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Abstract—In this paper we present a novel approach to-
wards multi-modal emotion recognition on a challenging dataset
AFEW’16, composed of video clips labeled with the six basic
emotions plus the neutral state. After a preprocessing stage, we
employ different feature extraction techniques (CNN, DSIFT on
face and facial ROI, geometric and audio based) and encoded
frame-based features using Fisher vector representations. Next,
we leverage the properties of each modality using different fusion
schemes. Apart from the early-level fusion and the decision
level fusion approaches, we propose a hierarchical decision level
method based on information gain principles and we optimize its
parameters using genetic algorithms. The experimental results
prove the suitability of our method, as we obtain 53.06%
validation accuracy, surpassing by 14% the baseline of 38.81%
on a challenging dataset, suitable for emotion recognition in the
wild.

Keywords—Emotion Recognition; Multimodal Fusion; Infor-
mation Gain; Genetic Algorithm.

I. INTRODUCTION

The recent technological advancements brought interac-
tivity between people and digital devices to a completely
different level, making computers and mobile phones an
important part of our daily lives. A natural way in which
people communicate with each other is based on emotions.
Therefore, there is an increased interest in the human computer
interaction (HCI) field towards enhancing digital devices with
emotion recognition abilities for obtaining a more natural HCI
experience. Emotions can be expressed using both verbal and
non-verbal cues such as facial expressions, gestures or the
tone of the voice. Facial expressions represent one of the
most significant cues for recognizing emotions, due to their
universality proven by Ekman [1] who found that six basic
emotions (happiness, fear, sadness, disgust, surprise and anger)
are the same across cultures. The applications of an automatic
facial recognition system go beyond HCI, being useful also
in website customization, gaming industry, humanoid robots,
as well as in improving online education systems. Due to the
potential applications of such a system, there have been done
many research studies in classifying faces in still images [2]
or in video sequences [3] into one of the six basic emotions.

Data mining algorithms employed for recognizing the six
basic emotions have been rather successful on posed datasets
gathered in controlled environments such as the Cohn-Kanade
[4], the JAFFE [5], the CMU Pose Illumination and Expression
(PIE) [6] or the MMI database [7]. While recently, efforts were
devoted to more challenging datasets, captured in uncontrolled

spontaneous conditions such as the Acted Faces in the Wild
(AEFW) dataset [8], containing video clips of unconstrained
facial expressions, with varied head poses, occlusions and
challenging illumination conditions. The palette of feature ex-
traction techniques employed for facial expressions recognition
contains appearance based methods (Gabor filters [9], LBP
[10], SIFT [11]), geometric features [12] and also unsupervised
feature learning methods such as the recently adapted CNN
models [13]. On top of the extracted features, multiple classi-
fication algorithms are used, varying from SVM with different
kernel methods [14], neural networks [3], Boltzaman machines
[15] to deep architectures [16]. Apart from the visual modality,
audio-based emotion recognition is also promising and features
such as prosody, jitter, or the fundamental frequency proved
to be useful [17].

Furthermore, studies in multi-modal emotion recognition
showed the benefits of fusing visual and acoustic informa-
tion [18], due to the complementarity of the two modalities.
Therefore, in this paper we propose a multi-modal framework
for emotion recognition from video sequences, by taking
advantage of both visual and audio features. Moreover, one
of the main contributions of this paper consists of proposing a
hierarchical fusion approach, which combines feature level and
decision level fusion in an efficient manner, using information
gain principles, which is depicted in Figure 1. The proposed
fusion framework is general enough to be useful also for
other tasks such as behaviour or object recognition, as long
as there are available different types of features which are
complementary.

In our approach, we take advantage of different feature
extraction algorithms, extracted from the audio channel and
also from the entire face or from salient facial regions of
interest (ROI), (e.g. eyes, nose, mouth, forehead and chin),
such as dense scale invariant feature transformation (DSIFT),
geometric features, and a pre-trained CNN model for face
recognition provided by the Visual Geometry Group (VGG-
face) [16], denoted as a set of M features on the 2-nd layer
of Figure 1. Each of these features are useful, while one
constraint in fusing them is given by their different underlying
probabilities and ranges. Another contribution of this paper
refers to encoding the different features using Fisher Vector
[19] representations, which are useful at projecting all types of
features in the same space and also as it facilitates the analysis
of videos with different lengths, while efficiently capturing the
facial dynamics (the 3-rd layer in Figure 1). Next, we use
an efficient algorithm for feature-level fusion, which finds the
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best types of features to be fused in a hierarchical manner,
based on minimizing the KullbackLeibler (KL) divergence
[20] between the probability distribution function (PDF) of
true labels and the PDF of predicted labels, obtained after
employing a classification algorithm. For example, at a first
stage the mouth region features and audio features are fused
in a new feature vector and also DSIFT features and geometric
features are fused in another one.

