
High-performance and Lightweight Real-time Deep
Face Emotion Recognition

Justus Schwan, Esam Ghaleb, Enrique Hortal and Stylianos Asteriadis
Department of Data Science and Knowledge Engineering

Maastricht University
Maastricht, Netherlands

justus.schwan@student.maastrichtuniversity.nl, {esam.ghaleb,enrique.hortal,stelios.asteriadis}@maastrichtuniversity.nl

Abstract—Deep learning is used for all kinds of tasks which
require human-like performance, such as voice and image recog-
nition in smartphones, smart home technology, and self-driving
cars. While great advances have been made in the field, results
are often not satisfactory when compared to human performance.
In the field of facial emotion recognition, especially in the wild,
Convolutional Neural Networks (CNN) are employed because of
their excellent generalization properties. However, while CNNs
can learn a representation for certain object classes, an amount
of (annotated) training data roughly proportional to the class’s
complexity is needed and seldom available. This work describes
an advanced pre-processing algorithm for facial images and
a transfer learning mechanism, two potential candidates for
relaxing this requirement. Using these algorithms, a lightweight
face emotion recognition application for Human-Computer In-
teraction with TurtleBot units was developed.

I. INTRODUCTION

With the recent improvement of the neural network [1],
[2], deep architectures have became popular and effective
for extracting high level features from data. Recently, deep
learning approaches for feature extraction have suppressed
the traditional ones and emerged in enormous impact and
improvement in many pattern recognition and classification
tasks. In computer vision, CNNs are a well-known deep
learning architecture for feature extraction from images. In
our work, we benefit from this model using the state-of-art
VGG-Face representation which proved to be discriminative
and efficient at face recognition [2]. While in simpler tasks
like handwriting recognition, humans are often outperformed,
state of the art algorithms do not yet come close to human
performance in more complex fields. One example is facial
emotion recognition in the wild. Related work includes per-
son recognition using a CNN [2] and the Facial Expression
Recognition Challenge (FER) [3] participants, especially the
winner, who employed a CNN with Support Vector Machine
(SVM) loss [4].

This work describes the composition of an algorithm achiev-
ing state of the art performance by using and fine-tuning
existing methods. If an algorithm performs sub-par, this may
stem from both the algorithm’s design itself, but also from too
little or wrong training data. Special focus is therefore put on
selection and pre-processing of the data, which seems to be
neglected largely in existing work, but can have an immense

impact. For the actual recognition task, the CNN trained in [2]
was fine-tuned to emotion recognition as a transfer learning
approach.

The overall goal of the work is to apply an emotion
detection algorithm for HCI purpose in a TurtleBot unit, a
small robotics experimentation platform which comes with a
low-performance notebook. In addition, we developed Graph-
ical User Interface (GUI), and a client-server application to
enable outsourcing of heavy numerical calculations to a remote
machine. The CNN will be applicable for more emotion
classification tasks in the future.

The rest of work is presented as follow: the second section
describes the used datasets, while the third section presents
pre-processing pipeline. In the fourth section, we detail the
CNN structure and discuss the results. In section five, we
introduce the GUI of the real time application. Finally, in
section six, we summarize the work and give possible direction
for future research.

II. DATASETS

When training a neural network, effectively optimizing a
high dimensional function, a vast amount of labeled data is
needed to overcome the ’curse of dimensionality’ [5]. The
Acted facial expressions in the wild (AFEW) [6], FER [3]
and Cohn-Kanade [7], [8] datasets are publicly available for
research purposes and were used in this work.A large share of
datasets with emotion labels contain posed facial expressions
that were recorded in a controlled environment, with consistent
lighting and head pose. Algorithms trained on such a dataset
generally perform badly on data with different preconditions,
especially in the wild. We expect training on non-similar
datasets to yield a better generalization on the performance.

The AFEW dataset consists of 1426 video sequences taken
from several movies. Compared to other datasets, which are
often recorded in controlled environments, faces in AFEW
differ strongly in terms of lighting, position, size and pose.
These properties are usually considered undesirable, yet a
CNN can learn to abstract meaningful features from data
with high intra-class variance. This will potentially affect
the performance in real-wold applications positively. Video
frames from AFEW contain a lot of redundancy due to the
facial expression not varying much between adjacent frames.978-1-5386-0756-5/17/$31.00 c©2017 IEEE

Therefore, the set was sub-sampled to one fifth of its original
size.

