the conditional label distribution with the marginal label distribution. The score is measured based on two
criteria: 1) whether the generated images have diversity, and 2) whether the generated images have good quality.

This idea could be framed with the following equation:

IS (x) = exp(Ex[KL(p(y|x)p(y))]) (10)

where x is a generated sample and p(y|x) represent the distribution of classes for this sample. We want p(y|x) to be
highly predictable so to have low entropy. Furthermore, p(y) is the overall distribution of classes across the sampled
data and should have a high entropy which means the absence of dominating classes and a well-balanced training set.
Altogether, the higher the IS is the better the quality of the generated samples.

Finally, another qualitative metric, the Fréchet Inception Distance (FID) [64] was employed. This approach com-
pares the statistics of generated samples to real ones, instead of only evaluating generated ones. This approach is
based on the same Inception model (previously used for the IS) and it is applied in the generated and real images to
calculate the prediction using the Inception network. In more detail, FID could be framed as:

FID(XR,XG) = ||µR − µG || + Tr(ΣR + ΣG − 2(ΣRΣG)( 1
2 )) (11)

whereXR andXG are distributions of real and generated images (after the utilization of the Inception network) respec-
tively and µR,G and ΣR,G correspond to mean and covariance of the real and generated datasets respectively. Lower
FID values mean better image quality and diversity.

2https://zenodo.org/record/1188976#.XHPO8-hKi70
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4.3. Experimental protocol

In the experimental phase, the proposed architecture was evaluated in several steps. The objective of the current
work was to evaluate the capacity and the amount of knowledge transferred between the source and target domains
as well as, to inspect the quality of the generated samples. For that reason we employed the metrics described in the
previous sub-section for each step of the experimental protocol.

Primarily, the classification performance of audio ( fT (XT )) and visual domains ( fS (XS )) was established as the
baseline in the evaluated datasets accordingly without utilizing any domain adaptation strategy. The classifier em-
ployed to establish this baseline (for both modalities, audio and face) is a network similar to the one used as part of the
dacssGAN and represented in Figure 3 as “Classifier”. The only difference between the audio and face cases was one
extra convolutional layer that was added in an effort to tackle the different sizes of the two domains. For the training
of this baseline for face and audio, the S 1 set was utilized while for the validation of the classifier, we made use of
the S 4 set (see Section 4.1 for further details). As a preliminary step, in the case of audio, three different experiments
were performed, evaluating three spectrograms sizes: 28× 28, 56× 28 and 112× 28 (in pixels). In this analysis, it was
found that the best results were obtained in the case of spectrograms with a resolution of 112 × 28. From this point
on, the results for the rest of the experiments in this paper are referring to that case.

In this phase, the classification performance using the CNN classifier was established as 49, 34% and 64, 50% for
the audio and face modalities respectively for the CREMA-D dataset while for the RAVDESS dataset these values
were established as 46, 28% and 59, 79% respectively. Those aforesaid results will be noted henceforth as the base-
line scores for the whole evaluation schema. The next step of our evaluation schema was to train the whole GAN
architecture (shown in Figure 3) by making use of the available training S 3 set. To that end, three different approaches
were considered:

• Supervised conditional GAN: In the first evaluated approach we have as input to the network G together with
the samples from the target domain and a noise vector z the conditional information c that is represented from
the label information that comes together with our datasets (groundtruth).

• Semi-supervised conditional GAN: In this case, we explored the possibility of replacing the label information
that was given as input to the generation G with the output of a classifier fS (XS ) trained using S 1 to perform
emotion recognition on the target domain. The output of that classifier was a six-featured vector that contains,
in each feature, the probability of the input sample to be derived from a specific emotional label.

• Semi-supervised conditional CP GAN: Finally, in that case, we explored the possibility of replacing that clas-
sification conditionality by the calibrated version that could be provided using inductive conformal prediction.
As it was already mentioned, for calculating the inductive CP we made use of the set denoted as S 2 as a valida-
tion bucket that helped us to calculate the p-values for the denoted set S 3 that played the role of the conditional
information.