Then, at the next stage (the 5-th layer in Figure 1), the two
new obtained feature vectors are fused using a decision-level
fusion algorithm which optimizes the weights of each modality
using a Genetic Algorithm (GA).

The proposed framework is useful, as, instead of fusing
all features at an early stage as described by [21] or at the
end of the pipeline as proposed by [22], it searches for the
best combinations at different processing stages for finding
complementary modalities. Furthermore, the use of a genetic
algorithm facilitates finding the optimum weights for the
decision level fusion. We evaluated our proposed approach on
the challenging AEFW dataset [23] and compared it with a
deep learning architecture.

The remaining of this paper is organized as follows. In
Section 2, related work is presented showing the popular trends
in multimodal emotion recognition. Section 3 explains the pre-
processing stage and the feature extraction methods from both
video and audio modalities. Our proposed framework towards
emotion recognition, based on multi-modal fusion of vision
and audio modalities is introduced in Section 4, highlighting
different fusion schemes. Next, the experimental results are
presented in details in Section 5, while the paper ends with
conclusions and directions for future work.

II. RELATED WORK

In human emotion recognition, the goal is to predict high-
level affective content from low-level human-centered signals
such as video, audio, and body posture. The description of
the high level affective content can be roughly divided into
two subcategories: discrete emotions and continuous emotions
in the valence and arousal space. According to the discrete
category, there exist six basic emotions (sadness, happiness,
fear, anger, surprise, and disgust) proposed by the physiologist
Paul Ekman in [1] which are universally recognized and
shared across cultures. While most of the previous works
on facial expression recognition are based on this type of
categorization [24], [14], [3], there have been various studies,
which addressed the dimensional space of human emotions
such as [25], [18], where they used a 2D valence-arousal
emotion model.

A. Feature Extraction

Previous work on facial emotion recognition mostly use
hand crafted features [24], [25]. The pipeline of these studies
starts by performing face detection and is followed by extract-
ing facial features such as LBP[10], Gabor wavelets[9], and
SIFT[11]. In addition, these features were extended to capture
the spatio-temporal space such as BoW on SIFT features in
[26] and LBP-TOP [27]. With the recent improvements in
neural networks, deep architectures have become popular and

effective for extracting high level features from data and specif-
ically from facial images [28], [16]. Recently, deep learning
approaches for feature extraction have surpassed the traditional
ones and emerged in an enormous impact and improvement in
many pattern recognition and classification tasks. In computer
vision, Convolutional Neural Network (CNN) is a well-known
deep learning architecture for feature extraction from images.
In our work, we benefit from this model as well, by using
the state-of-art VGG-Face face representation which proved
to be discriminative and efficient in face recognition [16].
In [3], [14], CNN features were extracted by fine-tuning
pre-trained models for facial emotion recognition. In [29], a
hybrid neural network is presented, that combines Recurrent
Neural Networks (RNN) with CNN to encode facial motion
throughout video frames.

B. Multimodal Learning

Data perception can be achieved through different and
complementary modalities such as audio, video, and skeleton
joints. The joint analysis of the sensory inputs leads to an
improved recognition of the environment, since it enhances the
understanding of an event through different channels. However,
each modality, has its own feature distribution and statistical
properties, and different sensory data have high non-linear
relationships. Therefore, concatenating the input features of
the different channels is not efficient. There have been many
studies that try to optimize a framework and benefit from
data of various modalities in order to obtain free modality
shared description to represent the correlation between dif-
ferent modalities. Multimodal learning has been applied for
several tasks which involve various data sensors, such as
person identification, emotion recognition [30], multimedia
retrieval [15], and gesture and action recognition [31]. In [32]
a deep learning method for audiovisual speech recognition
was proposed, where the authors used different settings and
scenarios in order to find a framework that would obtain a
shared representation for both modalities. One of the main con-
straints of the scheme presented in that paper is the complexity
of the applied architecture. In addition, when analysing the
performance of the late and early fusion, the results show the
inefficiency of the deep learning based multimodal learning.
This can be traced to the fact that deep learning requires much
more data to learn a shared representation than other models.

In our study we employ a Fisher vector representation for
encoding low-level features of different modalities. It functions
as a higher layer representation of those features, as it projects
them into the same space, where they share common statistical
and distribution properties. Comparing to deep learning, Fisher
vector representation has advantages such as its compactness
and efficiency, while it can be computed using a small number
of parameters (GMM parameters) [33].

