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Chapter 1

Introduction

In this thesis "intelligent" games are investigated from the perspective of
Arti�cial Intelligence (ai) research. In this chapter the relevance of such
investigations is discussed, leading to the formulation of a problem statement.

1.1 Speculations and AI

All through history, mankind has been fascinated by the thought of creating
machines to perform the most di�cult of tasks. Men of every era have dreamt
of and speculated about achievements beyond the scope of the technology of
their time. Yet, when confronted with a machine performing tasks at an
unexplained high level, many willingly believed that science and technology
had made it possible, instead of doubting the genuineness of the machine's
results. For example:

In 1769, Wolfgang von Kempelen demonstrated his chess-playing automa-
ton, the Turk, to the world (Carroll, 1975). It was the �rst machine to create
the illusion of havingmental abilities: playing chess at a high level. Among its
successes was a victory over the Prussian king Frederick the Great. For many
years, large numbers of people believed that the Turk was a true thinking
machine, even though the technology of the 18th century did not hint at
how such a machine could have been created. For exactly that reason, many
others believed that the Turk had to be a fraud. Nevertheless, the secret
of the small human chess-player hidden inside the Turk was well-kept until
1834.

With the creation of modern computers, the �eld of Arti�cial Intelligence
emerged as a new focal point for speculations. Some of these speculations

1



2 Chapter 1. Introduction

have been made by scientists working within the �eld, while others have been
made by laymen, such as those working in the motion-picture industry. For
instance, movies such as 2001: A Space Odyssey, Star Wars and War Games

feature computers (resp. hal, r2-d2 and c-3po, and wopr) which seem
to have minds of their own. The impact of these truly arti�cially intelligent
entities, �ctitious as they may be, on the perception of ai research by the
public at large is considerable. Predictions presented by leading scientists in
the �eld reinforce the image created by movies and science-�ction authors. As
an example we refer to the Inaugural Lecture delivered by Van den Herik in
which he raised the question whether computers will be able to decide issues
of law (Van den Herik, 1991). Irrespective of Van den Herik's estimation of
several hundreds of years necessary to create an arti�cial judge, the spin-o�
of such speeches in terms of nation-wide coverage by newspapers, radio and
television strengthens the general public's idea that the creation of arti�cially
intelligent entities is within close range.

It is important to distinguish clearly between the state-of-the-art in ai and
speculations concerning future achievements. We present three well-known
examples of progress in ai, each of which has led to unjusti�ed speculations:

1. Newell et al. (1957) created the General Problem Solver, a new control
metaphor for representing and solving problems. The name of their
system led to speculations concerning the creation of a truly general
problem solver. More than three decades later ai has not produced
anything near such a goal.

2. In 1959, Samuel created his learning checkers1 program which won a
game against a human master player (Samuel, 1959; Samuel, 1967).
From this single game, it has been wrongly concluded by many that
an arti�cial master checkers player had been created, while some even
believed that the game of checkers had been "solved" (Schae�er et al.,
1991). Samuel's work on learning is classical within ai but only recently
have programs begun to compete with the best human checkers players
(Schae�er et al., 1992).

3. The medical diagnostic expert system mycin determines the infectious
agent in a patient's blood, and speci�es a treatment for the infection
(Shortli�e, 1976; Buchanan and Shortli�e, 1984). Despite the promise

1In this thesis we shall use the name checkers for the game played on an 8 � 8 board,
which is called checkers in the United States of America, and draughts in Great Britain.
We reserve the term draughts for the game played on a 10� 10 board.



1.2 Identifying the obstacles 3

created by successes such as mycin, the development of expert systems
has been hindered by many problems, such as the knowledge-acquisition
bottleneck (Feigenbaum, 1979). Speculations regarding machines repla-
cing doctors of medicine so far lack a scienti�c basis.

The three examples illustrate that ai research in the last decades of
the twentieth century is not directly involved in creating true intelligence.
Instead, many of the stumbling blocks on the road to such a goal are now
themselves the main subject of investigation. Only when these obstacles are
removed may we start looking for the goal implicit in the name of the �eld.

1.2 Identifying the obstacles

It is believed by many scientists that the main hurdle to be cleared when
creating arti�cial experts in practical domains is common-sense knowledge

(Marr, 1977). Where humans are extraordinarily well equipped to acquire
common-sense knowledge with their �ve senses, computers are de�cient in
this area. Despite e�orts in areas such as computer vision, robotics, speech
processing etc., no computer program exists which exhibits even a basic
understanding of the real world (Marr, 1977). This lack of knowledge severely
handicaps computers in becoming experts in any real-world domain, such
as medicine, law, manufacturing etc. A direct consequence is the failure
in dealing with natural languages. In conversations between human beings
many things are left unsaid without hindering the participants. The gaps
are �lled by common-sense knowledge and sentences are interpreted within
the context of our world view. Many ai researchers thus believe that
common-sense knowledge is a vital ingredient for natural language processing
(Charniak, 1978).

Another area where nature has been generous to humans is learning.
Humans continuously learn from their experiences, much unlike computer
programs. Whereas learning is an automatic built-in feature of infants, it is
di�cult to realize in computer programs, despite the e�orts spent on machine
learning (Michalski et al., 1983; Michalski et al., 1986).

The lack of common-sense knowledge and of learning have a large impact
on what computers can and cannot do. Besides these known obstacles,
we may wonder whether other, hidden obstacles hinder progress in ai.
For instance, some argue that intuition is a human quality which cannot
be implemented (De Groot, 1965), while others believe that intuition is
simply a name for rule-based behavior where the rules are not accessible
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to consciousness (Michie, 1982). Thus, while some consider intuition to be
unattainable for computers, others stress that to implement intuition, all we
need to do is to uncover the rules at its basis. In general, it is of interest to
know as many of the main obstacles hindering progress in ai as possible. It
remains in dispute whether intuition should be regarded as such.

1.3 Uncovering hidden obstacles

Some new obstacles for ai research may become visible only after we
have successfully dealt with the obstacles apparent today. Others may be
discovered by concentrating on a set of domains where known obstacles play
no role of importance, such as the domain of games. Many games, such as
chess, checkers, go and bridge possess the property that they create a micro
world (Van den Herik, 1983), in which common-sense knowledge and natural
languages are not relevant. Instead, a small set of rules determines all possible
states within the micro world. And yet, in most of these games, humans are
(still) superior to their arti�cial counterparts. The game of go is a striking
example: today's strongest go programs have reached a mere novice level.

By investigating a game, we envision two possible outcomes.

� If we achieve a playing strength su�cient to defeat the best human
players, analysis of the means which led to this improvement may
uncover new ai techniques.

� If the playing strength keeps falling short, even after prolonged
attempts, of that of the best human players, a better understanding
of the problems inherent in playing the game at a high level may be
acquired.

We remark that the possibility remains that the results do not lead to
progress (i.e., to new ai techniques or a better understanding of the inherent
problems). In the �rst case, the improvement may be due to entirely domain-
speci�c techniques which cannot be generalized to ai techniques (Dreyfus,
1980). In the second case, we may �nd that we have di�culty in isolating
the problems from our failed attempts. Although a lack of progress may
occur in some cases, by investigating a representative set of games in this
way the probability increases that new ai techniques are developed or insight
into problems hindering progress is obtained.

If similar problems are found in several di�erent games, it may help us
to uncover obstacles which are likely to exist in real-world domains as well.
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It could also lead to an understanding of the restrictions of the techniques
applied. We list two examples of this last phenomenon.

� After the rapid increase in playing strength of computer chess programs
in the seventies and eighties, it was suggested that an increase of
the search depth by an extra ply (i.e., a move by one player), was
equivalent to an increase in playing strength of approximately 200
elo points (Thompson, 1982). Now that progress in playing strength
has slowed down, investigations in the relation between search depth
and playing strength for checkers indicate that the added strength per
ply diminishes for deeper searches (Schae�er, 1993b). Furthermore,
positions have occurred in tournament games where a search of 60 ply
would be necessary to stand up against human knowledge (Schae�er,
1993b). Because such searches are by far out of reach of current
technology, it has become clear that added knowledge is a vital
ingredient to world-champion level checkers and chess programs.

� In the early days of ai research, many new weak methods (i.e., using
little domain-speci�c knowledge) were demonstrated to succeed on
toy problems (Winston, 1992). It was believed that through deeper
search the results on toy problems could be extrapolated to real-world
problems. This has proved to be more di�cult than anticipated. Using
su�cient domain knowledge, state spaces can be reduced such that
problems become solvable. However, when vital knowledge is excluded
the explosion of possibilities makes many such problems intractable.

We postulate that when investigating su�ciently complex games with the
goal of outperforming human beings, success is likely to yield new ai

techniques as their products, while failure presents a better understanding
of problems and obstacles encountered. This observation is the basis of the
problem statement presented in the next section.

1.4 The problem statement

In this thesis, we consider games which have the following �ve properties.
Examples of games which have these properties include chess, checkers, go
and bridge.

1. Two-player. Most games are two-player games, as opposed to zero-
player games (e.g., Conway's life (Berlekamp et al., 1982)), one-player
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games (e.g., the 15-puzzle (Korf, 1985), Rubik's cube and peg solitaire

(Beasley, 1985)) and multi-player games (e.g., poker and diplomacy (Hall
and Loeb, 1992)).

2. Zero-sum. These are games where one player's loss is the other player's
gain. The prisoners' dilemma (Hofstadter, 1985) when considered as a
game is not zero-sum.

3. Non-trivial. A best playing strategy should not be trivially establish-
able through enumeration or mathematical analysis. Examples of
trivial games are tic-tac-toe and nim.

4. Well-known. These are games which have been played by large numbers
of people, resulting in the game being known in several countries. This
excludes many mathematical games, and obscure variations on well-
known games (such as give-away chess).

5. Requiring skill. Some games serve mainly as a pastime, not requiring
much skill. The more experienced player has no real advantage in those
games, except maybe against novices (examples are many simple card
games played by children). The games included here should exhibit a
strong relation between skill and winning chances. Such a relation also
exists in some games which are inuenced by a chance element, such
as backgammon and bridge, which are thus included.

The �rst two properties (two-player and zero-sum) are selected to ensure
that cooperation between players can be excluded from the investigations.
The third property (non-trivial) is necessary for us to have something to
investigate. The last two properties (well-known and requiring skill) ensure
that the results of our investigations can be checked (for instance against
strong human players) and evaluated.

To be more speci�c, we list the set of games played at the Computer
Olympiads which ful�ll all these criteria (Levy and Beal, 1989; Levy and
Beal, 1991; Van den Herik and Allis, 1992). This list of games will henceforth
be called the Olympic List.

awari, backgammon, bridge, chess, Chinese chess, checkers, connect-
four, draughts, go, go-moku, nine men's morris, othello, qubic, renju,
scrabble.

We do not claim that the �fteen games of the Olympic List are the
only games satisfying the �ve properties listed above. However, as long as
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su�cient challenges exist for the listed games, there is no need to try to be
complete.

We are now ready to present our problem statement, consisting of two
questions.

Through an investigation of games of the Olympic List,

1. which new ai techniques can be developed and

2. which obstacles for ai research will emerge?

The goal of this thesis is to �nd an answer to these questions. To this
end, we list below three detailed research questions, distinguishing between
performance levels of systems which may be the result of investigating games
of the Olympic List.

1. Which games can be solved (see section 1.5) and what techniques may
contribute to the solution?

2. For which games can we create programs outperforming the best human
players in the near future, and what techniques contribute to their
performance?

3. In which games will humans continue to reign in the near future (say,
at least the next decade) and what are the main obstacles to progress
for computer programs?

Our attempts to answer these three questions have guided the research e�orts
described in this thesis.

Before we give an outline of the thesis in section 1.6, we must clarify the
term solved in relation to games. As there is no consensus about this term,
we will give a de�nition in section 1.5.

1.5 Solving games

Stating that a game is solved usually indicates in common parlance that
a property with regard to the outcome of the game has been determined.
Even for two-player zero-sum games with perfect information (see section
6.2), at least three di�erent de�nitions could be meant, which we name ultra-
weakly solved, weakly solved and strongly solved. The �rst two terms have
been suggested by Paul Colley, while the third term has been suggested by
Donald Michie.
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ultra-weakly solved For the initial position(s), the game-theoretic value
has been determined.

weakly solved For the initial position(s), a strategy has been determined to
obtain at least the game-theoretic value of the game, for both players,
under reasonable resources.

strongly solved For all legal positions, a strategy has been determined to
obtain the game-theoretic value of the position, for both players, under
reasonable resources.

We remark that the reasonable resources mentioned may be a subject of
discussion. The size of the resources is meant only to give an approximate
indication of the time and computing equipment allowed for reproducing a
solving strategy. Without these restrictions, it could be argued that, for
instance, chess could be weakly solved. As a strategy to solve chess, an
�-� search through the full game tree su�ces. The reasonable resources
mentioned should typically allow the use of a state-of-the-art computer and
several minutes of computation time per move.

The de�nition of ultra-weakly solved indicates that, at the start of the
game, it is known what the outcome of the game would be with optimal play
by both sides. It is not necessarily known how either player can achieve the
optimal outcome. The game of hex, for instance, is known to be a �rst-player
win on all diamond-shaped boards, although no constructive strategy has
been determined. The game-theoretic value has been established by noting
that the game does not permit draws and that having an extra move cannot
be a disadvantage. Thus, since the �rst player does not need to lose, hex is
a �rst-player win. This reasoning has not (yet) led to a winning strategy for
the �rst player, which makes it of little use to practical play.

It is well-known that tic-tac-toe is a game-theoretic draw. A player who
has weakly solved tic-tac-toe only needs to be able to achieve a draw, in every
game she2 plays. It is not necessary for her to win against a non-optimally
playing opponent, when she is given a winning opportunity.

The de�nition of strongly solved demands a strategy not just from the
initial position(s), but from all legal positions. Thus, against a non-optimally
playing opponent, each mistake must be capitalized upon. Examples of
strongly-solved games are tic-tac-toe, nim (Knuth, 1969) and many chess

2In contexts where the gender of a non-neutral third person is irrelevant, we will always
use "she" and "her" to avoid the more cumbersome "s(he)" and "her/his".
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endgames (Van den Herik and Herschberg, 1985; Thompson, 1986; Stiller,
1989).