4.4. Ablation study

Over the above-mentioned evaluation approaches, an ablation study was performed by evaluating the performance
of different architectures for the generator network G, different loss functions, different input for the network G, the
different sparsity levels concerning the data availability in the target domain and different algorithms for conformal
predictions.

Insofar as the first is concerned, a deep convolutional U-Net and a structure that resembles an encoder and decoder
approach (EncDec) using merely Dense layers were evaluated as the possible architectures for the network G. Figures
4a and 4b depict these two architectures for the network G respectively. Table 1 shows that U-Net was proven
incapable to outperform the simplified (EncDec) architecture. Additionally, L1 norm was proven to be crucial for
the outcome of the dacssGAN (as displayed in columns 2 and 4). When this part from the optimization function
was omitted, it was observed that the results were deteriorating not only classification-wise but also and most notably
regarding the forfeiting of visual fidelity of the generated images. A possible explanation is that pixel to pixel distance
as a loss helped the calibration of network G and force the generated distributions to be closer to the real ones.

Moreover, we performed some further experiments wherein we neglected the source domain x ∈ XS from the
input to the network G. These experiments were conducted, in an effort to evaluate the importance of the source
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(a) Supervised conditional GAN. (b) Semi-supervised conditional GAN.

Figure 6: Generated spectrograms of the GAN approach calibrated using the CREMA-D dataset.

domain x ∈ XS as input to the network G. In this phase, we also evaluated the three experimental cases (supervised,
semi-supervised conditional GANs and semi-supervised conditional CP GAN). In particular, for these experiments we
made use of a different EncDec and U-Net architectures, where we dropped the encoding part in both cases together
with the input x ∈ XS . In all the cases, the results were inferior in comparison with all the aforesaid DA cases and
these architectures were therefore rejected.

Additionally, we decided to monitor the performance of the whole approach by having different sparsity availabil-
ity in the target domain. In that case we decided to make use of the 50% and 20% of the initial datasets and extract the
results for the Semi-supervised conditional CP GAN case. In the course of this experiment we wanted to determine
how crucial is the availability of data for the proper training of the whole GAN approach. That study is explained in
more details in the sub-section 4.6.

Finally, it is important to note here that for the case of conformal prediction we validated both the initial algo-
rithm that is explained in Algorithm 1 and the inductive conformal prediction. It was found that the performance of
both techniques was similar, however, the computation complexity of the initial version of conformal prediction in
comparison to inductive conformal prediction was remarkable. Therefore, it was decided to stick with the results of
inductive conformal prediction and introduce it as our semi-supervised technique. Furthermore, since the classifica-
tion performance of the inductive conformal prediction had similar results with the results using random split for the
training and calibration sets, it was decided that it is not necessary to employ a more sophisticated way to split the
sets.

4.5. Experimental results and discussion

In this section, the results obtained during the evaluation of all the cases of the experimental protocol which
presented in Section 4 are described. In Table 2 the performance regarding all three metrics of all the aforementioned
cases from experimental protocol is presented. Firstly, in the initial GAN case, the so-called supervised conditional
GAN was evaluated. Figure 6a represents some generated spectrograms derived from this approach. In that case, the
approach reached the best performance (52.52% for CREMA-D and 47.11% for RAVDESS). The same behaviour
was implied for the qualitative results based on the IS and FID metrics (see Table 2).

However, in the current work our main effort was focused on the much more interesting semi-supervised case
where the goal is to generate annotated audio samples coming from rich but not necessarily annotated video samples.
As a subsequent step, the semi-supervised conditional GAN was evaluated. Figure 6b represents the generated spec-
trograms that derived from this approach. In that case, the obtained results were 49.92% for CREMA-D and 46.23%
for RAVDESS.