C. Multimodal Emotion Recognition

Similarly, there have been various studies that cover multi-
modal learning for emotion recognition. For example, in [30],
multimodal deep learning was applied to learn a shared rep-
resentation for audiovisual emotion recognition. Other studies
exploited late level fusion. In [3], separate methods for each
modality were developed, (e.g. CNN for facial images and
Restricted Boltzmann Machines (RBM) for audio information),
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Fig. 1. Hierarchical multimodal fusion framework based on feature level and score level fusion. The proposed scheme starts with a pre-processing layer for face
and facial landmark detection, and face alignment. This layer is followed by extracting a set of M low-level features (e.g. DSIFT, CNN, and geometric features).
The third and fourth layers include high level representation of features by Fisher Vector encoding (FV) and selecting pair of modalities based on information
gain principles (IG). In the fourth layer are included examples of the selected pair modalities having indices (i, j) ∈M. The last layer of the framework depicts
score level fusion optimized using a Genetic Algorithm (GA).

followed by a combination of the score of each modality in late
fusion by grid search. Similarly in [14], they benefited from
kernel methods for video feature representation and the fusion
of the different modalities was achieved in a probabilistic
manner at a late stage. In [34], different classifiers were trained
for each modality, and then combined using a late fusion
approach based on a genetic algorithm.

In our work, we target the task of emotion recognition in
the wild using both schemes of multimodal learning: early and
late fusion. In the early level fusion phase, we first project
modality features into a common space that shares similar
properties using Fisher vector encoding, and then decide the
best combination of the modalities by employing information
gain principles for modality selection. In late fusion, we benefit
from the resulted modalities of early fusion, and take into
consideration the performance of each modality prior to Fisher

vector encoding to spot the complementary modalities for
better emotion prediction.

III. PROPOSED FRAMEWORK

In this section, we first explain the preprocessing phase of
facial images and how we obtain a face track from a video.
Then we present the low-level feature extraction methods
implemented in our framework for different modalities: audio
and visual (geometric and appearance features). Finally, we
describe feature encoding and representation by means of
Fisher vectors for video modeling and projecting features into
the same space.

A. Preprocessing

Facial Landmark Detection: Succeeding the step of face
detection, we detect 49 landmarks and track them in each
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Fig. 2. Cropped and aligned faces from the AFEW dataset.

Fig. 3. Face pre-processing and Feature Extraction and Encoding.

frame of a video, using the Supervised Descent Method (SDM)
[35]. SDM is a successful face shape regression technique,
which begins with an initial S0 face shape and progressively
predicts the final shape of the facial landmarks in an iterative
way. Comparing to other techniques, this method provides ro-
bust and accurate landmark positions in challenging conditions,
such as varying illumination and pose, and low quality images.
In addition, it gives a reliable and robust tracking of facial
landmarks in the wild, in real-time.

Face Alignment: Face alignment is an essential step in
facial emotion recognition. It is the process of registering
faces with respect to facial landmarks (e.g. eyes, nose, mouth,
and chin) of the canonical frame. This process fixes the
landmark positions in aligned images and it is carried out by
similarity transformation. In our work, we use facial landmarks
provided by SDM landmark detector and perform a similarity
transformation that aligns faces to the fixed canonical frame
based on eye centers positions. In addition, facial images are
cropped and re-sized to a fixed resolution: 224×224. Examples
of aligned and cropped faces are depicted in Fig. 2, while Fig.
3 presents examples of tracked facial images from the AFEW
dataset.

B. Low-Level Feature Extraction

Emotion recognition relies on representative data along
with accurate and discriminative descriptors. This type of infor-
mation contributes in enhanced recognition and classification
accuracy. Accordingly, in this paper, we extract a set of low-
level descriptors for the visual and audio modalities. Then, we
use Fisher vectors for video modeling and projecting them into
the same space. In the reminder of this subsection, we outline

Fig. 4. Illustration of the six salient facial regions of interest (ROI): left eye,
right eye, forehead, mouth, nose and the region between eyes.

the low-level features used in our work: DSIFT, handcrafted
geometric, CNN and audio features.

1) DSIFT Features: Dense Scale Invariant Feature Trans-
form (DSIFT) has been widely used for image representation
in the last decade, in many computer vision recognition tasks
[36], [37]. In DSIFT, instead of sparsely detecting and select-
ing the facial key-points, we compute the DSIFT histogram
densely over a given image, using a certain scale factor and
step size. This has an advantage since it does not rely on facial
landmark detection. We divide the facial images into a grid of
overlapping blocks with a step size equal to 1. Specifically, the
block size is 24×24. Later, we compute a DSIFT histogram
for each block. This step is repeated in 5 scales, with a scale
factor equal to

√
2.