An ordering exists between the three de�nitions. Any strongly-solved
game, is also weakly solved, while a weakly-solved game is also ultra-weakly
solved. To see the latter, it su�ces to play a single game from each initial
position of the game, with both sides played by the system which solved the
game. The outcome of such a game is guaranteed to be the best attainable
by both players, equaling the game-theoretic value of the game.

In any domain for ai research, evaluation of the practical performance of
the systems produced is essential. The natural performance test of a game-
playing system is a match consisting of a large number of games against a
rated opponent. When claiming that a program has solved a game, it seems
reasonable to require the program to exhibit skill in such a match. A program
which has ultra-weakly solved a game does not guarantee being capable of
playing the game at all. A program which has weakly solved a game will
at least draw every match it plays (while it plays both sides equally often).
Note, however, that for games where the program has shown the game to
be a win for the stronger side, it is not guaranteed to exhibit any skill when
playing the weaker side. The guaranteed performance level, i.e., ensuring
that no single match is lost, is in our opinion su�cient to declare a game
solved.

In this thesis, we consider a game solved when it is at least weakly solved.

1.6 Thesis outline

In 1988, research performed for a Master's thesis (Allis, 1988) led to solving
connect-four, published as (Uiterwijk et al., 1989a). Inspired by this result,
we decided to start with the �rst research question, i.e., determining which
other games of the Olympic List can be solved, and identifying techniques
which contribute to their solution. In particular, of the fourteen remaining
games of the Olympic List (i.e., excluding connect-four), we have selected
four which seemed eligible for solution. These games are awari, qubic, nine
men's morris and go-moku. Awari and nine men's morris are selected for their
relatively small state-space complexity (see chapter 6), while qubic and go-

moku are selected since human experience indicates that the �rst player
has an overwhelming advantage. As Ralph Gasser has been investigating
nine men's morris concurrently with our research (Gasser, 1991), we have
concentrated on awari, qubic and go-moku.

During investigation of these games, two new search techniques have been
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1. Introduction

2. Proof-number

search

will Survive?

3. Dependency-
based search

4. Qubic 5.  Go-Moku

6. Which Games

Figure 1.1: The interdependencies of chapters

developed, viz. proof-number search (pn-search) and dependency-based search

(db-search). While db-search forms the basis for solving qubic and go-moku,
pn-search is an important contributing factor. Although our investigations
showed that applying pn-search to awari leads to promising results, awari has
not (yet) been solved. The results of our investigation of the �rst research
question are described in chapters 2 through 5.

In chapter 6 the second and third research questions are investigated
leading to an evaluation of the problem statement.

The thesis is organized as follows. It consists of four parts, the �rst of
which is this introduction. The second part consists of chapters 2 (Proof-
Number Search) and 3 (Dependency-Based Search), containing descriptions
of the two search techniques developed in the course of this research.
Both techniques are presented independently of their application to games.
Chapters 2 and 3 can each be read independently of other parts of the thesis
and are of special interest to those researchers who would like to apply the
techniques to their own research domains.

The third part of the thesis consists of chapters 4 (Qubic) and 5
(Go-Moku), each describing the solution to the game under investigation.
Although it is recommended to read chapter 2 before any of the game-speci�c
chapters, proof-number search is not essential foreknowledge. Dependency-
based search forms the basis for solving qubic and go-moku. It is, therefore,
necessary to read chapter 3 before starting on chapters 4 and 5.



1.6 Thesis outline 11

The fourth part of the thesis consists of chapter 6 (Which Games Will
Survive?), in which all games of the Olympic List are investigated. For each
game, we determine the value of four game properties, describe the state
of the art in game-playing programs, list the techniques applied and the
obstacles to progress. Next we evaluate our research with respect to the
problem statement. Predictions regarding the future of games conclude the
chapter. The fourth part of the thesis can be read independently of the
second and third parts, although it is recommended that the reader �rst
obtains some knowledge of the contents of these parts.

The interdependencies between the chapters are pictured in �gure 1.1. An
arrow from chapter A to chapter B indicates that A is essential foreknowledge
for B. A dashed arrow between chapters A and B indicates that it is
recommended, but not essential, to read A before B.
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Chapter 2

Proof-Number Search

2.1 Knowledge representation and search

Problem solving is one of the corner-stones of ai research. Within problem
solving, we distinguish two subprocesses: choosing a knowledge re-pre-
sentation and performing a search. We remark that the term knowledge
representation is meant to include analysis, conceptualization and formalisa-
tion. A well-chosen representation may considerably reduce the amount of
search needed to solve a problem, while a badly chosen representation may
render solving a problem (virtually) impossible. As an example we present
the mu-puzzle (Hofstadter, 1979).

A production system consisting of four rewriting rules generates
theorems consisting of the letters m, i and u. In each production,
x and y denote any string of letters.

1. xi ! xiu

2. mx ! mxx

3. xiiiy ! xuy

4. xuuy ! xy

The goal of themu-puzzle is to determine whether mu is a theorem
in the above system, given that mi is the only axiom.

In a �rst attempt to solve the puzzle, we represent a theorem
simply by its string of letters. The rewriting rules are used to
expand nodes of the search tree, where each node represents
a theorem. We are now faced with a tree-search problem: to

13
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�nd a path of rewriting rules leading from the initial state mi to
the goal state mu. A suitable tree-search algorithm is selected
to perform the search, such as breadth-�rst search or depth-
�rst search. To select a search algorithm, various criteria may
be applied. For instance, breadth-�rst search guarantees that
the �rst solution found is also the shortest solution (Nilsson,
1980). A disadvantage of breadth-�rst search is that it requires
more working memory than an algorithm such as depth-�rst
search (Nilsson, 1980). Generally, each of the applicable search
algorithms has its own advantages and disadvantages. In case no
solution exists, these algorithms have the disadvantage that the
search will not terminate, as the set of theorems is in�nite.

Instead of concentrating on the selection of the best possible
search algorithm, we may �rst try to optimize the chosen
representation. For the mu-puzzle, a better representation
involves an extra item of knowledge per theorem. This Boolean
item, which we name IsTripleI, indicates whether the theorem's
total number of is is a multiple of three. We can now verify
that each of the four rewriting rules creates new theorems with
IsTripleI's value equal to that of the theorem it is created
from. The observation that mi (false) and mu (true) have unequal
IsTripleI values is su�cient to prove that mu is not a theorem.

In the mu-puzzle example, it was possible to eliminate all search by
enhancing the representation of the puzzle. It illustrates that choosing
a representation should have the highest priority when solving problems.
Choosing a knowledge representation in problem solving is mostly domain-
speci�c. Even though general techniques (such as abstraction, here applied
to the mu-puzzle) exist, their successful application remains the fruit of a
thorough understanding of the domain under investigation.

For problems more complex than the mu-puzzle, a good representation
generally does not eliminate all search; it merely reduces the size of the state
space to, hopefully, manageable proportions. It is then important to select a
search algorithm which will �nd a solution, if it exists, in an e�cient manner.
The e�cient manner is to be understood here in a broad sense, including
programming time, calculation time and the required amount of working
memory. The weighting of these resources depends on the circumstances in
which the problem has to be solved.
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Thus, the domain-speci�c task of �nding a suitable knowledge represen-
tation is performed in combination with the selection of a search algorithm
well-suited for the state space. In the course of a considerable number of
years of research in ai, many di�erent search algorithms have been developed.
We distinguish between several categories of search problems, such as those
represented by single-agent trees, and/or trees and game trees (Nilsson,
1971). While the category that a search problem belongs to restricts our
choice of search algorithms, within each category several search algorithms
exist, each with its own characteristics. These characteristics determine the
scope of problems for which the algorithm may be preferred over the other
algorithms within the same category. We remark that the division into search
categories is not strict. An example relevant to this thesis is that two-valued
game-tree searches can also be performed by search algorithms for and/or
trees.

For the category of game trees, many di�erent search algorithms have
been developed. We name the best known algorithms and mention the type
of search problems for which we believe they are best suited:

� By far the best-known game-tree search algorithm is �-� search (Knuth
and Moore, 1975). It is a directional (also known as depth-�rst)
algorithm, having working-memory requirements linear in the depth
of the tree investigated. Knuth and Moore (1975) have shown that
�-� search achieves optimal e�ciency on perfectly-ordered uniform
trees. Application of iterative deepening to �-� search ensures for
many application domains that strongly-ordered trees are traversed,
resulting in close-to-optimal e�ciency on uniform trees (Campbell and
Marsland, 1983).

� Sss* is a best-�rst search algorithm (Stockman, 1979). It will never
investigate a node pruned by �-� search (Campbell and Marsland,
1983).

The algorithm has two drawbacks. First, as with all best-�rst
search algorithms, the working-memory requirements are linear in the
number of nodes created, thus exponential in the depth of the tree.
However, recently variants requiring less working memory have been
developed (Reinefeld, 1994). Second, the reduction in the number
of nodes searched compared with iterative-deepening �-� search does
not outweigh the cost of maintaining the search tree (or open list) in
working memory for most practical applications. However, if the cost
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of heuristic evaluation is large compared to the cost of traversing the
tree, or if obtaining a good ordering through iterative deepening for
�-� search is di�cult for the domain under investigation, sss* may be
an alternative to be preferred.

� Another best-�rst search algorithm is b* (Berliner, 1979). It depends
on the availability of reliable heuristic estimates for the upper and lower
bounds on the value of internal nodes. For chess, the algorithm has been
implemented in hitech, but it remains unclear whether for this domain
su�ciently accurate upper and lower bounds can be estimated to result
in better move selection than by algorithms based on �-� search.

� Conspiracy-number search (cn-search) (McAllester, 1988; Schae�er,
1989) is a best-�rst search algorithm which determines the cardinality
of the smallest sets of (terminal) nodes which must change their value
in order to change the value of the root. Once this cardinality grows
beyond a pre-speci�ed bound, it is considered unlikely that the root
value will change, and the search is terminated. Cn-search has shown
its merits in tactical chess positions (Schae�er, 1989), but has failed
in a comparison with �-� search in a tournament chess program (Van
der Meulen, 1990). Cn-search has as disadvantages the large amount
of bookkeeping necessary at each node, and the subsequent amount of
working memory required to perform the search. One of the ideas
underlying cn-search is that the distribution of the values over the
leaf nodes of the tree, and the shape of the tree, should inuence the
selection of the next node to be investigated.

The last aspect of cn-search, using the shape of the tree to guide the search,
has been singled out in proof-number search (pn-search), which can be seen
as a successor to conspiracy-number search. In this chapter we present pn-
search, which has the exploitation of non-uniformity as its main theme. Pn-
search will be presented as an and/or tree search algorithm, even though
all applications discussed in this thesis concern game trees.

We introduce in section 2.2 the pn-search algorithm for and/or trees.
In section 2.3, several enhancements to the algorithm are presented. These
include techniques to reduce execution time and usage of working memory,
examples of the application of domain-speci�c knowledge, and a discussion
regarding transpositions within pn-search. Results of applying pn-search to
a practical domain, the game of awari, are presented in section 2.4, where
its performance is compared with those of sophisticated implementations of
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�-� search. Finally, section 2.5 contains a discussion of related algorithms,
analyzing the similarities and di�erences between pn-search and conspiracy-
number search, sss*, b* and a*. (A* (Hart et al., 1968), a single-agent
search algorithm, has been included in this list because of its similarities
with pn-search.)

2.2 Pn-search: the algorithm

In this section we introduce pn-search for and/or trees. First, in section
2.2.1 we de�ne our tree model and a precise terminology for the remainder
of the chapter. Then, the main assumptions of pn-search are described in
section 2.2.2 and the notions of proof numbers and disproof numbers are
introduced. Next, section 2.2.3 informally discusses the order in which the
nodes of a pn-search tree should be created. Finally, an algorithm in pseudo-
code for pn-search is presented in section 2.2.4.

2.2.1 The AND/OR-tree model

We de�ne our tree model as follows. In the tree, there are two types of nodes:
and nodes and or nodes. We assume that each node can be evaluated,
leading to one of three values: false, true or unknown. Please note the
di�erence between nodes which have not yet been evaluated (thus whose
evaluation value is not yet known) and nodes which have been evaluated and
obtained the value unknown.

Nodes with evaluation value unknown can be expanded. When a node
J is expanded, a non-empty set of child nodes is created, each having J as
parent node. A node which has been expanded is an internal node. There are
three kinds of leaf nodes, i.e., nodes without children. First, a node evaluated
to false or true is a terminal node. Second, a node which has evaluated to
unknown is called a frontier node. Third, a node which has not yet been
evaluated is also called a frontier node.

There are two tree-creation procedures, which we name immediate evalua-
tion and delayed evaluation. When applying immediate evaluation each node
in the tree is immediately evaluated upon creation. The tree is initialized by
creating (and evaluating) the root. Then, as long as the tree has not been
solved, at each step a frontier node is selected (which, since it has already
been evaluated, must have value unknown), expanded and all its children are
immediately evaluated. This process of expanding a node J and evaluating
J 's children is called developing node J . In case of delayed evaluation, each
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node is only evaluated when it is selected, instead of at creation. Thus,
the tree is initialized by creating the root (without evaluation). Then, at
each step a frontier node J is selected (which is guaranteed not to have
been evaluated) and evaluated. If the evaluation value of J is unknown, J is
expanded (without evaluating J 's children). Here the process of evaluating
a node, possibly followed by its expansion, is also called developing node J .
We remark that the terms frontier node and developing each have a double
meaning. However, once the tree-creating procedure has been speci�ed, both
terms are unique. This approach has been chosen so that pn-search can be
explained independently of the tree-creation procedure.

The value of an expanded internal and node A is determined as follows: if
A has at least one child with value false, A also has value false; otherwise, if A
has at least one child with value unknown, A has value unknown; otherwise A
has value true. The value of an expanded internal or node O is determined
as follows: if O has at least one child with value true, O also has value
true; otherwise, if O has at least one child with value unknown, O has value
unknown; otherwise O has value false. A tree is solved if the value of its root
has been established as either true or false. A solved tree with value true is
called proved, while a solved tree with value false is called disproved.