Finally, the evaluation of the semi-supervised conditional CP GAN was conducted. The extracted results were
50.29% for CREMA-D and 46.55% for RAVDESS. The rationale behind that improvement in the results (in contrast
to the previous case) was mainly that, after the application of conformal prediction, the calculated p-values contain
better-distributed confidences in the rest of the labels in comparison to confidences derived using merely the classifier.
In Figure 7a, the results in that scenario (where conformal prediction is used as part of the input to the networks G) are
visualized. From Figures 6a, 6b and 7a that represent the generated spectrograms for all three cases, we can deduce
that the dacssGAN approach in all three steps managed to approximate well the target domain in each case while the
visual results can be considered faithful representations of the target distribution domain.
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Table 1: The classification performances of the target domain task TT for the performed ablation study.

Baseline 49,34%
Case EncDec U-NET EncDec without L1

Supervised GANs 52.52% 50.24% 38.11%
Semi-Supervised GANs-classifier 49.92% 50.12% 31.67%

Semi-Supervised GANs-CP 50.29% 50.09% 31.69%

(a) Generated spectrograms for the semi-supervised CP GAN. (b) Generated faces for the supervised GAN case.

Figure 7: Generated samples of the GAN approach that calibrated using CREMA-D dataset.

Supplementary to the previous conducted experiments, for validation purposes, it was decided to utilize the whole
dacssGAN architecture in a vice versa manner, in order to generate faces given as an input noise vector (z ∈ Z) fused
with the samples from source domain (x ∈ XS , that in that case are represented from audio domain). Primarily, we want
to emphasize that our approach, although intended to expand an audio-related dataset by using facial information, it is
not limited to this objective and can be easily modified to address slightly different approaches. This experiment, was
not the core objective of the current work. Therefore, only elemental experiments (with CREMA-D) and some basic
hyper-parameter tuning for the supervised version of GANs were conducted. We believe that there is a significant
room for further improvement, classification-wise, as well as regarding the visual results and could be very interesting
research for future work. However, still the visual results were worth presenting due to the capacity of the approach
not only to approximate sufficiently the face distribution, but further, to generate faces with immense emotion context.
In Figure 7b the generated images that are produced from the network G in that case are portrayed.

Table 2: Classification, FID and IS performance for all the experimental protocol scenarios.

Case CREMA-D RAVDESS
Classification FID IS Classification FID IS

Baseline 49.34% 44.73%
Supervised GANs 52.52% 59.44 2.16 47.11% 49.77 2.21

Semi-Supervised GANs-classifier 49.92% 60.13 2.01 46.23% 50.33 2.05
Semi-Supervised GANs-CP 50.29% 60.10 2.00 46.55% 49.95 2.01

Further stimulating observations can be found in the confusion matrices (CM) extracted when using CREMA-D
dataset for the baseline case (displayed in Figure 8a), supervised GAN approach (Figure 8b) and semi-supervised CP
(Figure 8c). Firstly, all figures show that the considered emotions are well discriminated, since the diagonal elements
of the matrix have (in all cases) the highest classification performances. Also, in all three cases it is evident that the
strongest captured emotion is anger. It is noteworthy that this behaviour is consistent with the study performed in [61]
concerning the human accuracy in audio emotion recognition, where it was stated that the best performed emotion
label was anger for the CREMA-D dataset. In [65] authors observed a similar finding when using other state of the
art audio-based datasets. In the case of the data augmentation schema of the supervised case, in Figure 8b we can
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(a) Baseline. (b) Supervised approach. (c) Semi-supervised CP approach.

Figure 8: Confusion matrix for the emotion recognition classifier through audio spectrograms using different approaches for the six distinct emotion
of CREMA-D dataset.

Figure 9: Std error bars for baseline and the Semi-supervised CP.

observe that while the anger emotion performance drops, the efficiency of the rest of emotions roughly increases and
thus, a more smooth allocation of the emotion recognition is achieved.