In this work, we compute DSIFT with two approaches: (i)
DSIFT on the entire facial image; and (ii) DSIFT on six distinct
facial regions of interest (ROI): left eye, right eye, forehead,
mouth, nose and the region between eyes. These six facial ROI
are illustrated in Fig. 4. We extract and crop the ROI using the
facial landmarks provided by [35]. Then, DSIFT features are
extracted from each region separately. In the reminder of this
paper, we refer to the DSIFT extracted from the entire facial
image as DSIFT, while we call the DSIFT computed on ROI
as ROI DSIFT.

2) CNN Features: Our CNN face representation is based
on the VGG-face model [16], which is a 16-layer convolutional
neural network (CNN) model trained with 2.6M facial images
of 2.6K people for face recognition in the wild. We use this
model for feature extraction by employing the output of the
sixth Fully Connected layer (FC6) as the facial signature. This
layer outputs a 4096 dimensional feature vector.

3) Geometric Features: Another feature representation
deals with the shape and location of the facial landmarks
(e.g. mouth, eyes, eyebrows, nose, and chin). Different facial
expressions correspond to different shape deformations of the
facial landmarks. The location of the fiducial points was chosen
according to the facial model proposed by [35] and is shown
in Fig. 5. These landmarks are transformed and fitted with the
same alignment used for face registration.

An alternative is to use the fiducial points coordinates as
features in the classification process, but this representation
achieves poor performance, as it is not able to capture the

IEEE 4 | P a g e



Intelligent Systems Conference 2017
7-8 September 2017 | London, UK

Fig. 5. Facial landmarks provided by [35].

TABLE I. AUDIO FEATURES: LOW LEVEL DESCRIPTORS

Low Level Descriptors (LLD) Audio Features

Energy/Spectral LLD PCM Loudness
MFCC [0-14]

log Mel Frequency Band [0-7]
Line Spectral Pairs (LSP) frequency [0-7]

F0
F0 Envelope

Voicing related LLD Voicing Prob.
Jitter Local

Jitter consecutive frame pairs
Shimmer Local

variations between different individuals. For increasing the
discriminative power of the feature set, we compute geometric
features, which may be represented by segments, perimeters,
or areas of the figures formed by the fiducial points.

Following the works in [38] and [39] we obtain a set of
features including: Euclidean distances, angles and curvatures
between fitted facial landmarks, followed by applying a nor-
malization step. For example, the set of extracted features
include but are not limited to: mouth and eyes aspect ratios,
lower and upper lips and mouth corners’ angles, nose tip-
mouth corner angles, eyebrow slope, mouth corner and mouth
bottom angles, and the curvature of lower-outer and lower-
inner lips.

4) Audio Features: We utilize the speech analysis openS-
MILE toolkit [40] for audio features extraction. This popular
and widely used library extracts features that capture both
voice quality and prosodic characteristics of a speaker. We
follow the audio feature extraction as explained in [41]. The
set of audio features used in this study consists of: 34 energy
& spectral related low-level descriptors (LLD)×21 functionals,
4 voicing related LLD×19 functionals, 34 delta coefficients of
energy & spectral LLD×21 functionals, 4 delta coefficients of
the voicing related LLD×19 functionals and 2 voiced/unvoiced
durational features. The details for the LLD are included in
Table I. The functionals computed on the LLD include: arith-
metic mean, standard deviation, skewness, kurtosis, quartiles,
quartile ranges, percentile 1%, 99%, percentile range, position
max./min, up-level time 75/90, linear regression coefficient,
and linear regression error (quadratic/absolute).

C. Feature Encoding and Video Modeling

Video Modeling: In this work, we adopt the usage of
Fisher vectors for encoding and clustering different low-level
features for each modality. The features are not only pooled
from one still image, instead they are pooled from all the
frames across a face track. As suggested in [37], we use video-
pooling, where we compute a single fisher vector over the
whole face track by pooling together low-level features (e.g.
DSIFT, or CNN features) from all facial images in a track.
This kind of representation has many advantages comparing
to still image based representation for various reasons: (i) it
encodes the spatio-temporal information in a face track, (ii)
it captures the motion of the face over time which leads to a
better description of the different low-level features; and (iii) it
dramatically reduces the dimensionality of data by producing
a single discriminative descriptor for a video.