Throughout this chapter, we depict and nodes by circles and or nodes
by squares in each of the �gures. Furthermore, and nodes can be recognized
by the arcs linking their children, in accordance with standard conventions
for depicting and/or trees.

2.2.2 Main assumptions of pn-search

Best-�rst search algorithms select a best node (according to some criterion)
in the search tree, develop the node and then update such information as is
necessary for the algorithm to continue. The distinguishing factor of each
best-�rst search algorithm is the manner in which a node is characterized as
'best'.

For pn-search we assume that we have no knowledge regarding a priori
probable values of nodes, nor knowledge regarding correlations between node
values, although this knowledge could be added to the program (see section
2.3.3). Instead, only the position of a node in the tree and its possible
contribution to solving the tree is considered.

First, we formulate the assumptions of pn-search, implying the above.
Second, we present some de�nitions to aid in the description of pn-search.
Third, using an example, we illustrate that some nodes are better in their
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contribution to solving the tree than others. Finally, we summarize our
�ndings.

Assumptions

While searching and/or trees, we make the following two assumptions.

1. The probability distribution of values (true, false, unknown) for a
frontier node is unknown.

2. The probability distribution of values (true, false, unknown) for a
frontier node is equal throughout the tree.

Even though these assumptions mean that we cannot distinguish between
two nodes by looking at them independently of their context, nevertheless
their position in the tree may inuence their expected contribution to solving
the tree.

De�nitions

When searching and/or trees, developing a single frontier node is often
insu�cient to solve the tree. In most cases, several frontier nodes must
obtain the value true to prove the tree or the value false to disprove it. This
observation is reected in de�nitions 2.1 and 2.2.

De�nition 2.1 For any and/or tree T a set of frontier nodes S is a proof
set if proving all nodes within S proves T.

De�nition 2.2 For any and/or tree T a set of frontier nodes S is a disproof
set if disproving all nodes within S disproves T.

Since it will turn out that we shall use the cardinality of proof and disproof
sets, these are given names in de�nition 2.3 and 2.4.

De�nition 2.3 For any and/or tree T, the proof number of T is de�ned
as the cardinality of the smallest proof set of T.

De�nition 2.4 For any and/or tree T, the disproof number of T is de�ned
as the cardinality of the smallest disproof set of T.
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Figure 2.1: and/or tree with proof numbers.

Examples

To illustrate how the context can be used to distinguish between nodes, we
have depicted an and/or tree in �gure 2.1.

With each node, we have associated the proof number of the subtree with
that node as its root, as de�ned in de�nition 2.3.

All frontier nodes (E, F, I, L,M, N and P in �gure 2.1) have proof number
1. This follows from the fact that only the node itself needs to obtain the
value true to prove the whole subtree (consisting of only the node itself). A
terminal node with value true (node K in �gure 2.1) has proof number 0, since
its value has already been proved. Terminal nodes with value false (node O
in �gure 2.1), have proof number 1, since there is no smallest �nite set of
nodes which can undo the fact that the node is disproved. Internal and nodes
obtain the value true only if all their children are proved. Thus, internal and
nodes (B, D, G, H and J in �gure 2.1) have proof numbers equal to the sum
of the proof numbers of their children. For internal or nodes it su�ces to
prove one of their children, in order to have the parent obtain the value true.
Thus, for internal or nodes (A and C in �gure 2.1) we establish the proof
number by taking the minimum of the proof numbers of their children.

Root A of the tree in �gure 2.1 has proof number 1. This indicates that
somewhere in the tree a frontier node exists, which, by obtaining the value
true, would complete the proof of the tree. The path from the root to this
frontier node can be found by examining the proof numbers. To prove the
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Figure 2.2: and/or tree with disproof numbers.

root (an or node), it is su�cient to prove one of its children. Child C has
the smallest proof number among the three children of A. The frontier node
we are looking for thus lies within subtree C. In the same way, node G is
preferred over node H, since G's proof number is equal to 1, while H's proof
number equals 2. To prove node G (an and node), it is necessary to prove
all its children. Child K has already been proved, thus only a proof of node
L is needed, which is the frontier node we have been looking for.

We could now proceed and develop node L, in an attempt to prove
the tree. Instead, we will �rst determine which nodes may contribute to
a potential disproof. In �gure 2.2 we have depicted the same tree as in �gure
2.1. With each node, we have associated the disproof number of the subtree
with that node as root, as de�ned in de�nition 2.4.

The disproof numbers behave analogously to proof numbers, inter-
changing the roles of and nodes and or nodes, and the cardinalities 0 and
1. Thus, frontier nodes (E, F, I, L, M, N and P in �gure 2.2) have disproof
number 1. A terminal node with value false (node O in �gure 2.2) has disproof
number 0, since it is already disproved. Terminal nodes with value true (node
K in �gure 2.2) have disproof number1. Internal and nodes (B, D, G, H and
J in �gure 2.2) have disproof numbers equal to the minimum of the disproof
numbers of their children. Internal or nodes (A and C in �gure 2.2) have
disproof numbers equal to the sum of the disproof numbers of their children.

Root A of the tree in �gure 2.2 has disproof number 3. This means that
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at least 3 nodes must obtain the value false to disprove the tree. Analysis of
the tree shows that it involves one of the nodes E and F, node L and one of
the nodes M and N.

Summary

The previous paragraphs illustrate that proof numbers and disproof numbers
can be used to �nd nodes within the smallest subset of frontier nodes in the
tree which, by all obtaining the same value, solve the tree.

From the assumptions underlying pn-search it follows that the probability
that all nodes in a proof set obtain the value true increases with decreasing
cardinality of the proof set (except in the trivial cases that the probability
of evaluation to true equals either 0 or 1). As a result the total number
of node developments needed to solve a tree is (on the average) reduced by
�rst focusing on potential solutions involving a small number of nodes (i.e.
subtrees with small proof and/or disproof numbers), before trying to �nd
solutions known to require a larger number of nodes. This expectation is the
basis for the pn-search algorithm as described in the following sections.

2.2.3 Informal description of pn-search

Pn-search continuously tries to solve the tree by focusing on the potentially
shortest solution, i.e., consisting of the least number of nodes. At each step of
the search, a node which is part of the potentially shortest solution available
is selected and developed. After the development of a node, its proof number
and disproof number are established anew. Then, the proof and disproof
numbers of its ancestors are updated. This process of selection, development
and ancestor updating is repeated until either the tree is solved or we have
run out of resources (time or working memory).

The main issue yet to be resolved is to decide (1) to select a node in the
smallest proof set, or (2) to select a node in the smallest disproof set. We will
show in the following paragraphs that, maybe surprisingly, we can always do
both at the same time. This results in the de�nition of a most-proving node
as in de�nition 2.5.

De�nition 2.5 For any and/or tree T, a most-proving node of T is a
frontier node of T, which by obtaining the value true reduces T's proof number
by 1, while by obtaining the value false reduces T's disproof number by 1.

De�nition 2.5 assumes that within each unsolved tree T a frontier node
exists, which is an element of the intersection of a smallest proof set and of a
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smallest disproof set of T. A stronger claim is that each pair consisting of a
smallest proof set and a smallest disproof set has a non-empty intersection.
We prove this stronger claim by induction.

Proof

� Basis
For each frontier node J the singleton set containing J is both the only
proof set, and the only disproof set. The intersection of these two sets
contains node J and thus is not empty.

� Induction step
Suppose that the assumption has been proved for all children J1, .., Jn
of an internal and node J. To disprove J, only one child needs to be
disproved. Let disp(Jx) be any disproof set of Jx which has minimal
cardinality among all disproof sets of children of J. Then disp(Jx) is also
a minimal disproof set of J. To prove J, all children must be proved.
Let prove(Ji) (1 � i � n) be arbitrary minimal proof sets for each
of the children Ji. Then

S
n

i=1
prove(Ji) is a minimal proof set of J,

which we name prove(J). Thus disp(Jx) is a minimal disproof set of
J, and prove(Jx) is contained in a minimal proof set of J. As disp(Jx)
and prove(Jx) are minimal disproof and proof sets of Jx, they have a
non-empty intersection according to the induction assumption. Thus
disp(J) and prove(J) have a non-empty intersection.

The proof for internal or nodes proceeds analogously.

2

We conclude that there is no conict of strategies between trying to prove
or to disprove the tree: by repeatedly selecting a most-proving node, both
strategies are executed simultaneously, without one strategy delaying the
other. How to select the most-proving node using proof and disproof numbers
is illustrated with an example tree.

Below each node of the tree depicted in �gure 2.3, we have depicted its
proof number and disproof number (in that order). Thus, the least number
of nodes which must be developed to prove the tree is 3. The same number
of nodes is needed to disprove the tree.

First, let us analyze the e�ort necessary to disprove the tree. As node A is
an or node, it will only obtain value false if both children obtain value false.
In other words, both children must be solved (with value false) to disprove
the tree. Thus, in both subtrees frontier nodes exist which are part of the
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Figure 2.3: and/or tree with most-proving node R.

smallest disproof set of A. Second, let us look at the least number of node
developments needed to prove the tree. For an or node it is su�cient to
have one child with value true to prove the or node. In other words, only
one child needs to be solved (with value true) to prove the tree. The proof
number of child B (3) is one less than the proof number of child C (4). Thus,
all frontier nodes of a smallest proof set lie within subtree B. We conclude
that all most-proving nodes lie within subtree B.

With respect to subtree B an analogous analysis applies. However, since
node B is an and node, the roles of proof number and disproof number are
interchanged. Thus, to prove B, both its children must be proved. Therefore,
in both subtrees D and E, frontier nodes exist which are part of the smallest
proof set of B. To disprove B, it is su�cient to disprove one child. Node E
has disproof number 2, one less than disproof number 3 of node D. Thus, all
frontier nodes of a smallest disproof set lie within subtree E. We conclude
that all most-proving nodes lie within subtree E.

The selection within or node E is based on the disproof numbers, as
it was for node A, and thus subtree N is selected. Within and node N no
preference exists on the basis of the disproof numbers and both R and S
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procedure ProofNumberSearch(root);
Evaluate(root);
SetProofAndDisproofNumbers(root);
while root.proof 6= 0 and root.disproof 6= 0 and

ResourcesAvailable() do

mostProvingNode := SelectMostProving(root);
DevelopNode(mostProvingNode);
UpdateAncestors(mostProvingNode)

od ;
if root.proof = 0 then root.value := true

elseif root.disproof = 0 then root.value := false

else root.value := unknown

�

end

Table 2.1: Pn-search algorithm.

are most-proving nodes according to de�nition 2.5. In such cases we will,
somewhat arbitrarily, always select the leftmost child. Thus, R is selected to
be developed.

To summarize, the selection of a most-proving node is based on proof
numbers among the children of or nodes and on disproof numbers among
the children of and nodes.

2.2.4 The pn-search algorithm

In this section the algorithmic details of pn-search are presented in pseudo-
code, except for three domain-speci�c procedures and functions. In each of
these three cases, the code for the implementation depends on the domain
of investigation. The goal of each of these three, however, is domain-
independent and has been speci�ed below.

1. Evaluate(node). Assigns to node.value one of the values true, false and
unknown.

2. GenerateAllChildren(node). Assigns to node.numberOfChildren the
number of children of the node, and to node.children[1..node.number-
OfChildren] (pointers to) the children themselves.
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function SelectMostProving(node);
while node.expanded do

case node.type of

or :
i := 1;
while node.children[i].proof 6= node.proof do

i := i+1
od

and :
i := 1;
while node.children[i].disproof 6= node.disproof do

i := i+1
od

esac ;
node := node.children[i]

od ;
return node

end

Table 2.2: Most-proving node selection algorithm.

3. ResourcesAvailable(). Returns a Boolean value which indicates whether
su�cient resources are available to continue the search. This function
will typically test the availability of working memory.

The algorithm of table 2.1 encodes the main loop of pn-search. The root
of the tree is created and evaluated. Then, at each iteration, a most-proving
node is selected and developed, followed by updating the proof and disproof
numbers of the most-proving node and its ancestors.

The algorithm terminates when the tree is solved, or the program runs
out of resources. We remark that there is a choice between implementing
immediate evaluation and delayed evaluation. The main di�erence between
these two methods is the amount of information available within trees of
the same size: with immediate evaluation, all nodes in the tree have been
evaluated, while with delayed evaluation the frontier nodes have not been
evaluated. Due to the extra information, under the same working-memory
limitations, immediate evaluation is more often able to solve a tree than
delayed evaluation. In rare circumstances, however, delayed evaluation may
be preferable. Examples of these circumstances include trees with a large
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procedure SetProofAndDisproofNumbers(node);
if node.expanded then

case node.type of

and :
node.proof := �

N2Children(node) N.proof;

node.disproof := Min
N2Children(node) N.disproof

or :
node.proof := Min

N2Children(node) N.proof;

node.disproof := �
N2Children(node) N.disproof

esac

elseif node.evaluated then

case node.value of

false : node.proof := 1; node.disproof := 0
true : node.proof := 0; node.disproof := 1

unknown : node.proof := 1; node.disproof := 1
esac

else node.proof := 1; node.disproof := 1
�

end

Table 2.3: Proof and disproof numbers calculation algorithm.

variance in the branching factor, and slow evaluation. We have chosen to
implement immediate evaluation, as it is used in all our applications of pn-
search to games. Thus, all frontier nodes in the tree have been evaluated.

The algorithm of table 2.2 encodes the selection of a most-proving node,
in accordance with the description in section 2.2.3. Thus, at or nodes the
child with lowest proof number is selected, while at and nodes the child with
lowest disproof number is selected. In case of a tie between children, the
leftmost child is selected. Selecting the child with minimal proof number (in
an or node) or disproof number (in an and node) is equivalent to selecting
a child with proof number or disproof number equal to its father's. We
remark that in most applications children will not be ordered by their proof
or disproof number, as the cost of updating the ordering may be prohibitive.
If the children are unordered, selecting the leftmost child with equal proof or
disproof number on the average reduces the selection time of the most-proving
node by at least a factor two, compared with determining the minimum over
all children. A detailed discussion of enhancements to the algorithm can be
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procedure DevelopNode(node);
GenerateAllChildren(node);
for i := 1 to node.numberOfChildren do

Evaluate(node.children[i]);
SetProofAndDisproofNumbers(node.children[i])

od

end

Table 2.4: Node-development algorithm.

procedure UpdateAncestors(node);
while node 6= nil do

SetProofAndDisproofNumbers(node);
node := node.parent

od

end

Table 2.5: Ancestor-updating algorithm.

found in section 2.3.