The FER dataset consists of 28709 training and 7178
validation/test entries. The images were acquired by means
of the Google image search API, then labeled and cropped in
a semi-supervised way. There is a single face visible on each
image, roughly located in the center and facing the camera.
After manually verifying the correctness of each crop and
label, the entries were converted to grayscale and scaled to
48x48 pixels. Like AFEW, the FER dataset is labeled with the
7 basic emotions: anger, disgust, fear, joy, neutrality, sadness
and surprise.

The CK dataset consists of 486 video sequences from 97
posers, CK+ extends the number of sequences by 22%. Data is
scaled at either 640x480 or 640x490 pixels and was recorded
partially in grayscale. All images were recorded under the
same lighting and pose conditions, making the dataset well-
suited for use with all methods of feature extraction. The
dataset does not contain a default train-test split, and the
neutral emotion label is not present in the data.

III. PRE-PROCESSING

In data classification tasks, pre-processing is often required
and almost always helpful. Our pre-processing pipeline in-
cludes face detection and cropping on images which can
significantly improve test and training accuracy [9]. While a
CNN should, in theory, be able to cope with faces in different
locations, lighting conditions and poses, proper pre-processing
can reduce intra-class variance and the amount of training
data needed. While cropping itself is already a valuable step,
the OpenCV Haar Cascade classifier [10] does not yield
enough performance for real-time applications, especially on
less powerful machines and with rising image resolution. The
dlib-ml library [11] provides more sophisticated methods for
image detection, object tracking, and facial feature extraction.
The latter can be used to further reduce variance between the
data by applying an affine transformation to make the positions
of eyes and mouth invariant.

A. Real Time Face Detection and Tracking

There are two face detection universal algorithms trained
appropriately and readily available in Python. OpenCV pro-
vides the Haar Cascade classifier, while dlib-ml uses a HoG-
based detector [12]. While the former is employed more
frequently, the latter performs faster and more reliable face
detection. dlib-ml’s detector was trained on 3000 images from
the Labeled Faces in the Wild database using an SVM-max
margin classifier [13].

For pre-processing the available data, dlib-ml’s classifier
was primarily used, with OpenCV’s only being employed
as a fallback when the former would not yield a confident
detection. For a 640x480 resolution, image processing times
were around 1000ms (OpenCV) vs. 200ms (dlib-ml) with 2x
up-scaling. While the performance is absolutely satisfactory
for pre-processing a database, even dlib-ml’s detection speed is
hardly sufficient for real-time applications. For better real-time

performance, dlib-ml provides a correlation tracker [14] im-
plementation. It tracks objects in images reliably and performs
an iteration on the aforementioned 640x480 pixels image in
around 80ms. Once a face has successfully been detected,
then the tracker can take over, thus increasing the detection
performance to more than ten frames per second and rendering
the algorithm suitable for real-time applications.

B. Facial Landmark Detection and Face Alignment

Following face detection, a facial landmark detection algo-
rithms can be applied. One of the most famous and reliable
facial landmark detectors is [15] by Kazem et al. In this
work, we use an implementation of [15] provided by dlib-
ml. The detector has an accurate and reliable performance,
providing outlines of eyes, mouth, nose and chin. Using an
affine transformation, the location of eyes and mouth can
be made invariant while maintaining the facial expression.
This method aligns faces cleanly, as can be seen in Fig. 1.
Assuming that cropping faces in [9] improved classification
performance due to a lower intra-class variance, we expect this
pre-processing method to yield even greater improvements by
further reducing variance.

Fig. 1: Samples from AFEW, CK, and FER sequentially. First
and second rows show the same images, in original state and
with eyes and mouth aligned. Bottom image is a blend of 8
aligned samples to demonstrate alignment precision

IV. FACE REPRESENTATION AND CLASSIFICATION

For feature detection and classification, we used a CNN
with an attached softmax classifier. Since a conventional
CNN for image classification contains millions of parameters
and only around 30,000 training samples were available, a
transfer learning method was applied to reduce the risk of
overfitting. The VGG-Face network [2] is composed of 5
convolutional/pooling and three fully connected layers and
was trained for face recognition using 2.6 million images

of 2622 celebrities. The network achieved excellent results
(> 90%) for the Labeled Faces in the Wild and YouTube Faces
dataset. With such a large amount of face data, VGG-Face’s
convolutional layers are expected to produce suitable features
for faces out of the box. Since the network is freely available
in Caffe [16] format for research purposes, we chose to use it
as our starting point.

A. Structure of Modified CNN

The convolutional/pooling layers in modern CNNs effec-
tively reduce an m-by-n image to a k-dimensional feature
vector, giving a more meaningful description than mere pixel
values. While other methods that are based on hand crafted
features generate usable features from images, a properly
trained CNN is not only specialized on a certain image
class but also transforms into a lower-dimensional space. This
reduces the required number of training examples drastically
due to the ’curse of dimensionality’. The convolutional layers
from VGG-Face were taken as-is without any changes.