Fisher Vector Representation: The pipeline for Fisher
vector encoding typically starts with extracting a set of features
(e.g. DSIFT, geometric features etc.), and then aggregates the
large set of feature vectors across all frames in a track into
a high dimensional Fisher vector which is better suited for
linear classification. This is achieved by fitting a parametric
generative model such as Gaussian Mixture Models (GMM) to
the features. GMM can be referred to as a probabilistic visual
vocabulary. The next step consists of encoding the gradient of
the local descriptors log-likelihood with respect to the GMM
parameters. The GMM parameters are estimated on a large set
of local descriptors using the Expectation Maximization (EM)
algorithm to optimize the log-likelihood.

In Fisher vector computation, the covariance of the GMM
is assumed to be diagonal and only the derivatives with respect
to Gaussian mean and covariance are considered. This leads
to a vectorial representation that obtains the average first and
second order difference between the features and each of the
GMM centers:

Φ(k)(1) =
1

N
√

wk

N

∑
p=1

αp(k)(
Xp−µk

σk
) (1)

Φ(k)(2) =
1

N
√

2wk

N

∑
p=1

αp(k)(
(Xp−µk)

2

σk
−1) (2)

Where wk,µk,σk are the GMMs weights, means and diagonal
covariance, respectively. These parameters are computed on
each of the low-level features of the training set. αp(k) is the
soft assignment of the p-th feature xp to the k-th GMM com-
ponent. Fisher vectors dimensionality is 2Kd which depends
on the number of the GMM components (K), and the dimen-
sionality of the employed set of features. Then, a Fisher vector
φ is computed by stacking the differences (the assignment of
the low-level features to the first and second differences of
GMM centers): φ = [Φ(1)(1),Φ(1)(2), ....,Φ(K)(1),Φ(K)(2)].

A Fisher Vector representation has many advantages: (i)
it is a generic representation which combines the benefits of
generative and discriminative approaches, (ii) it can be com-
puted using a small number of parameters (GMM parameters),
(iii) more importantly, it is efficient and it shows a significant
benefit when used in combination with linear classifiers such
as linear-SVM [33].
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IV. MULTIMODAL FUSION

In this section, we present the two fusion approaches
employed in the proposed framework, feature level fusion
based on information gain and score level fusion, improved
by means of a genetic algorithm. We propose a framework
for multimodal emotion recognition, which combines different
modalities in a hierarchical and collaborative fashion, using
both early and late fusion schemes. These two techniques aim
to maximize the benefit of different modalities in emotion
recognition. In the rest of this section, first, we introduce
our approach by explaining how information gain and Fisher
vector representation are involved in early level fusion. Then,
we describe our method of collaborative late level fusion that
captures the performance of each modality per emotion to
enhance the final decision making.

A. Feature Level Fusion

In our study, we apply various feature extraction and
representation techniques for different modalities. Accordingly,
their data comes from diverse input channels. Therefore, each
modality has its own distinct feature distribution properties.
However, a multimodal fusion and feature learning method can
be used to capture the correlations between these modalities
in real word data, by employing a feature level representation.
As a result, similarity in the representation space, must reflect
the similarity in corresponding concepts. For example, speech
and facial images are correlated in the real world when people
express their emotions. People often tend to speak loudly when
they are angry, or they use a certain tone of voice accompanied
by a facial expression to indicate their affective states. We
use Fisher vector encoding to map the extracted features
into a common space, for achieving a higher layer feature
description, which shares similar statistical and discriminative
properties. Thus, different modalities are projected into one
domain by means of fisher vectors, enabling and supporting
feature concatenation. The newly obtained fisher vector based
representation is independent of the input modality, opposite to
the low-level features which are modality-dependent. Further-
more, the proposed data representation is useful at capturing
the non-linear relationships between the different modalities
employed in our work.

B. Feature Level Fusion Based on Information Gain Princi-
ples

For optimizing the feature level fusion of different modal-
ities and selecting the best combination among the possible
ones, we used measures from information theory, as the
Kullback-Leibler (KL) divergence [20], which is useful at
measuring the distance between two probability distributions
(PDF). In our framework we aim to minimize the distance
between the PDF of the true labels, denoted with Y and
the PDF of the predicted labels for each modality (Xk,k ∈
{1, . . . ,nmod}), obtained using a classification algorithm on top
of the modality k features.