The algorithm of table 2.3 encodes the calculation of proof and disproof
numbers for a given node. It is a direct translation into pseudo-code of the
case-by-case observations made in section 2.2.2. We remark that "�" in the
algorithm indicates that the sum is calculated over all children, while "Min"
indicates that the minimum over all children is calculated.

The algorithm of table 2.4 encodes the development of a node. As stated
before, we have implemented immediate evaluation.

The algorithm of table 2.5 updates the proof and disproof numbers of
the most-proving node and its ancestors. This is necessary to ensure that all
nodes in the tree correctly reect the new situation after the development
of the most-proving node. Starting from the most-proving node, the tree
is traversed in the direction of the root, updating the proof and disproof
numbers of each ancestor. After the proof and disproof numbers of the root
have been updated, the algorithm is terminated (indicated by the fact that
the root has no parent).

This concludes our formal description of pn-search.
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2.3 Enhancements

In the previous section we have presented the pn-search algorithm. Several
enhancements exist. Some of these should be applied in most practical
circumstances, since the added performance outweighs the additional im-
plementation e�ort. The advantage associated with the other enhancements
depends on the domain of application. In section 2.3.1 we focus on en-
hancements reducing the amount of working memory needed to execute a
search. Section 2.3.2 deals with reducing the execution time necessary to
select the most-proving node and to update the proof and disproof numbers
of the ancestors. The role of domain-speci�c knowledge when enhancing the
algorithm is examined in section 2.3.3. Finally, transpositions are discussed
in section 2.3.4.

2.3.1 Reducing memory requirements

Pn-search has working-memory requirements linear in the size (number of
nodes) of the search tree. Depth-�rst search algorithms, such as �-� search,
only require working memory linear in the depth of the search. As a result,
working memory is a possible bottleneck when applying pn-search. We
discuss two techniques to reduce memory requirements. The �rst technique
is concerned with the removal of solved subtrees, while the second technique
performs pn-search at two levels.

Deleting solved subtrees

A node in a pn-search tree may inuence the search process in two ways:

1. it is (on the path to) the most-proving node;

2. its proof and disproof numbers inuence the proof and disproof numbers
of its parent.

Below, we show that solved subtrees do not inuence the search process in
either way, except that they may solve their parent immediately after they
were solved themselves.

First, we show that a solved node is never on the path to the most-
proving node. As long as the search is in progress the root is not solved. We
thus start the selection of the most-proving node from an unsolved node. All
unsolved nodes have �nite proof and disproof numbers unequal to zero. Since
at each step of the selection, a child is chosen with a proof or disproof number
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equal to that of its parent, each subsequent node must also be unsolved. We
conclude that a solved node cannot be on the path to the most-proving node.

Second, we show that the proof and disproof numbers of a solved node
either solves its parent, or does not inuence its parent's values. A solved
node with value true has proof number 0 and disproof number in�nity. A
parent or node is solved by this child, and immediately obtains the value
true. A parent and node sums its children's proof numbers, to which the
0 does not contribute, while it minimizes its children's disproof numbers, to
which in�nity does not contribute. Only if this child were the last unsolved
child is the and node solved and obtains the value true. To a solved child
with value false an analogous reasoning applies, with false and true, proof
number and disproof number, and and node and or node interchanged.

We conclude that a solved subtree, once its parent has been updated,
no longer inuences the search, and thus may be removed. An e�cient
way to implement this enhancement in the SetProofAndDisproofNumbers()
algorithm of table 2.3 is by deleting solved children when calculating the sum
and minimum of the childrens' proof and disproof numbers.

For a discussion of the expected gain of this technique, we refer to section
2.4.

Pn2-search

As a second technique to reduce memory requirements, we present a short
description of a recent, so far unpublished, development in pn-search, named
pn2-search. The algorithm has been developed in collaboration with Stef
Keetman.

Pn2-search consists of two levels of pn-search. The �rst level consists of
a pn-search (pn1), which calls as evaluation of any node J a pn-search at the
second level (pn2), with a bound N on the maximum tree size. In pn2-search
N is chosen to be the current size of the pn1 search tree. The second level of
pn-search is a standard pn-search, with a normal (either standard or domain-
speci�c) evaluation. The result of pn2 on node J is the value true or false

in case pn2 solved J , or the proof and disproof numbers of J , if J has not
been solved. In the latter case, the proof and disproof numbers are used to
initialize J in pn1. After termination of pn2, its tree is removed from memory.
We remark that several enhancements to pn2-search have been suggested to
reduce the overhead associated with recreating deleted parts of the tree. One
example of such an enhancement involves storing the M last pn2 trees in a
cache, instead of deleting them, as suggested by Schae�er (1994). The gain
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achieved by such enhancements is a topic of future research. Pn2-search has
the following properties.

1. A search resulting in a pn1 tree of size N has searched approximately
1

2
�N2 nodes.

2. The memory requirements during the creation of a pn1 tree of size N
are approximately 2N nodes.

3. Implementing pn2-search requires only minor changes to an implemen-
tation of standard pn-search

It has been established that the memory requirements of pn2-search are on the
order of the square root of the number of nodes investigated. Comparisons on
awari and draughts have shown experimentally that pn2-search investigates
on the average three times as many nodes as standard pn-search to solve the
same problem. This factor of three is independent of problem size within the
range investigated.

Given the approximate constancy of this factor, it follows that in cases
where pn-search is bounded by trees of 106 nodes, pn2-search, with the same
resources of memory may usefully investigate 1012 nodes. This conclusion
can be extrapolated to even larger problems only when the factor of three
suggested by the experiments remains constant. Whether it does and whether
the extrapolation therefore remains valid, is a topic for future research.

2.3.2 Reducing execution time

The main di�erence in execution time between a best-�rst search algorithm,
such as pn-search, and a depth-�rst search algorithm, such as �-� search,
is the number of node traversals necessary to select the most-proving node.
The overhead speci�c to pn-search is the calculation of proof and disproof
numbers at internal nodes, being linear in the number of node traversals.
The enhancement presented in this section reduces the number of node
traversals per selection of the most-proving node. We remark that the
same enhancement can be and has been applied to conspiracy-number search
(Klingbeil, 1989).

At each iteration of pn-search we traverse the tree starting at the root
and ending at the most-proving node. After developing the most-proving
node, we follow the same path backwards until we are at the root. The basis
of the enhancement consists of two observations.
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� If the proof and disproof numbers of an ancestor do not change, the
updating process can be terminated.

� If a node J is on the path from the root to the most-proving node,
and J's proof and disproof numbers are not changed by the updating
process, J also lies on the path from the root to the next most-proving
node.

From these two observations it follows that at each iteration a node exists
where we can terminate the updating process, and start the next most-
proving node selection. Such a node is called the current node, which is
de�ned as follows.

De�nition 2.6 For any and/or tree T, at any time during the execution
of pn-search, the current node of T is de�ned as the ancestor of the previous
most-proving node J, closest to J, which had no changes to its proof and
disproof numbers caused by the development of J. Initially, the current node
equals the root.

Enhancing the pn-search algorithm to use the notion of current node
changes the algorithms for ProofNumberSearch and UpdateAncestors. The
new algorithms are shown in the tables 2.6 and 2.7.

The current-node enhancement reduces the number of node traversals per
iteration from linear in the depth of the search tree to close to constant and
should therefore be included in most practical implementations of pn-search.

We remark that at the cost of storing a most-proving node per subtree,
the selection process can be changed into an instant most-proving node
selection. Then, the most-proving nodes of the subtrees are updated during
the updating of the proof and disproof numbers within the tree. Since the
working memory is the main bottleneck in most applications, we feel that
small gains in terms of processing speed do not warrant the extra space
requirements.

2.3.3 Applying domain-speci�c knowledge

Two assumptions underly the formulation of the pn-search algorithm. First,
the probability distribution of expected values of frontier nodes is equal
throughout the tree. Second, the distribution of probabilities over the three
evaluation values (true, false, unknown) is unknown. These two assumptions
describe a situation in which no domain-speci�c knowledge can be applied to
guide the search through the tree. In many practical domains, however, at
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procedure ProofNumberSearch(root);
Evaluate(root);
SetProofAndDisproofNumbers(root);
currentNode := root;
while root.proof 6= 0 and root.disproof 6= 0 and

ResourcesAvailable() do

mostProvingNode := SelectMostProving(currentNode);
ExpandNode(mostProvingNode);
currentNode := UpdateAncestors(mostProvingNode)

od ;
if root.proof = 0 then root.value := true

elseif root.disproof = 0 then root.value := false

else root.value := unknown

�

end

Table 2.6: Pn-search algorithm (with current node).

least some knowledge is available. In this section we show how such knowledge
can be applied to pn-search by altering the initialization of the proof and/or
disproof numbers of frontier nodes.

We can view proof and disproof numbers as lower bounds on the e�ort
necessary to solve a tree. So far, the e�ort has been measured in node
developments. We consider three methods to use alternative measures of
e�ort. First, we use the number of node evaluations as a measure of e�ort.
Second, a domain-speci�c measure of e�ort is applied. Third, a function
of the tree depth is used to inuence the shape of the tree searched. Each
method is illustrated using a particular game, being give-away chess, awari
and go-moku, respectively. Finally, we review the three methods applied.

Evaluations as a measure of e�ort

A node development, when using immediate evaluation, consists of expanding
the node and evaluating each of its children. Thus, the amount of e�ort
involved in a node development depends on the number of children. We will
use as J 's proof number the least number of node evaluations necessary to
prove node J and as its disproof number the least number of node evaluations
necessary to disprove J . Let us assume that J will have n children when
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function UpdateAncestors(node);
changed := true ;
while node 6= nil and changed do

oldProof := node.proof;
oldDisproof := node.disproof;
SetProofAndDisproofNumbers(node);
changed := (oldProof 6= node.proof) or

(oldDisproof 6= node.disproof);
previousNode := node;
node := node.parent

od

return previousNode
end

Table 2.7: Ancestor updating algorithm (enhanced).

expanded. J 's proof and disproof numbers can be initialized using that
knowledge, even before J is expanded. If J is an or node, only one child
needs to evaluate to true to prove J , thus J 's proof number equals 1. To
disprove J , all n children must evaluate to false. J 's disproof number is
therefore initialized to n. For an and node, the proof number is initialized
to n, while the disproof number becomes 1.

The advantage of using the number of evaluations as a measure of e�ort is
that a distinction between frontier nodes can be made which is not present in
standard pn-search. It allows pn-search to focus on frontier nodes with fewer
children before developing frontier nodes with more children. It is expected
that in this way pn-search will �nd solutions more quickly. Below we present
results from applying this method to give-away chess.

Give-away chess is a variant of chess where a player wins as soon as she
cannot make a legal move (i.e., she has no pieces left or her remaining pieces
are blocked). The pieces move as in chess, with two exceptions:

1. the king has no special status and can be captured like any other piece;

2. a player is forced to make a capture move if she can (like in checkers

and draughts).

Castling and en-passant capturing are extremely rare in give-away chess. To
simplify our implementation task, we have omitted these types of moves, thus
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rendering them illegal. In collaboration with Barney Pell we created the give-
away chess program Prove-away, solely based on pn-search. A node evaluates
to true, if white is to move and has no legal moves, while it evaluates to
false if black is to move and has no legal moves. All other nodes evaluate to
unknown. Pn-search was implemented in two variants, one variant using the
standard initialization, and the other one using node evaluations as measures
of e�ort.

To enable Prove-away to play games against opponents, it selects its
moves by performing pn-search with a predetermined bound on the number
of nodes to be created. If the tree is not solved within that limit, the 1-ply
nodes are inspected and the move leading to a node with the minimal ratio
of proof and disproof numbers is selected. If the tree is proved within the
limit, the move proving the tree is selected, ensuring a win for Prove-away.
If the tree is disproved, the 1-ply node with the largest subtree is selected,
speculating on the opponent not seeing her winning line. Although we have
no clear indication of the strength of Prove-away, it has beaten its human
opponents in all but three of its games (out of several dozen). Most games
are decided by Prove-away �nding a winning line in which the opponent is
forced at each move to capture one of the program's pieces, until the program
runs out of moves and wins. The maximum depth of such lines in give-away

chess is 32 ply (16 moves by the program and 16 captures by the opponent).

We conducted an experiment to compare the two variants of pn-search
described above. During the experiment, Prove-away plays random games
against itself. At each move in the game, both variants of pn-search (standard
initialization and using evaluations as measure of e�ort) create a tree, with
the current game position as root. As soon as one or both variants solve the
tree, the game is terminated. If in a position neither variant solves the tree
within 25,000 nodes, Prove-away plays a random legal move to continue the
game. A total of 30 games were played, which lasted on the average 5.6 ply
(i.e., a little less than three moves by white and three moves by black). Three
games where duplicates of other games, due to the fact that the program
quickly proved that black wins after the opening moves 1. d2-d4, 1. d2-d3 or
1. e2-e4, and each of these moves was selected twice as opening move during
the 30 games. In the following we disregard the three duplicate games.

The conditions of the experiment ensure that the �nal position of each
random game has been proved a win for one of the players by at least one
of the pn-search variants. In some games, both variants proved the win,
while in others only the pn-search variant with the number of evaluations
as the measure of e�ort succeeded. In none of the games did only standard
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standard initialization by improvement
initialization no. of moves factor

developments 5928 2661 2.2

nodes visited 62323 7838 8.0

branching factor 10.5 2.9 3.6

max tree size 48935 5988 8.2

nodes per sec. 169 132 0.8

Table 2.8: Give-away chess results.

pn-search solve the tree of the �nal position. To compare the performances
of both algorithms, we reran the standard algorithm with unlimited working
memory on the positions where that variant had not found the win within
the limit of 25,000 nodes. The results of the experiment are presented in
table 2.8.