In an attempt to better understand the performance of the proposed semi-supervised CP GAN in comparison
with the baseline a statistical analysis was performed. From this analysis, the statistical results (mean and standard
deviation) for the classification performance were extracted from different folds (each fold contain different subject
of dataset). The results obtained for both datasets are illustrated in Figure 9. From this figure we can observe that, in
the case of RAVDESS, the standard deviation is narrow and there exists a significant different in the mean value. In
the case of CREMA-D, the deviation from the mean is higher which could be attributed to the bigger variety of the
subjects included in the dataset.

4.6. Training process evaluation

In order to examine the performance of the training process of our dacssGANs algorithm, we visualize the loss
function of the G, D and Q networks, as well as, IS and FID score during the training procedure. Figures 10a and 10b
render the loss function of the three networks for the CREMA-D and RAVDESS datasets respectively while Figures
11a and 11b display the IS and FID scores for RAVDESS dataset and also the evaluation performance for the sparsity
test. From these figures, we can deduce that during training even by using 50% of the dataset leads to noticeably
poorer results in the qualitative performance. On the whole, an evident observation during the training procedure was
that the approach was steadily converging and the quality of the visual results were improving with the increasing
number of epochs. Finally, regarding the complexity of our approach, all the conducted experiments were performed
by using a NVIDIA Titan X graphic card. For a single experiment, the total time duration was approximately 26 and
48 hours (for RAVDESS and CREMA-D respectively).
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(a) CREMA-D dataset. (b) RAVDESS dataset.

Figure 10: Loss function during the training procedure of dacssGANs CP.

(a) Féchet Inception Distance. (b) Inception Score.

Figure 11: FID and IS values during the training procedure of dacssGANs CP.

4.7. Limitations

In the context of the current work, we applied a trained classifier for extracting predictions from the source domain
samples (also for calculating the CP values). That classifier was trained by using data samples with a distribution
similar to the real source domain samples used for training the network G. During this process, the data samples
are different subjects of the same dataset which were captured under similar background and illumination conditions.
However, the availability of similar distributions is not always ensured. To tackle this challenge, several approaches
can be considered. Firstly, we can make use of another dataset with similar distribution to train our algorithm to be
applied as a face classifier. Another possible solution is to generate spectrograms only by using faces and noise, by
neglecting the conditional information in the input. Both strategies require several new experiments for tuning the
whole network hyper-parameters. This constraint is further affiliated with time limitation posed for the training of
the whole network (that was described in the previous sub-section). Hence, our study consists of the most crucial
experiments.

Another limitation is the employment of posed and in-lab environment datasets that contained acted emotions
and not into the wild behaviours. We performed so in an effort to establish the reliability of the whole framework
by studying the cross-modal relationships of the two modalities. As a further work we would like to study these
relationships under uncontrolled environments.

5. Conclusion

In the current work, we investigated the research question of whether it is possible to transfer knowledge between
facial expressions to the audio information from the same sequences for the purpose of expanding audio datasets for
emotion recognition. For that purpose, we introduced a novel approach to study the cross-modal relationships between
audio-visual modalities, called domain adaptation conditional semi-supervised Generative Adversarial Networks or
dacssGAN. The core objective of the approach was to implement a network G which will generate samples that are
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distributed from the target domain (audio domain in the presented case) and represent specific emotion states. The
input to network G is a random noise vector z ∈ Z, fused together with samples from the source domain (x ∼ XS ) and
with conditional information (c). That conditional information was calculated using a semi-unsupervised technique
called conformal Prediction. We propose the use of these confidence values, instead of labels, as a softer and more
reliable manner to introduce knowledge into the generator. Furthermore, we investigated the efficiency of a network
Q that works as a classifier in the target domain and calibrates the generated samples from network G. The efficiency
of our approach was established during the experimental phase by employing a data augmentation schema where it
was proven that our posed hypothesis is valid and facial expression could be efficiently used and fused together with
the audio information in order to generate samples for audio domain that can help improving classification results in
the target domain.
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