KL(Xk||Y ) =
Nlab

∑
i=1

Xk(i)log
Xk(i)
Y (i)

(3)

where Nlab is the number of labels, Xk is the PDF of
predicted labels for the k modality, and nmod is the number

of input modalities denoted by different types of features,
both visual and audio. By minimizing the KL divergence, we
aim to obtain a PDF as close as possible to the ground truth
PDF, increasing in this way the performance accuracy of our
emotion recognition framework. As the KL divergence is not
symmetric, we employ in our work the symmetric version [42],
for obtaining a general framework, which is not affected by
the order of the modalities in the fusion process:

I(Xk,Y ) =
KL(Xk||Y )+KL(Y ||Xk)

2
(4)

Furthermore, the set of modalities which are fused at the
feature-level are selected by minimizing the KL divergence
between the PDF of the true labels and the PDF of the
predicted labels using a set of fused modalities, achieving in
this way a result as close as possible to the expected one:

argmin
k, j

I({Xk,X j},Y ),k, j ∈ {1, . . . ,nmod},k < j (5)

C. Score Level Fusion

In our work, we observed that emotional states are more
dominant depending on the existing modalities, e.g. some
of them are visual prevailing, while others are stronger dis-
played through the audio modality. As modalities can be
complementary to each other and display varying performance
characteristics across emotions, we take advantage of this
aspect for predicting emotional states in a collaborative manner
at the decision level. We apply this scheme in two stages,
first we learn classifiers for each single modality separately,
and then we combine the scores of specific modalities at the
decision level. In the first stage, each modality classifier is
regarded as an expert model due to its distinctive performance
in emotion prediction. In this phase, we take advantage of
the best fused modalities obtained using the information gain
principles presented in section IV-B. In addition, we also
use particular classification techniques for each modality or
fused feature vector before feeding it into the decision level
algorithm, as different classifiers are better fitted for specific
modalities[34]. Then, we apply a weighting scheme that takes
into consideration the performance of each modality with
respect to each affective state. The final decision is obtained
using a weighted-sum of the prediction given by each modality.
For optimizing our results, we employ a genetic algorithm
(GA) for assigning weights to each modality score for each
affective state.

For the aforementioned reasons, we applied a re-weighting
per modality and per emotion as a hyper-parameter search
over the model prediction scores for each emotion. This
optimized search algorithm adjusted the parameters to produce
a collaborative and complementary scheme. Accordingly, GA
learns the weights of the final decision for the modalities
combination and their predictions. The search space S of GA
depends on the number of modalities fed into it: nlab, and the
number of predictions nlab for each modality which is fixed to
7 in our case (the number of basic emotions and the neutral
state). Therefore, the search space matrix S has [nmod × nlab]
dimensions.
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Prior to learning the weighting scheme of the selected
modalities, we considered lower and upper bounds constraints
to avoid over-fitting the given modalities by GA. We use
the following constraints to regularize the learning during the
weight parameters search:

0 6 S(k, i)6 1,&k ∈ {1, . . . ,nmod}, i ∈ {1, . . . ,nemo} (6)

V. EVALUATION AND RESULTS

In this section, we first introduce the dataset chosen for our
experiments, then we present an extensive study and evaluation
of the modalities employed in our proposed framework. We
first evaluate each modality separately to assess their dis-
criminative properties and to estimate their efficiency. Then
we apply feature level fusion on all modalities. Finally, we
apply the proposed hierarchical scheme for selecting modality
combination based on information gain principles and genetic
algorithm optimization.

A. Dataset

Acted Faces Emotion In The Wild (AFEW): There are
several facial expressions datasets gathered in controlled en-
vironments, which mainly contain still images or videos of
frontal faces. Furthermore, the facial expressions are posed,
limiting the capacity of the data to reflect real-world challeng-
ing conditions. Therefore, we chose to base our work on the
AFEW dataset for several reasons: (i) AFEW is a challenging
dataset with occlusions, varying illumination and head poses,
which meets real-world conditions; (ii) it provides baseline
results and an evaluation protocol which is useful to evaluate
the efficiency of our scheme and (iii) it is currently studied
by the research community, as it was the subject of several
competitions over the last few years.

The Acted Faces Emotion in the Wild dataset is di-
vided into three subsets: Train (773 samples), Validation (383
samples) and Test (593 samples), while only the Train and
Validation sets are publicly available. It has both audio and
video modalities. In this dataset, the task is to classify a
sample audio-video clip into one of the seven categories:
Anger, Disgust, Fear, Happiness, Neutral, Sadness and Sur-
prise. The baseline results are based on Mixture of Parts
and INTRAFACE for prepossessing and facial alignment and
LBP-TOP and SVM for feature extraction and classification,
achieving 38.8% accuracy for the validation set and 40.47%
for the test set.