Measured in number of node developments, the enhanced algorithm
(using evaluations as measure of e�ort) gains a factor of a little over 2, while
in number of nodes the improvement factor is almost 8. These numbers
indicate that the enhanced algorithm develops nodes with, on average, a 4
times smaller branching factor (2.9 vs. 10.5). This clearly indicates that the
selection of most-proving nodes is strongly inuenced by the non-standard
initialization. The average amount of working memory necessary to complete
the search is speci�ed in table 2.8 as the maximal tree in memory per search.
It is directly related to the total size of the tree created, resulting in an
improvement by a factor 8. The extra time spent on counting the number of
moves per terminal node slows the algorithm down approximately 20% per
node, compared to the standard initialization. Thus, the overall gain in cpu
time amounts to a factor of more than 6.

We conclude that using the number of node evaluations as a measure of
e�ort to initialize the proof and disproof numbers may yield a signi�cant
reduction in node evaluations, node developments and cpu time.

Domain-speci�c measures of e�ort

In many domains, domain-speci�c properties exist which give an indication
of the amount of e�ort involved in solving a position (i.e., in solving the
and/or tree with the position as root).
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For instance, in othello solving a position with only a few empty squares
is easier than solving a position with more empty squares. In draughts, it is
simpler to solve a position if both players have only four men than if both
players have ten men. In these cases, we could select as domain-speci�c
measures of e�ort the number of moves to the end of the game (othello) or
the number of men of the opponent to be captured (draughts and checkers).

We illustrate the idea on the game awari. In the initial awari position,
there are 48 stones on the board. Both players move stones around, with the
goal of capturing stones. The goal of awari is to capture more stones than
your opponent. It follows that a player who has captured at least 25 out of
the total of 48 stones, wins the game (for a de�nition of the rules of awari,
see section 2.4.2). We use the number of stones a player needs to capture
as the measure of e�ort. Let us assume that we would like to determine
whether north can win, or whether south can obtain at least a draw. Let
us furthermore assume that south has so far captured 11 stones, while north
has collected 8 stones. We build the tree from the perspective of south, thus
proving the tree means showing that south can reach at least a draw. In the
given position, south must capture at least another 13 stones to reach a draw,
while north needs another 17 stones to obtain the 25 stones necessary for a
win. These values, 13 and 17, are then used as proof and disproof numbers
of the position.

In section 2.4.7 we present test results of applying pn-search to awari

for both the standard initialization and the stone-based initialization as
suggested here.

Depth-related measures of e�ort

By inspecting trees created by pn-search, we have found some occasions in
which the shape of the tree indicated that much e�ort was spent on variations
which were less likely to succeed quickly than some others. For instance, in
mating problems in chess, where the weaker side was restricted to moving
one piece between two squares, most variations had proof number one. As a
result, variations where the attacker moved a single piece aimlessly over the
board were searched very deeply. On one occasion, this resulted in a mate in
114 moves being found, while a mate in 4 moves existed. Instead of putting
a hard limit on the depth of the search, examining deep variations can be
somewhat discouraged by initializing the proof and disproof numbers of a
node using a function of the depth of the node.

By assigning higher proof and disproof numbers to nodes deeper in the
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tree, it is expected that pn-search will create a somewhat shallower and
broader tree. Analogously, by assigning smaller proof and disproof numbers
to nodes deeper in the tree, pn-search is expected to create deeper and
narrower trees. Inspection of trees created by pn-search with such alternative
proof-and-disproof-numbers initializations shows that the average node depth
is indeed inuenced in accordance with these expectations.

Experiments on go-moku (see chapter 5), with each node's proof and
disproof numbers initialized to the depth of the node measured in full moves,
show that a somewhat broader, shallower tree is created, without losing pn-
search's ability to �nd narrow, deep variations leading to a win. Comparisons
on go-moku showed that this initialization was an improvement over the
standard initialization. The depth-related initialization was used in the
search which led to solving go-moku.

Despite this example, we do not have much ground for the assumption
that such an initialization is an enhancement to pn-search for domains
with behavior similar to go-moku. Furthermore, the evaluation function
we developed for go-moku also inuenced the success of the non-standard
initialization. Although a linear function in the depth of the node worked
well in go-moku, more complicated functions may be necessary for other
domains. The strongest conclusion we are prepared to draw is that by using
a function of the depth of the node, the shape of the tree can be somewhat
inuenced (either made broader and shallower, or narrower and deeper).

Reviewing the application of domain-speci�c knowledge

We have presented three ways in which domain-speci�c knowledge can be
used to change the initialization of the proof and disproof numbers at frontier
nodes. Although each of the three methods has been successful in improving
the performance in a practical domain, some caution is in order, particularly
with the second and third methods. While the use of non-standard proof-and-
disproof-numbers initializations may seem useful to guide the search process,
the underlying principles of pn-search are violated. Two examples of violated
principles are: (1) the assumption that all frontier nodes are indistinguishable
and (2) the assumption that the proof and disproof numbers are lower bounds
on the e�ort required to solve the tree. The positive inuence of di�erent
initializations may at the same time result in negative e�ects. We have
found that for some domains, such as othello, it is necessary to perform
a large number of experiments to �ne-tune the initialization process, akin
to the process of �ne-tuning evaluation functions in game-playing programs
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(Gnodde, 1993). We conclude that as yet we lack a proper understanding
of the precise e�ects associated with knowledge-driven proof-and-disproof-
numbers initializations.

2.3.4 Transpositions

The de�nition of pn-search depends on the graph searched being a tree.
When determining the proof and disproof numbers of an internal node J , the
cardinality of the smallest proof set and disproof set must be determined.
In a tree, the subtrees rooted at the children of J are disjoint, ensuring
that the cardinality of the smallest proof set and disproof set of J can be
calculated from the cardinality of the smallest proof sets and disproof sets of
the children.

In many domains, however, the same subtree may be encountered several
times during the search, at di�erent places in the tree. The standard pn-
search algorithm will in such cases obtain an upper bound on the cardinality
of the smallest proof and disproof sets, instead of the true proof and
disproof numbers. Problems and solutions related to the problem of the
common subtree (transpositions) in combination with pn-search have been
investigated by Schijf (1993) and Schijf et al. (1994).

In the following, we shortly describe problems and practical solutions for
transpositions in pn-search. We distinguish between directed acyclic graphs,
abbreviated as dags and directed cyclic graphs, abbreviated as dcgs. We
remark that practical techniques for handling transpositions in game-playing
programs using �-� search have been extensively described in the literature
(Greenblatt et al., 1967).

Transpositions in DAGs

Transpositions resulting in dags necessarily occur in games where each move
is a conversion, i.e. an irreversible alteration of the state of the game. In
chess, captures and pawn moves are examples of conversions, while non-
capture moves by a piece (except for castling, and castling-forbidding moves)
are non-conversions. In connect-four, qubic and go-moku, each move is a
conversion, as in all three games the number of stones on the board strictly
increases.

As stated above, in a dag, addition of proof numbers or disproof numbers
possibly overestimates the cardinality of the minimal set of nodes needed
to solve the tree. Theoretically correct algorithms exist to establish the
correct proof and disproof numbers at each node, but these are slow or use
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Figure 2.4: and/or dag with practical solution.

an inordinate amount of working memory, or both, thus barring practical
application (Schijf, 1993).

A practical solution to this problem is to treat the dag as if it were a tree,
thus calculating (incorrect) proof and disproof numbers of a node directly
from its children. The main di�erence in the algorithm is that while updating
ancestors, all parents of a node must be updated recursively. In �gure 2.4,
a dag is depicted where proof and disproof numbers are calculated directly
from their children. It can easily be shown that if node G is solved, root
A obtains the same value as G. Thus, the proof and disproof numbers of A
should equal 1. Furthermore, G should be the most-proving node. Thus, both
numbers in the root are too high, and the selection mechanism incorrectly
selects node D as the most-proving node. This example clearly indicates that
the practical solution is no longer in accordance with the de�nitions of section
2.2.2. Still, our experience with connect-four, qubic and go-moku shows that
this practical pn-search algorithm for dags has advantages similar to those
of standard pn-search.

Transpositions in DCGs

Transpositions resulting in dcgs appear in games where a series of non-
conversion moves leads to a position which has occurred before. Special
rules govern the continuation of games after repetitions, leading by complex
regulations to game-speci�c outcomes. There is fascination in the diversity
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of these rules: in Chinese chess, some repetitions are illegal by the operation
of complex rules; in go, any repetition is outlawed by the ko rule; in chess,
�nally, a repeated position can give rise to a claim of a draw from its third
occurrence onwards.

Figure 2.5 depicts a dcg; in �gure 2.6 we have converted that graph into
a tree. Each path in the tree terminates at a frontier node of the graph, or
at a repetition of positions in the path. In this example we assume that a
repetition evaluates to false. The tree contains three duplicates of node D.
Among these three, two have the value false, while one has proof number
2 and disproof number 1. The fact that the same node may have di�erent
proof and disproof numbers depending on the path it lies on forms the basis
of the complexity of performing pn-search on dcgs. Node C has properties
similar to node D. Moreover, we note that A's proof number (2) is less than
the sum of the proof numbers of its children, as subtrees B and C have node
E in common. The proof number at the root indicates that to prove the tree,
both E and F must be proved. The disproof number 1 of A indicates that
disproving either E or F disproves the tree.

The dependence of the proof and disproof numbers of a node on the
path to that node forms the basis of the di�culties of cyclic transpositions.
In Schijf (1993), a theoretically correct algorithm for pn-search on dcgs is
described. Unfortunately, its time and working-memory requirements are too
costly to warrant practical application.
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Figure 2.6: Tree version of the graph of �gure 2.5.

Practical methods to apply pn-search to dcgs also exist. First, the
practical algorithm for dags may be applied with one modi�cation: only
positions created after a conversion move are eligible to have more than one
parent. As a result, some transpositions are investigated only once, while for
others duplicates are created in the graph. Second, for each set of equivalent
positions, at most two nodes are created: one for all paths in which the
node occurs for the �rst time, and the second node when the node is its
own ancestor. The second node is initialized to the value associated with a
repetition of positions in the game under investigation. In this case, if a node
is its own ancestor through at least one path, the repetition of positions is
used to update the ancestors on all paths leading to the node, including those
in which the node is not a repetition. Therefore, the search may incorrectly
deduce that a node must have the value of a repetition of positions. Thus,
if the value of the root is proved to equal the value assigned to repetitions
of positions, the proof is not fully reliable. If the opposite value is proved,
however, the proof is bound to be correct. For a detailed description of these
two practical algorithms for pn-search in dcgs, we refer to Schijf (1993).

We believe that pn-search on directed cyclic graphs requires further in-
vestigation.
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2.4 Results

2.4.1 Introduction

In this section we compare pn-search's performance with that of a sophisti-
cated implementation of �-� search, by far the most commonly applied game-
tree search algorithm in tournament programs for strategic games. As a test
domain, we have selected the game of awari, one of the games on the Olympic
List. We have chosen awari for two main reasons. First, awari search trees
contain non-uniformity, which make them suitable for the application of pn-
search. Second, all strong tournament programs competing in the Computer
Olympiads selected their moves using sophisticated implementations of �-�
search, establishing that awari search trees are suitable for application of �-�
search.

It will be shown that, for the purpose of proving the game-theoretic value
of a position in awari, pn-search outperforms �-� search by a wide margin. It
proves that a category of search trees exists for which pn-search outperforms
�-�. Further indications of pn-search's strengths can be found in chapters
4 and 5, where pn-search's contribution to solving qubic and go-moku is
described.

This section is organized as follows. First, we present the rules of awari.
Second, we give a description of the strongest existing awari programs, which
presents evidence that our implementation of �-� search is competitive with
�-� search implementations of other authors. Third, we describe in detail
the implementations of pn-search and �-� search and their performances are
compared. Fourth, it is explained how the nodes visited by both algorithms
are counted, which is important due to the di�erent nature of the algorithms.
Fifth, we describe the set of awari positions to which the algorithms were
applied. Finally, we present and analyze the empirical data.

2.4.2 The rules of awari

Awari is a two-player (south and north) zero-sum game with perfect informa-
tion. It is one instance of a large family of games named mancala, of which
some 1200 variants are known. The mancala games originate from Africa.
Awari is mainly played in its western regions, such as Nigeria. For the game
described here, the names wari or awele are also used (Deledicq and Popova,
1977).

Awari is played on a wooden board containing two rows of six pits. Each
player controls the row on her side of the board. South's pits (from left to
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Figure 2.7: A position with legal moves A1, C4�2, D19�7, E4 and F2�4.

right, as seen by south) are named A through F, while north's pits (from left
to right, as seen by north) are named a through f. At the right-hand side
of each row, an auxiliary pit is used to contain a player's captured stones.
At the start of the game each pit (except the auxiliary pits) contains four
stones, for a total of 48 stones on the board.

At each move, a player selects a non-empty pit X from her row. Starting
with X's neighbor, she then sows all stones from X, one at the time, counter-
clockwise over the board (omitting the two auxiliary pits). If X contains
su�cient stones to go around the board (12 stones or more), pit X is skipped
and sowing continues. Thus, after the move, X will always be empty. Finally,
captured stones, if any, are removed and stored in the auxiliary pit. Stones
are captured if the last stone sown lands in an enemy pit which after landing
contains 2 or 3 stones. If such a capture is made, and the preceding pit
contains 2 or 3 stones and the pit is an enemy pit, those stones are also
captured. This procedure is successively repeated for the pits preceding and
ends as soon as a pit is encountered containing a number of stones other than
2 or 3, or the end of the opposing row is reached.

A move is described by the name of the pit, followed by the number
of stones sown (the name of the pit by itself de�nes the move, but such a
notation is prone to error). The number of stones captured, if any, is indicated
by the amount preceded by a "�". In �gure 2.7 an example position is shown
with south to move. Legal moves for south are: A1, C4 � 2, D19 � 7, E4
and F2� 4.

The goal of awari is to capture more stones than the opponent. The game
ends as soon as one of the players has collected 25 or more stones. Two
other conditions exist which terminate the game. First, if a player is unable
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Figure 2.8: 1: B1 f1 wins. After 1: E1? f1 south must play 2: F1:

to move (i.e., all her pits are empty), the remaining stones are captured by
her opponent. Second, if the same position is encountered for the third time,
with the same player to move, the remaining stones on the board are evenly
divided among the players. In all cases, after the end of the game, the winner
is the player who captured the most stones. If both players capture 24 stones,
the game is drawn.