In most networks, two or more fully connected layers follow
the convolutional layers, transforming the data to the desired
dimensionality. VGG-Face has three fully connected layers in
total and yields a 2622-dimensional vector. The last layers
are trained on certain celebrities, not on emotions, with each
subsequent layer becoming more specialized on this task. We
therefore chose to keep only layer 6 for fine-tuning, discard the
remaining and append a new 7-dimensional layer with softmax
classification and multinomial logistic loss. All fully connected
layers in VGG-Face were followed by a dropout unit set to
50%, which we also chose to keep. The network structure of
both VGG-Face and our modified version can be seen in Fig.
2.

(a) Convolutional part of VGG-Face, one of five units

(b) Fully connected part of VGG-Face

(c) Fully connected part of our modified network

Fig. 2: The CNN structure

B. CNN Training

To get an impression of the generalization performance, the
network was trained and tested on different datasets, as well
as combinations thereof. We use an Adam solver [17] as an
optimization algorithm with a learning rate of 0.001. For fine-
tuning layer 6, the learning rate is reduced to 3%. Training
is performed on a Nvidia GeForce GTX TITAN X with 3072
cores in an Intel Xeon E5-2620 2.1Ghz Workstation.

For training and testing, we use the provided train-test splits
from AFEW and FER. CK lacks default splits, and its data is
only included in the training. The pre-processing algorithm
was not able to detect a face in every training/test image,
sometimes due to bad visibility and, in the FER dataset,
because the image simply did not contain a face. Therefore,
we end up with the training/test set sizes depicted in Table I.
The training results can be seen in Table II, and the confusion
matrix for the seven basic emotions of FER dataset is shown
in Fig. 3.

Table III, taken from [3], depicts the FER Challenge win-
ner’s performance. The three best contestants used CNNs
while the winner outperformed the others with an optimized
SVM loss function. The fourth contestant utilized SIFT de-
scriptors for feature learning and a Bag of Words approach for
training, almost reaching the third best CNN’s performance.

SET Training Testing
AFEW 19153 4755
FER 7997 3711
CK 309

TOTAL 27459 8466

TABLE I: Training and test set sizes
Tested on

AFEW FER ALL

Tr
ai

ne
d

on AFEW 32.6%
FER 32.7% 69.8%
ALL 31.0% 53.2%

TABLE II: Training Results
Members Accuracy

Yichuan Tang 71.162%
Yingbo Zhou, Chetan Ramaiah 69.267%
Maxim Milakov 68.821%
Radu Ionescu, Marius Popescu,
Cristian Grozea 67.484%

TABLE III: Top Contestants from the FER challenge,
as in ([3])

In conclusion, the training results did not vary much from
what was to be expected. The AFEW dataset contains rel-
atively few entries, causing severe overfitting and bad test
results, with a mere 32.6% test accuracy, even with a heavily
increased 90% dropout rate. The FER dataset contains roughly
five times as much data, when accounting for redundancy in
the former. Results on the dataset reached almost 70%, which
is on par with the FER Challenge’s contestants.

It has to be noted that the VGG-Face network was originally
trained with color data and an image size of 224x224 pixels.

In contrast, FER contains grayscale images, 48x48 pixels in
size. Despite the much lower resolution and the missing color
information, the network managed to detect very good fea-
tures, which impressively demonstrates CNN’s generalization
ability.

Fig. 3: Confusion matrix of the basic emotions in FER

V. USER INTERFACE

The target machine for the user interface is an Intel Core i3
4010 laptop accompanying the TurtleBot unit. It was not tested
how well the CPU could handle forward passes of our CNN,
but a magnitude of several seconds per pass can be safely
assumed, as [16] reports 7.39 seconds for a forward pass on
AlexNet with a significantly more powerful CPU. Due to the
efficient implementation, the pre-processing step could be im-
plemented directly on the laptop, while all CNN computations
were outsourced to a server located separately. The server-
side application opens a TCP port to receive pre-processed
images and send the probabilities for each emotion. From the
client’s view, sending one image and receiving results took
an average of 0.344 seconds when tested. Therefore, all data
transfers happen asynchronously, ensuring responsiveness of
the interface.