The dataset has in the wild settings, containing wide pose,
expression and illumination variation, which reflect the real-
world challenging conditions. Fig. 6 illustrates examples of
still images and a face track, where the various challenging
illumination and pose conditions can be noticed.

Video Modeling: As we described in section III-C, we use
video-pooling, where the low-level features are pooled from
all the frames across a face track in each video of the AFEW
train and validation sets. Then, we compute a single Fisher
vector over the whole face track by aggregating and encoding
low-level features (e.g. DSIFT or CNN features) of all frames.

Fig. 6. Example of still images of affective states and a face track from the
AFEW dataset.

TABLE II. PERFORMANCE OF INDIVIDUAL MODALITIES ON AFEW
VALIDATION SET USING LINEAR SVM CLASSIFIER

Modalities Features Accuracy

Visual FV on DSIFT 39.4%

FV on ROI DSIFT 39.2%

FV on CNN features 40.0%

FV on hand crafted geometric features 32.8%

Audio FV on audio features 36.4%

Raw audio features without FV 30.8%

B. Evaluations Metrics

In our experiments, we take into consideration several
evaluation criteria: (i) Accuracy, which is the number of cor-
rectly classified video samples; (ii) Confusion Matrix between
the ground truth and the predicted emotion labels and (iii)
Symmetric KL-Divergence, where we aim to minimize the
symmetric KL-divergence between the predicted labels and the
true labels. We train our proposed approach on the train set
and test it on the validation set.

C. Unimodal Experiments

Firstly, we apply the evaluation metrics for each representa-
tion separately on the AFEW validation set. These experiments
aim to show the baseline performance of different features
for both visual and audio modalities, which are presented in
Table II. The best results are obtained for the visual modality,
where CNN appearance based features are slightly better than
the baseline results. Another interesting finding is represented
by obtaining an improved accuracy of audio features when
encoded with Fisher vectors in comparison to the raw audio
features. As shown in last two raws of table II, this gain in
the performance by almost 6% is significant.

D. Multimodal Emotion Prediction

Feature Level Fusion: was introduced in sections III-C
and IV-A. We first encode the low-level features of audio
and visual modalities using a Fisher vector representation. To
such an extent, we obtain a general representation of each
modality that shares similar distribution properties. Next we
concatenate the Fisher vectors of pair modalities and then
perform the classification task using linear Support Vector
Machines (linear-SVM).

In case of concatenating the Fisher vectors of all modalities,
the accuracy on the AFEW validation set is 45.6%. In addi-
tion, using IG principles, based on minimizing the symmetric
KL-divergence between the predicted labels of concatenated
modalities and the ground truth labels of the test samples,
we selected the best combination of features to concatenate,
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Fig. 7. Confusion matrix of the AFEW validation set for the IG based feature
level fusion.

followed by the emotion prediction task. This leads to an
overall accuracy of 47.5%, for a reduced set of modalities
composed of (CNN, geometric, DSIFT and audio). Fig. 7
shows the confusion matrix of affective states corresponding
to this approach. However, fusing all the modalities into one
feature vector is less efficient for the classification task and
also slower in comparison with to the following scheme of
score level fusion, which is based on the fusion of the best
pair modalities.

Dataset Influence: in the AFEW dataset, there are a
number of videos for which it is very hard to decide their
emotion label only from the visual information. For example,
we noticed that, facial expressions, in many videos, labeled as
surprise have been classified as an angry emotion by several
human annotators, observation also supported by [43]. There-
fore, we need more contextual and complementary information
to enhance the accuracy and to correctly classify these ambigu-
ous videos. Thus, the audio modality represents one way to
boost up the performance of the classification task by adding
contextual information. In addition, we observed that in both
fusion schemes, employing different features and modalities
led to a better accuracy. In Table II, the performance of
separate modalities is reported, (e.g. face and audio accuracies
are 39.4% and 36.4% respectively). Accordingly, table III
illustrates the performance for feature level fusion, where we
notice that the fusion of visual and audio modalities increases
the performance to 43.3%, mainly due to the complementarity
of the two channels.

Furthermore, as we aim to investigate the advantages of
a hierarchical fusion scheme, we apply the information gain
theory based on minimizing the KL-divergence for deciding
the best pair of modalities to be combined in feature level
fusion. In Table III, the three best pairs of modalities are
included, obtained by concatenating the FV of the following
features: (i) ROI DSIFT and geometric features, (ii) audio
and DSIFT features, and (iii) geometric and DSIFT features.
The KL-divergence and the obtained accuracy on the AFEW
validation set, are shown in Table III. We notice the increase
in the performance over the unimodal results in Table II in all

TABLE III. PERFORMANCE OF FEATURE LEVEL FUSION ON
CONCATENATED PAIR MODALITIES OF AFEW VALIDATION SET.