A last rule exists to prevent players from running out of moves early
in the game. Whenever possible, a player is forced to choose a move
such that her opponent is able to make a reply move. It is, however, not
compulsory to look several moves ahead to ensure that the opponent will
continue to be able to reply. For instance, �gure 2.8 shows a position in
which south by playing 1. B1 can deliberately create a position in which
she is unable to o�er north any stones on her next move. By doing so,
south captures all three stones remaining on the board and wins the game.
However, would she have played 1: E1, then after 1: : : : f1 she is forced
to play 2: F1, leaving the game for the moment undecided (although after
2: : : : a1 3: B1 b1 4: C1 c1 5: D1 d1 6: A1 e1 we are back at the initial
position, giving south a second chance to play the winning move).

2.4.3 Tournament programs

Lithidion

In 1990 Maarten van der Meulen and the author constructed an awari-playing
tournament program, named Lithidion (Greek for 'little stone'). Lithidion at
the time consisted of an �-� search algorithm, and an endgame database
containing the game-theoretic value of each awari position with 13 stones or
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fewer left on the board (Allis et al., 1991c).

In 1991 Lithidion was enhanced with pn-search and a larger database (all
positions with 17 stones or fewer). In 1992 Lithidion was further enhanced
with an opening book. In describing Lithidion, we will concentrate on this
last version of Lithidion.

The basis for Lithidion is its �-� search algorithm. Any position not in the
opening book or the endgame database is searched with iterative-deepening
�-� search. The evaluation function for leaf nodes is trivial: at each leaf
node it is assumed that the players divide the remaining stones evenly. If,
in the search tree, a position is encountered having 17 stones or fewer on
the board, its exact value is retrieved from the endgame database. Thus,
the value of the �-� search is based on a combination of crude guesses for
some leaf nodes, and exact values for others (Beal, 1984). We remark that in
awari the di�erence in the number of stones by which one wins is irrelevant.
Therefore, the value retrieved from the endgame database is converted into
�1 for losses, 0 for draws, and 1 for wins. Once the game has progressed
to a position contained in the endgame database, no search is needed, and
at each turn the best move is played instantly.

After a move has been selected by �-� search (typically based on an 18-
to-20 ply search), pn-search is called to check the move. If a proof can be
found that the selected move loses, the move is rejected, �-� is asked to select
a new move, and the procedure is repeated. If all moves are proved losses, the
�rst move selected is played, hoping for an error by the opponent. While the
opponent is pondering on the position, Lithidion performs pn-searches on her
potential moves looking for wins. In case the opponent selects a losing move,
Lithidion uses the proof by pn-search to select its winning move. The pn-
search algorithm regards positions within the endgame database as terminal
nodes, just as it treats positions where a player has no legal moves. All
other positions are internal nodes. In summary: pn-search is only used to
prevent Lithidion from playing losing moves and to detect winning lines after
erroneous moves by the opponent. All other moves are based on �-� search.

Opponents

Lithidion has played in three tournaments: the awari tournaments of the
2nd, 3rd and 4th Computer Olympiads (London 1990, Maastricht 1991 and
London 1992). Lithidion won the gold medal each time. The tournaments
of the 2nd and 3rd Olympiads have been described in Levy and Beal (1991)
and Van den Herik and Allis (1992).
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In 1990, Lithidion's only opponent, Marco, written by Remi Nierat,
winner of the gold medal at the awari tournament of the 1st computer
Olympiad, lost all its games. Marco is based on human-expert knowledge
of awari, shallow �-� searches (averaging fewer than 10 ply) and no endgame
databases. In most games, both Marco and Lithidion had prospects of
winning, until Lithidion's endgame database was reached. At that point
Marco made one or more erroneous moves, leaving Lithidion with an easy
win. In 1990, the main deciding factor was the endgame database (at that
time, all positions of 13 stones or fewer).

In 1991, a new opponent appeared: MyProgram written by Eric van
Riet Paap. MyProgram had been created using the published description
of Lithidion (Allis et al., 1991c). It contained a large endgame database
(all positions of 16 stones or fewer), a fast implementation of �-� search
including the singular-extension enhancement (Anantharaman et al., 1989)
and the same evaluation function as Lithidion (see above). Lithidion defeated
MyProgram by the smallest possible margin, with three wins, two losses and
one draw. In at least one of the games, pn-search played a decisive role,
�nding a deep winning line in a position unclear to �-� search. Given the
small di�erences between the programs (a 17-stone database versus a 16-stone
database, pn-search versus singular extensions, and MyProgram searching
twice as many nodes per second), it is unclear what the exact impact of
pn-search on the match has been.

In 1992, two new opponents appeared: Marvin and Juju. Juju turned
out to be no competition for its two strong opponents and lost all its games.
Marvin was created by Ralph Gasser with Lithidion as its example. The
�-� search algorithms of Marvin and Lithidion performed almost equally
well. Marvin's endgame database (20 stones), however, was much larger than
Lithidion's (17 stones). A disadvantage to Marvin was that its database did
not �t in ram memory. Each entry retrieved from the hard disc slowed down
the �-� search. Two further disadvantages to Marvin were its lack of a pn-
search implementation and of an opening book. As a later test indicated, the
opening book was the decisive factor in this match, which Lithidion won by a
score of 4-2. The test consisted of replaying the �rst game from the position
where Lithidion had exited its opening book, with Marvin and Lithidion
changing places. Marvin easily won the game, similarly to the way Lithidion
had won the game during the tournament. Clearly, the opening book had
provided Lithidion with a winning advantage.
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Conclusion

We have given a description of the architecture of Lithidion, the role of
�-� search in it, and the competition it faced. From this description we
conclude that Lithidion's �-�-search implementation has been thoroughly
tested and has performed well in competition with strong opponents. We
stress this point, since Lithidion's �-� search has been selected as the sparring
partner for pn-search in our comparison tests on awari. Such a comparison is
only valid if made against a sophisticated implementation, and we believe
that practical evidence suggests that Lithidion's �-� search meets those
requirements.

2.4.4 The algorithms compared

For our experiments, we have compared two variants of �-� search, and two
variants of pn-search. We will use the following abbreviations for the four
algorithms:

�-� �-� iterative-deepening search without transpos-
ition tables.

transposition �-� iterative-deepening search with transposition
tables.

basic pn pn-search with standard initialization.

stones pn pn-search with initialization based on the number
of stones to be captured.

The �-� algorithm has the following characteristics. At each node, moves are
pre-ordered by capture size. The largest captures are evaluated �rst, since
the resultant positions are most likely to hit the database. Another reason
for processing captures �rst is that they are often good moves. An iterative-
deepening search is performed with a depth increase of 1 per iteration. The
result of each iteration is a value and a move ordering of the full principal
variation. The search terminates as soon as the value of the position has
reached �1 or +1, indicating that the value of the position has been
determined.

The transposition algorithm is the same as �-�, except that it is
extended with a transposition table of a quarter of a million entries. The
transposition table is implemented as a hash table, with one entry per hash
code. At each node in the search tree, we �rst examine whether the position
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is present in the transposition table. Then we investigate whether the depth
to which it had previously been searched is at least as large as the current
depth. If both conditions are met, the range of possible values stored in the
entry is used to narrow the �-� window. If after updating � exceeds or equals
�, the search returns to the node's parent. Otherwise, the search is continued
with the narrowed window.

After a node's value has been established, the results are stored in the
transposition table. If the value of the node is equal to the initial � or �,
we only know that the node's value is less or equal to �, or greater or equal
to �, respectively. Only if the value lies between � and � proper, is the
value reliable and can be stored as the true outcome of the search to the
given depth. Values �1 and1 are treated separately, since these values are
always indisputable. For those values, the searched depth is set to1 as well,
since deeper searches cannot change a reliable value, making the information
applicable to each following iteration. Collisions in the hash table are resolved
in favor of the position which has been searched most deeply. We remark that
unlike tournament chess programs, we store a full G�odel code per entry in the
transposition table, ensuring that two di�erent positions will not mistakenly
be regarded as equal.

The transposition table is expected to be useful in awari in the middle and
end games, when empty pits and pits containing single stones are common.
A con�rmation of this assumption will transpire from the results of our
experiments presented in section 2.4.7.

Basic pn is the standard pn-search algorithm, enhanced with the
technique which removes solved subtrees. Each frontier node is initialized
to proof number 1 and disproof number 1.

Stones pn is equal to basic pn, except for the initialization of frontier
nodes. Instead of proof and disproof numbers being initialized to 1, the
number of stones still to be captured by a player to achieve her goal is used
as the initialization, as explained in section 2.3.3. We remark that neither
variant of pn-search uses transposition tables.

The �-� algorithm calculates approximately 10,000 nodes per second on
a sun sparcstation 1+. The other three algorithms are roughly a factor
two slower. For transposition, storing and retrieving information from the
transposition tables is responsible for the slowed-down performance, while
the pn-search variants have as extra overhead the creation and deletion of
nodes, as well as the calculation of the proof and disproof numbers.
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2.4.5 Comparing the performances

When selecting a search algorithm for an application, the elapsed cpu time
is an important selection criterion. However, experimental results on tree
searches when measured in cpu time are di�cult to generalize, due to
implementation details. Instead, it is customary to compare the number
of nodes visited.

In this case, a careful analysis is needed to determine the fairest way to
compare the number of nodes visited by �-� search and pn-search.

Let us consider the number of nodes visited by �-� iterative-deepening
search. On the one hand, we could sum the number of nodes visited in
each iteration. However, this would be unfair to �-� search, since a smaller
number of iterations (e.g., by searching to even ply depths only) may result
in almost the same ordering and thus reducing the number of nodes visited.
On the other hand, we could just take the number of nodes visited in the
last iteration. That would be unfair towards pn-search, as the last iteration
does use the move ordering of previous iterations, and these searches should
be included in the total node count somehow. Moreover, �-� search with
transposition tables obtains many early cut-o�s during the last iteration due
to the solved subtrees stored in the transposition table.

Instead, we have chosen to count at iteration i only the nodes at depth
i. Then the extra iterations are an asset to �-� search, without costing
anything in terms of the number of nodes visited. Re-ordering of the moves
may result in terminal nodes in a new iteration, which are not at the deepest
level. These nodes are not counted at all. This slight bias in favor of �-�
iterative-deepening search does not signi�cantly inuence the results.

For pn-search, we simply count the total number of nodes created during
the search.

2.4.6 Test positions

As mentioned in section 2.4.3, Lithidion has taken part in three awari

tournaments of Computer Olympiads. In total, she played 23 games (5
against Marco and 6 each against MyProgram, Juju and Marvin), of which
two games were identical, which can be explained as follows. Each of the �ve
programs described in section 2.4.3 plays deterministically. Therefore, before
the next game against the same opponent, a change should be made in the
opening choice of the program to avoid losing in exactly the same way. Juju
forgot to do so once, and lost two games in identical fashion.
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In the 22 di�erent games a total of 1707 positions have occurred (from the
initial position to the position after the last move had been played). Of these
there were 1599 unique positions, which have been selected as the initial test
positions.

For each of the initial test positions, a search with all four algorithms was
performed. Since an awari game has three possible outcomes: win, draw and
loss, and pn-search is a two-valued search algorithm, the three outcomes must
be divided into two sets. We arbitrarily chose to treat a draw as equivalent to
a loss for the player to move. Each of the searches has one of three possible
outcomes:

� The player to move has a proved win.

� The opponent has at least a draw.

� The search ran out of resources.

Not all test positions can be used to compare the performance of the four
algorithms. First, positions with 17 stones or fewer are solved immediately by
all four algorithms through a single database lookup. Second, positions too
early in the game are likely to be unsolvable by all four algorithms. Therefore,
we have selected the relevant positions from the 1599 initial positions as
follows. Each position has been investigated by all four algorithms with a
resource limit of 500,000 nodes per position. If after 500,000 nodes the search
had not succeeded, it was terminated. Using the outcome of the searches,
the following selection was made. First, the 2 positions in which the game
had just ended were discarded since all four algorithms solved the positions
visiting only a single node. The reason why only 2 such positions were found
out of 22 di�erent games is that most games ended by resignation. Second,
all positions with 17 stones or fewer (496 in total) were excluded. Third,
all positions which were not solved by any of the algorithms (764 in total)
were labeled unsolvable. The remaining 337 positions are named the �nal
test positions.

We remark that in this way positions which are well suited for �-� search
will be selected for the �nal test positions, as well as those positions well
suited for pn-search. Thus, in our selection method of test positions there is
no bias towards either of the algorithms.

Each of the algorithms which failed to solve one of the �nal test positions
within the 500,000 nodes limit, was given virtually unlimited resources to try
again. In practice this meant a limit of a quarter billion nodes per position for
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�-� search, while for pn-search no �nal test position took more than about
one and a half million nodes to solve.

2.4.7 Results

In this section we present the results of the comparison of the four algorithms
described in section 2.4.4 on the 337 �nal test positions of section 2.4.6.

Each of the 337 �nal test positions was solved by basic pn and
stones pn. Two positions were not solved by �-� within a quarter billion
nodes, while there were two more positions not solved by both �-� and
transposition. In this section we have set the solution size of unsolved
positions at a quarter billion, which is a lower bound on the number of nodes
necessary to solve them. Although this results in a bias in favor of �-� search,
it does not inuence our conclusions and it allows us to include the positions
in the test results. Removing the positions from the �nal test set would be
particularly unfair towards pn-search, as it would ignore its �nest results.

First, we present �gures indicating how often one algorithm outperfor-
med another, without paying attention to the exact di�erence in node counts.
Second, we tabulate the total number of nodes visited by each of the four
algorithms, and calculate averages. Third, we group test positions by size of
solution, and graphically depict the average di�erence in performance of the
search algorithms per group.