The server application uses the weights generated by train-
ing on all data, which subjectively gives the best results for
a person facing the camera. The provocation of fear emotion
was hard to detect which can be due to an insufficient amount
of training data, the subjectivity of the supervising annotators
or a sampling bias, since most of the training data were
acquired by using the Google image search API without
stratification. With an average frame rate of 26 per second on
an Intel Core i5 3450 CPU, the performance can be considered
satisfactory. Although it would have been desirable to run pre-
processing and classification on a single machine, the client-
server solution alleviates the need for expensive graphics cards
in every unit running the software. The user interface can be
seen in Fig. 4.

Fig. 4: The GUI showing anger emotion

VI. CONCLUSION AND PERSPECTIVES

A state of the art algorithm capable of running on low-
performance machines was composed. Further applications of
the trained CNN lie in every software that requires emotion
detection based on facial expressions, such as the development
of learning applications that optimize the learner’s flow [18] by
detecting both anxiety and boredom or giving aid in teaching
people with learning disabilities.

Pre-processing turned out to be a valuable step, enabling
an admittedly deep, yet straightforwardly structured CNN to
compete with models and algorithms using more complex
approaches. Our pre-processing algorithm rectified faces by an
affine transformation, but only a small amount of the available
landmarks was used. A perspective transformation could yield
a better result, although acquiring suitable points is more
difficult. In addition, since the algorithm’s use case is mainly
video data, temporal information can also be included, e.g. by
using a recurrent neural network. This is a great chance for
future improvement regarding hard-to-separate emotions, like
anger and neutrality or disgust and fear.

ACKNOWLEDGMENT

This work was supported by the Horizon 2020 funded
project MaTHiSiS (Managing Affective-learning THrough
Intelligent atoms and Smart InteractionS) nr. 687772
(http://www.mathisis-project.eu/). We gratefully acknowledge
the support of NVIDIA Corporation with the donation of the
Nvidia GeForce GTX TITAN X GPU used for this research.

REFERENCES

[1] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85–117, 2015. 1

[2] O. M. Parkhi, A. Vedaldi, and A. Zisserman, “Deep face recognition,”
in British Machine Vision Conference, 2015. 1, 2

[3] Goodfellow et al., “Challenges in representation learning: A report on
three machine learning contests,” in International Conference on Neural
Information Processing. Springer, 2013, pp. 117–124. 1, 3

[4] Y. Tang, “Deep learning using support vector machines,” CoRR, vol.
abs/1306.0239, 2013. 1

[5] R. Bellman and R. Corporation, Dynamic Programming, ser. Rand
Corporation research study. Princeton University Press, 1957. 1

[6] A. Dhall, R. Goecke, S. Lucey, and T. Gedeon, “Collecting large, richly
annotated facial-expression databases from movies,” IEEE MultiMedia,
vol. 19, pp. 34–41, 2012. 1

[7] T. Kanade, J. F. Cohn, and Y. Tian, “Comprehensive database for facial
expression analysis,” in Proceedings of the Fourth IEEE International
Conference on Automatic Face and Gesture Recognition (FG’00), 2000,
pp. 46–53. 1

[8] Lucey et al., “The extended cohn-kanade dataset (ck+): A complete
expression dataset for action unit and emotion-specified expression,” in
Proceedings of the Third International Workshop on CVPR for Human
Communicative Behavior Analysis (CVPR4HB 2010), 2010. 1

[9] D. Duncan, G. Shine, and C. English, “Facial emotion recognition in
real time,” Stanford University, Tech. Rep., 2016. 2

[10] G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with
the OpenCV library. ” O’Reilly Media, Inc.”, 2008. 2

[11] D. E. King, “Dlib-ml: A machine learning toolkit,” Journal of Machine
Learning Research, vol. 10, pp. 1755–1758, 2009. 2

[12] N. Dalal and B. Triggs, “Histograms of oriented gradients for human
detection,” in 2005 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’05), June 2005. 2

[13] D. E. King, “Max-margin object detection,” CoRR, vol. abs/1502.00046,
2015. 2

[14] M. Danelljan, G. Hger, F. Shahbaz Khan, and M. Felsberg, “Accurate
scale estimation for robust visual tracking,” in Proceedings of the British
Machine Vision Conference. BMVA Press, 2014. 2

[15] V. Kazemi and J. Sullivan, “One millisecond face alignment with an
ensemble of regression trees,” in CVPR, 2014. 2

[16] Jia et al., “Caffe: Convolutional architecture for fast feature embedding,”
arXiv preprint arXiv:1408.5093, 2014. 3, 4

[17] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2014. 3

[18] S. J. Lopez, C. Snyder, J. Nakamura, and M. Csikszentmihalyi, “Flow
theory and research,” 2009. 4