Fusion Modalities Sym-KLDV Accuracy

FLF ROI DSIFT and Geometric 0.2622 43.6%

FLF Audio and DSIFT 0.2626 43.33%

FLF Geometric and DSIFT 0.3244 40.6%

TABLE IV. SCORE LEVEL FUSION (SLF) OF PAIR MODALITIES IN
TABLE III ON AFEW VALIDATION SET.

Score Level Fusion Accuracy

Genetic Algorithm Based Fusion 48.9%

Performance Based Weights Fusion 44.4%

Fig. 8. The resulted modalities and features from feature level fusion by FV
and IG, and the weights per-modality and per emotion obtained by score level
fusion using GA.

cases, which proves the benefits of both feature level fusion
and of the Fisher vector representation.

Score Level Fusion: Following the feature-level fusion
step, we fed the obtained pair modalities predicted scores into
late level fusion, and searched for the best weights to fuse
them. As emotions are more dominant depending on the audio
or visual modalities, score level fusion aims to breakdown the
fusion into this level, where we assign weights per-modalities
and per-emotion. For achieving this purpose, we employ two
approaches: (i) firstly we use as weights of each modality
the diagonal elements of the confusion matrix; (ii) the second
technique uses GA for searching the best weights to fuse the
given modalities.

In the first case of using the performance based weights,
the overall accuracy is 44.4%. However, in the second case, we
apply a genetic algorithm as an optimization search algorithm,
using 5-fold cross validation. Fig. 8 depicts the score level
fusion approach together with the weights per-modality and
per-emotion in the best performing case. The GA-optimized
search resulted in an enhanced performance with an average
accuracy of 48.9%. The results obtained in both cases are
shown in Table IV. In comparison to the feature level fusion
and the performance based weights late fusion, the genetic
algorithm outperformed both approaches, leading to a better
fusion model.

In addition, the best weights of among the 5 folds gave an
even better performance, obtaining an accuracy of 53.06%. Fig.
9 contains the normalized confusion matrix for the validation
set obtained using the best weights of the score level fusion.
When compared with the confusion matrix for the best feature-
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Fig. 9. Confusion matrix of the AFEW validation set for the best score level
fusion.

TABLE V. PERFORMANCE OF DIFFERENT METHODS ON AFEW
VALIDATION SET

Approach Accuracy

Baseline AFEW [48] 38.8%

Gideon, et al. [44] 43.86%

Chen, et al. [45] 50.65%

Ding, et al.[46] 51.20%

Ours 53.06%

Barga, et al.[47] 59.42%

level fusion, we notice a substantial improved performance for
several emotions (angry, sad and neutral).

Therefore, we can notice the advantages of our multimodal
learning scheme for combining the feature level and the score
level fusion in a hierarchical manner based on IG principles
and GA optimization. Additionally, score level fusion has
the advantage of re-weighting existing modalities to benefit
from their individual expertise and performance on specific
emotions.

Furthermore, our proposed system achieves better results
than the baseline provided by the AFEW validation set [23]
and also when compared with other approaches [44], [45],
[46], as presented in Table V. The work described in [47]
achieves a better score, by employing a massive amount of
training data for fine-tuning the CNN features, while in our
approach, we only used the training set available in the AFEW
dataset, limited to 773 video samples.

VI. CONCLUSION

In this paper, we proposed a new framework for mul-
timodal hierarchical emotion recognition, tested on a chal-
lenging dataset AFEW’16. We employed a Fisher vector
representation for capturing the discriminative and temporal
information across the frames in each video sample. This
encoding was applied to different types of features (e.g. Dense
SIFT, geometric, CNN, audio) enabling mapping them into
a common space, where feature level fusion is performed
achieving 45.6% accuracy when all the features vectors are
used. Furthermore, we used information gain principles, for

selecting the best combination of features to be fused, leading
to an improved system performance of 47.5%. Next, we also
applied a decision-level fusion approach on top of the best
feature and modality combinations obtained through feature-
level fusion. We optimized the modality weights for each
emotional state using a genetic search algorithm, which lead
to an overall 48.9% accuracy, while the best weights attained
a score of 53.06% on the validation set, surpassing by 14%
the dataset baseline of 38.81%.

As future work, we plan to further optimize our frame-
work by fine-tuning our CNN features using several emotion
datasets, in the training process.
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