Outperforming the other algorithms

In this section, we are interested in whether one algorithm performed better
on a speci�c test position than another algorithm, but ignore the size of the
di�erence. In our results we have divided the set of positions into two halves:
the easy and the hard positions. To this end, we have sorted the positions
according to the minimum number of nodes in which a position was solved.
As a result, the 169 positions which were solved by at least one algorithm
in fewer than 3200 nodes, were classi�ed as easy positions, while the 168
positions with smallest solution larger than 3200 nodes were named the hard
positions.

In table 2.9 we have listed for each algorithm how often it outperformed
all other algorithms, separated for easy and hard positions. If two algorithms
shared �rst place on a position, they were each awarded half a point.

As can be seen from table 2.9, at the easy positions there is hardly any
di�erence between the �-� search algorithms (84 times best algorithm) and
the pn-search algorithms (85 times best algorithm). For the hard positions
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�-� transposition basic pn stones pn

easy 23 61 41 44

hard 0 22 311
2

1141
2

Table 2.9: Number of times an algorithm performed best of all.

�-� transposition basic pn stones pn

�-� - 35 79 911
2

transposition 134 - 89 100

basic pn 90 80 - 82

stones pn 771
2

69 87 -

Table 2.10: Comparing pairs of algorithms on easy positions.

the picture is entirely di�erent: the pn-search variants are 146 times best,
against just 22 times for the �-� search variants.

Table 2.10 shows per pair of algorithms, how often one algorithm outper-
formed the other, on the easy positions. Each entry at row R and column C

in the table indicates how often the algorithm heading row R found a solution
more quickly than the algorithm heading column C. The same information
for the hard positions is displayed in table 2.11.

Table 2.10 indicates that transposition wins against the other three
variants, albeit with a small margin compared with the two pn-search variants
(89 against 80 and 100 against 69).

Table 2.11 clearly indicates that �-� has the worst performance of all
four algorithms. It loses in all cases against transposition, and only 6
times outperforms the pn-search variants. Transposition occasionally does
better than the pn-search variants, but is outperformed in more than 85% of
all hard positions. Between the pn-search variants, the initialization based
on the stones to be captured seems to pay o�, given the 126 against 42 win
compared with the standard initialization.
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�-� transposition basic pn stones pn

�-� - 0 6 6

transposition 168 - 25 24

basic pn 162 143 - 42

stones pn 162 144 126 -

Table 2.11: Comparing pairs of algorithms on hard positions.

total nodes average nodes factor tree size

�-� 2,437,035,522 7,231,559 128.8 -

transposition 1,285,839,816 3,815,548 68.0 -

basic pn 28,214,875 83,723 1.5 42,767

stones pn 18,918,032 56,136 1.0 25,505

Table 2.12: Test �gures per algorithm.

Nodes visited

In this section we concentrate on the number of nodes visited by each
algorithm.

In table 2.12 the �rst column of results lists the total number of nodes
visited on the 337 test positions, per algorithm, while the second column
contains the average per position. In the third column, the factor di�erence
between each algorithm's average and the best average is presented. For both
pn-search variants we have also determined the maximum number of nodes
present in memory during each search. The average of these maxima have
been listed in the last column of the table.

From table 2.12 a pattern similar to that seen in tables 2.10 and 2.11
becomes apparent: the pn-search variants perform best, with stones pn

doing somewhat better than basic pn. With factors 68.0 and 128.8, both
�-� and transposition are clearly outperformed.

The average maximum tree size in memory during the pn-searches,
compared to the average solution size, indicates that removing solved subtrees
during the search results in somewhat smaller memory requirements. Here
approximately a factor 2 is gained. We remark that these �gures only relate
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101 102 103 104 105 106 107 108 109

�-� 18 47 40 45 57 61 36 26 7

transposition 18 47 44 59 67 53 23 23 3

basic pn 14 43 52 77 92 57 2

stones pn 14 37 57 77 101 51

Table 2.13: Positions per group, per grouping algorithm.

to solved positions. In searches which are not successful, the number of solved
subtrees is smaller, rendering the technique less e�ective.

Performance by size

Table 2.12 shows that pn-search is capable of outperforming �-� search by a
large factor. The table does not indicate, however, to what extend the gain
factor is related to the size of the search problems. Furthermore, we must
realize that in the table the hard problems dominate the results.

Measuring the size of the search problems is not a straightforward task,
since a position which is di�cult to solve with �-� search may be rather
simple for pn-search or vice versa. Therefore, we have grouped the test
positions in four di�erent ways, each time according to one of the algorithms
applied in our experiments. We describe the grouping process based on �-�.

We have created groups for each power of 10. Thus, group i consists of
all positions which were solved by �-� in more than 10i�1 nodes, and less
than or equal to 10i nodes. Within each group, the average number of nodes
necessary to solve all positions in the group is calculated, for each of the
four algorithms. These averages are then compared to see which algorithm
performs best on positions of the size represented by the group.

In table 2.13 we have listed for each algorithm the number of positions
per group, depending on the algorithm used as grouping criterion. These
numbers indicate the size of each of the groups on which �gures 2.9, 2.10,
2.11 and 2.12 are based.

Figures 2.9, 2.10, 2.11 and 2.12 contain the results per group, where
the groups are created according to the solutions of �-�, transposition,
basic pn and stones pn, respectively. For each �gure, the numbers on the
horizontal axis indicate the log10 of the size of the groups. The numbers
on the vertical axis indicate the log2 of the factor di�erence between the
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Figure 2.11: Comparison based on grouping by basic pn
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101 102 103 104 105 106 107 108

15 43 46 65 75 57 35 1

Table 2.14: Positions per group, grouped by all four algorithms.

algorithms.

In �gures 2.9 and 2.10 we see that on small problems �-� search does
somewhat better, while with increasing problem size, pn-search does better
and better. For the largest problems, the gain factor is around 500.

In �gures 2.11 and 2.12, again pn-search does worse on the smallest
problems and quickly starts doing better on increasing problem size. It
is remarkable that the gain factor reduces when the problem size further
increases. The cause of this phenomenon is described below.

In each �gure the algorithm used as grouping criterion plays an important
role. In the �rst few groups we �nd positions which were suitable for that type
of algorithm, while in the last few groups the positions found were di�cult
to solve for the algorithm. It is thus to be expected that in the graphs the
other algorithms will do somewhat worse in the �rst groups, while they do
somewhat better on the last groups.

This is exactly what can be seen in all four graphs. In �gures 2.9
and 2.10 pn-search outperform �-� search starting from group 4, while in
�gures 2.11 and 2.12 pn-search is the better algorithm from group 2 onwards.
Furthermore, in the �rst two graphs pn-search's gain factor towards the last
few groups grows remarkably fast, while in the second two graphs, with pn-
search as the grouping criterion, pn-search's advantage reduces in the last
two groups.

Thus, when looking at the groups for the hard problems, �gures 2.9 and
2.10 are too attering towards pn-search while �gures 2.11 and 2.12 do not
give pn-search full credit.

As a solution to this problem, we present one �nal graph. This time we
have determined the size of a problem in a more elaborate way. For each
solution by an algorithm, we determine the log10 of the number of nodes
visited. For the four algorithms we then determine the average of these
exponents and use it as group number. The number of positions per group
has been tabulated in table 2.14. We average the logs since node counts tend
to grow exponentially instead of linearly.
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Figure 2.13: Comparison based on grouping using all four algorithms.

The singleton last group has been deleted, and its position has been
added to the second last group, making a total of 36 entries in that group.
The graph produced by this grouping criterion is pictured in �gure 2.13. The
numbers on the axes have the same meaning as in �gures 2.9, 2.10, 2.11 and
2.12. In it, the bias towards a single algorithm no longer exists. The �gure
con�rms the suggestion from the previous four �gures, that pn-search's gain
factor, compared with �-� search, grows with increasing problem size.

2.4.8 Conclusions

In this section we have compared the behavior of two pn-search variants with
two variants of �-� search. The comparisons lead to clear conclusions: pn-
search signi�cantly outperforms both variants of �-� search (cf. table 2.12)
in proving game-theoretic values in awari. The gain factor di�erence between
pn-search and the �-� variants tends to increase with increasing problem size
(cf. �gure 2.13).

We further conclude from table 2.12 that a domain-dependent initializa-
tion can be bene�cial on awari, with the enhancement yielding a pro�t of
about a factor 2. Moreover, the removal of solved subtrees in pn-search
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decreases the working memory requirements by a factor of about 2, in
problems which are ultimately solved.

We believe that the success of pn-search on awari is due to the non-
uniformity of the tree. Allis et al. (1991b) have attempted to measure the
degree of non-uniformity necessary for pn-search to outperform alternative
algorithms. The results of this section show that awari's non-uniformity
warrants the selection of pn-search for proving game-theoretic values instead
of �-� search variants.

We tentatively conclude from these results that pn-search has contributed
signi�cantly to proving the game-theoretic values of other non-uniform trees,
such as those of connect-four, qubic (see chapter 4) and go-moku (see chapter
5).

2.5 Related algorithms

In this chapter we have presented pn-search as an and/or tree search
algorithm. Its roots, however, lie within the game-tree search algorithms.
So far we have applied pn-search only to game trees, including awari, chess
(Breuker et al., 1994), connect-four (Allis, 1988), give-away chess, go-moku

(see chapter 5), othello (Gnodde, 1993) and qubic (see chapter 4). In our
discussion of related algorithms we will therefore focus mainly on game-
tree search algorithms. In this section, we discuss the relationships with
conspiracy-number search, sss*, b* and a*, the latter being the only single-
agent search algorithm in the list.

2.5.1 Conspiracy-number search

Conspiracy-number search (cn-search) is pn-search's direct ancestor. Cn-
search was developed in the middle of the 1980s by McAllester, and has
received attention of many researchers since then (McAllester, 1988; Klingbeil
and Schae�er, 1988; Klingbeil, 1989; Schae�er, 1989; Van der Meulen, 1990;
Allis et al., 1991b; Lister and Schae�er, 1994).

While pn-search focuses on the minimum number of nodes which must
conspire to prove the value of a position, cn-search determines the minimum
number of nodes which must conspire to change the value of a position. This
main di�erence is more apparent when looking at the search tree: pn-search
does not use a heuristic evaluation function to evaluate non-terminal nodes,
while cn-search does.
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Subtle di�erences between cn-search and pn-search can be identi�ed by
creating an instantiation of cn-search which resembles pn-search as much as
possible. To do so, we de�ne a three-valued evaluation function for cn-search,
which returns -1 for a disproved node, 0 for a node with value unknown, and
1 for a proved node. In such a tree, the conspiracy numbers for -1 and 1 of
a node correspond to the proof and disproof numbers of that node. These
algorithms only di�er in the manner in which the next node to be developed
is selected, for which unpublished experiments on connect-four have shown
that the selection mechanism of pn-search performs better than the selection
mechanism of cn-search.

In cn-search, for any potential value v of the evaluation function it is
determined for each subtree howmany nodes, sayNv, within the subtree must
change their evaluation value to v, to change the value of the subtree to v. If
Nv for the root exceeds a certain limit, for all v unequal to the current root
value, cn-search assumes that the current root value is reliable and terminates
the search. Schae�er's implementation showed that cn-search could achieve
good results in tactical chess positions (Schae�er, 1989). Unfortunately,
experiments with tournament chess programs (Van der Meulen, 1990) have
not been successful.

We remark that, despite pn-search's success in analyzing awari positions,
we do not claim that pn-search is better suited than cn-search to perform well
in a tournament chess program. Instead, we claim that the ideas behind cn-
search, such as applied in pn-search, are better suited for proving values, than
for determining the reliability of heuristic root values. Pn-search capitalizes
on this suitability, concentrating on proving only. We do envision applications
in tournament programs, as we have in our awari program. For instance,
Breuker et al. (1994) have shown that pn-search may be an asset to chess

programs, to prove quickly whether a mating sequence exists in a given chess

position.

We conclude that cn-search and pn-search are closely related, with pn-
search focusing on a di�erent goal and being successful at it.

2.5.2 SSS*

With the availability of large internal memories, algorithms which store
the search in working memory have become of practical interest. One of
the earliest game-tree search algorithms which uses a stored tree is sss*
(Stockman, 1979; Campbell and Marsland, 1983).
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sss* and pn-search are both best-�rst search algorithms. At each step
in the algorithm a node is selected according to a certain criterion and
then developed. This process is repeated until the tree has been solved, or
resources have run out. An important similarity between sss* and pn-search
is that neither algorithm uses a heuristic evaluation function for internal
nodes. Only leaf nodes are assigned a value, either by a heuristic evaluation
function or by reliable game knowledge.

The main di�erence between the algorithms is the criterion which deter-
mines the selection of the next node. Sss* selects a node purely based on
the upper bound still achievable. At any point during the search the node
which has the highest possible upper bound is selected, while among equals
the leftmost node in the tree is preferred. Pn-search does not use a range
of terminal-node values. Instead, the set of possible terminal-node values is
split into two. Solving the tree means determining in which of the two sets
the true value lies. If the exact value from a larger range must be determined,
pn-search should be called repeatedly, for instance by having pn-search be
the discriminating function in a binary search. While pn-search does not use
a range of values, it bases its selection on the proof and disproof numbers
implying that a node is tried which may be part of a solution with minimal
e�ort.

A predecessor of pn-search, viz. ��-cn search (Allis et al., 1991b), can be
seen as a hybrid form of pn-search and sss*. It uses both a range of values
and proof and disproof numbers (although these were named di�erently)
to determine the next node to be developed. The main criterion is the
range of possible values, like in sss*, while in case of a tie the proof and
disproof numbers are used. It can be shown, however, that trees exist with
solutions of only a few nodes, in which ��-cn search could spend a long
time in irrelevant subtrees (Allis et al., 1994). The solution to this problem
consisted of reducing the impact of the range of values, while enlarging the
role of the proof and disproof numbers. The result of this change has been
the development of pn-search.

For a comparison of sss* and ��-cn search on random trees, see Allis et al.
(1991b).

2.5.3 B*

B* is a best-�rst game-tree search algorithm introduced by Berliner (1979).
It assumes that at each frontier node a special evaluation function returns
a reliable lower and upper bound on the true value of the node. After a



2.5 Related algorithms 63

node is expanded, the lower and upper bounds of a node are calculated by
maximizing (or minimizing, depending on the node type) the lower and upper
bounds of its children. Let us assume that the root of the tree is a max node.
Let us further assume that the root has two children A and B, with values in
the intervals [0; 2] and [1; 3]. b*'s main goal is to determine the best move,
without necessarily knowing the exact value of such a move. In our example,
B is the most-promising child of the root. Before we can terminate the search,
however, we should either prove that the upper bound (2) on A's interval can
be reduced to a value below the lower bound of B, which currently equals 1,
or we should prove that the lower bound of B can be raised to at least the
value of A's upper bound. These two di�erent strategies are called prove and
disprove.

Focusing both on proving and disproving is a similarity with pn-search.
However, a di�erence with pn-search is that there is no way to simultaneously
work on both strategies. Thus, in b*, at each step �rst a choice must be made
for one of the strategies, followed by the selection of a node. Of course, after
each node expansion, a change of strategies may take place. Since b* does not
assume that some nodes may change their bounds more easily than others,
we suggest that the concept of proof and disproof numbers could be a useful
addition to b*.

An important prerequisite of b* is the reliable evaluation function which
determines the lower and upper bound per node. Such an evaluation function
heavily depends on domain-speci�c knowledge, and may be a serious obstacle
in many domains. If, however, the knowledge to create such a function is
readily available, b* provides a sound mechanism to incorporate it to guide
the search process. An alternative way to obtain these bounds through a
small search has been described by (Palay, 1982). For pn-search such a clear
mechanism has not yet been formulated. In this respect b* has advantages
above pn-search.

2.5.4 A*

A*, a single-agent search algorithm, has links with pn-search. A* is a best-
�rst search algorithm, which uses an admissible evaluation function at each
frontier node. Such a function calculates a lower bound on the total costs
of the path from the root to a solution through that node. At each step
a node with minimal lower bound on the solution costs is developed. a*
thus guarantees �nding an optimal solution (Hart et al., 1968; Hart et al.,
1972; Nilsson, 1980).
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Where a* concentrates on the cheapest overall solution, including the
e�ort already spent (i.e., the cost of the path from root to frontier node), pn-
search selects a node on the basis of the cheapest remaining solution, thus
ignoring the contribution of already solved nodes and the path length from
the root to the most-proving node. As a result, pn-search is not guaranteed
to �nd the solution tree of minimal size.

Surprisingly, a small change to pn-search is su�cient to let it �nd the
minimal solution tree. If, at each internal node, we add one to the proof
number and disproof number as calculated from its children's proof and
disproof numbers, then the proof number and disproof number at each node
are a lower bound on the size of a solution tree for the node. We remark that
proof and disproof numbers now can only increase, making some changes to
the algorithm necessary. This algorithm, originating from discussions with
Ingo Alth�ofer, has been named mst*, short for Minimal Solution-Tree search.

Mst*, as variant of pn-search, will be subject of future research.



Chapter 3

Dependency-Based Search

3.1 Introduction

In section 2.1, we argued that choosing a representation and performing
a search are two interacting subprocesses of problem solving. Better
representations of a problem may result in smaller state spaces, and
better search algorithms may traverse a given state space more e�ciently.
While the game-tree search algorithm pn-search (chapter 2) focuses on the
latter, the single-agent search algorithm dependency-based search (db-search)
introduced in this chapter, focuses on the former.

Atomic vs. structured states

Search problems are often modeled by treating states as atomic entities. This
means that two states are considered as either equal or di�erent, without the
option of a measure of similarity between states.

As an alternative to atomic state representations, states can be structured,
such as in strips (Fikes and Nilsson, 1971). In strips, each state is de�ned
as a set of attributes. Each operator f is speci�ed by a precondition set, a
delete set and an add set. In any state A containing the attributes of the
precondition set of f , f can be applied, yielding a state B. B consists of the
attributes of A with the attributes of the delete set of f removed and with
the attributes of the add set of f added.

To see how a structured state representation may help in reducing the size
of a state space consider a production system P consisting of 10 rewriting
rules r0; r1; : : : ; r9.

65
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Furthermore, we consider production system P 0, which contains the 10 rules
of P as well as the rule r10.

altogether
r10�! goal

Rule r10 states that the string altogether may be replaced by the string goal.
For both P and P 0, we start with the initial string 0123456789. The goal of
both P and P 0 is to create the string goal. Clearly, in P there is no solution,
while any order of applying rules r0 to r9, followed by the application of r10
leads to the goal in P 0.

First, let us represent P using atomic states. The state space will consist
of 210 = 1024 states, each representing a mixture of digits and lower-case
letters. The state space of P 0 consists of the same 1024 states as P , with
one additional state consisting of the string goal. Without the application of
domain-speci�c knowledge, searching P consists of traversing the full state
space of 1024 states. The number of states visited in P 0 depends on the
search algorithm applied. Depth-�rst search visits the goal as 11th state,
while breadth-�rst search visits the goal state as number 1025.

Second, let us represent P and P 0 using structured states. A possible
structure consists of attributes of the form a(i; z), where i 2 f0; : : : ; 9g, and
z 2 f0; : : : ; 9; a; e; g; h; l; o; r; tg. An attribute a(i; z) indicates that letter or
digit z occupies position i in the string represented by the set of attributes.
In P 0 we have an additional attribute g representing the string goal. The
rule r0 can now be represented by its precondition set fa(0; 0)g, its delete
set fa(0; 0)g and its add set fa(0; a)g. Similarly, rule r5 is represented by its
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precondition set fa(5; 5)g, its delete set fa(5; 5)g and its add set fa(5; e)g.
The rule r10 is represented by its precondition set

fa(0; a); a(1; l); a(2; t); a(3; o); a(4; g); a(5; e); a(6; t); a(7; h); a(8; e); a(9; r)g;

its delete set

fa(0; a); a(1; l); a(2; t); a(3; o); a(4; g); a(5; e); a(6; t); a(7; h); a(8; e); a(9; r)g;

and its add set
fa(0; g); a(1; o); a(2; a); a(3; l)g:

The number of states in the state space, as well as the number of states visited
by depth-�rst search and breadth-�rst search algorithms are equivalent to the
numbers found for atomic states.

The di�erence between the atomic and the structured state representa-
tions is that the structure of states provides us with a framework for reasoning
about relations between states and operators (e.g., rewriting rules), without
having to rely on domain-speci�c knowledge. As an example of such a relation
between operators we state that any two rules ri and rj, for 0 � i < j � 9
are independent, meaning that in any state where both rules can be applied,
changing the order of application does not inuence the outcome.

Clearly, all relations which can be found by using structured state re-
presentations can also be found through a domain-speci�c analysis of the
problem at hand. The advantage of a general framework using structured
states as introduced in this chapter is that the analysis is performed once
and for all for a category of problems.

In this chapter we de�ne a framework, based on structured states and
strips-like operators. Within the framework, a set of conditions has been
identi�ed which are su�cient to prove that a reduction of the state space can
be performed without the loss of solutions in the state space.

Conventional search algorithms cannot traverse the reduced state space;
but the db-search algorithm can. It is proved that db-search, introduced for
the purpose, traverses exactly the reduced state space.

To give an indication of the amount of state-space reduction achieved by
our framework, we once again look at the state space de�ned for production
systems P and P 0. For P the reduced state space consists of 11 elements
(an initial state and 10 states representing the changes by rules r0; : : : ; r9).
For P 0 the reduced state space consists of 12 elements (one additional state
representing goal). These numbers should be compared with the 1024 and
1025 found for the atomic-state representation.
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Overview of the chapter

In section 3.2 we describe the double-letter puzzle (dlp), which is used as
an example throughout the chapter. In section 3.3 we formally de�ne a
framework for a category of single-agent searches based on structured-state
representations. Each de�nition in this section is illustrated by its application
to dlp. In section 3.4 db-search is described informally using the framework
introduced in the previous section, by applying it to an instance of dlp. In
section 3.5 we present algorithms in pseudo-code for db-search. In section
3.6 we compare the performances on dlp of db-search and depth-�rst search.
Finally, in section 3.7 the scope of applicability of db-search is discussed. For
practical results of db-search we refer to chapters 4 and 5.

3.2 The double-letter puzzle

The double-letter puzzle (dlp) is a production system consisting of an axiom
and a set of 10 rewriting rules. The axiom is an element of fa; b; c; d; eg+.
The rewriting rules are listed below.

aa ! e j b

bb ! a j c

cc ! b j d

dd ! c j e

ee ! d j a

The rewriting rules can be informally described as allowing any double
occurrence of a letter to be replaced by a single instance of its alphabetical
predecessor or successor in a circular alphabet.

We de�ne the set of theorems of dlp as follows:

1. The axiom is a theorem

2. If x is a theorem and there exists a rewriting rule r such that x
r
�! y,

then y is a theorem.

3. There are no theorems except as de�ned by 1. and 2.

Each theorem of length 1 (i.e., a theorem consisting of a single letter) is called
a solution to dlp.
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Two solutions to instance aabdcbbdcaa of dlp are presented below.

aabdcbbdcaa
aa!b
�! bbdcbbdcaa

bb!a
�! adcbbdcaa

bb!c
�! adccdcaa

cc!d
�!

cc!d
�! adddcaa

dd!c
�! adccaa

cc!d
�! addaa

dd!e
�! aeaa

aa!e
�! aee

ee!a
�!

ee!a
�! aa

aa!bje
�! b j e

aabdcbbdcaa
aa!b
�! bbdcbbdcaa

bb!c
�! cdcbbdcaa

bb!c
�! cdccdcaa

cc!d
�!

cc!d
�! cdddcaa

dd!c
�! ccdcaa

cc!d
�! ddcaa

dd!c
�! ccaa

cc!b
�! baa

aa!b
�!

aa!b
�! bb

bb!ajc
�! a j c

From the examples we see that a, b, c and e can be deduced. For a proof
that d cannot be deduced from aabdcbbdcaa, we refer to appendix A.

3.3 A formal framework for db-search

In this section we de�ne a formal framework for db-search. The framework
is described in four steps. In section 3.3.1 we de�ne states and operators. In
section 3.3.2 we de�ne paths through the state space and classes of equivalent
paths. It is shown that conventional search algorithms traverse exactly the
set of all paths. In section 3.3.3 key classes are de�ned. These form a subset
of the classes of paths de�ned previously. It is shown that, under accurately
de�ned circumstances, the set of all key classes is complete, meaning that each
solution path is represented by a key class. In section 3.3.4 we de�ne a meta-
operator for traversing the state space de�ned by the set of all key classes.
It is shown that the meta-operator is sound and complete, meaning that
through application of the meta-operator exactly all key classes are visited.
Finally, in section 3.3.5, we summarize the properties of our framework.

The description of the framework for db-search requires a large number
of de�nitions. For reference purposes, we have listed the symbols used in this
section and a short description of their meaning in table 3.1. Each de�nition
in this section is illustrated by its application to the instance of dlp with
axiom aacc.

3.3.1 States and operators

In this section we �rst de�ne the set of attributes U and the state space Us.
Then we de�ne operators (consisting of a precondition set, a delete set and
an add set) which map states onto other states, followed by the set of all
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symbol description

U the set of all attributes
Us the state space
Ui the set of all initial states
Ug the set of all goal states
Uf the set of all operators
Up the set of all paths applicable to initial states
Uk the set of all key classes

f an operator
fpre the precondition set of operator f
fdel the delete set of operator f
fadd the add set of operator f
f(S) the state reached when applying operator f to S

f1 � f2 f1 supports f2, f2 depends on f1
f1 � f2 f1 precedes f2

f(p;q;r;z1;z2) an operator in dlp

P a path
P � Q the concatenation of paths P and Q
P � Q paths P and Q are equivalent
P �= Q P and Q are transpositions
P (S) the state resulting from applying path P to state S
[P ]� the equivalence class of path P
Up=� the set of equivalence classes of Up

key(P ) the key operator (last operator) of path P
P k Q the merge of paths P and Q

Parf(P ) the set of parents of operator f in path P
Ancf (P ) the set of ancestors of operator f in path P

Ax the axiom state of dlp

Table 3.1: Symbols used in db-search framework
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operators Uf . Finally, we de�ne the set Ui of all initial states, and the set Ug

of all goal states.

De�nition 3.1 Let U be a set of attributes. Then the state space Us is
de�ned as 2U , the power set of U .

We index the letters of the axiom in dlp from 0 to n � 1, where n is
the length of the axiom (i.e., 4 for dlp with axiom aacc). In the axiom, the
�rst a has index 0, the second a has index 1, the �rst c has index 2 and the
second c has index 3. Each letter in a theorem originates from a substring
of the axiom. We represent a letter z in a theorem by three values: the �rst
and last index of the substring of the axiom z originates from, and z itself.
If aab is produced from aacc, the letter b originates from the substring cc in
the axiom, which has �rst index 2 and last index 3. Therefore, the b in aab
is represented by A(2; 3; b).

The set of all attributes U is speci�ed as follows.

U = fA(i; j; z) j 0 � i � j � 3 ^ z 2 fa; b; c; d; egg

As the axiom will play a special role in many of the de�nitions of this section,
we denote the state representing the axiom aacc by Ax. In accordance with
de�nition 3.1, Ax 2 Us is represented as follows.

Ax = fA(0; 0; a); A(1; 1; a); A(2; 2; c); A(3; 3; c)g

De�nition 3.2 We de�ne an operator f as a 3-tuple hfpre; fdel; faddi, with
fpre; fdel; fadd � U and fdel � fpre. The elements in the 3-tuple are
named the precondition set, the delete set and the add set of f , respectively.
Operator f is a partial function f : Us �! Us, de�ned as f(S) = (S n fdel)[
fadd, for all S � fpre.

De�nition 3.2 states that an operator f is applicable to each state
containing all attributes in the precondition set of f . Applying operator
f to state S yields a state T , by deleting the attributes of the delete set of f
from S and adding to the result the attributes of the add set of f . In dlp,
two equal adjacent letters z1 are replaced by z2, which is either the successor
or predecessor of z1. The two z1s originate from two adjacent substrings in
the axiom. Let the �rst z1 originate from the substring with start index p
and end index q, and let the second z1 originate from the substring with start
index q+1 and end index r. Then, the indices p, q, and r, and the letters z1
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and z2 are su�cient information to de�ne an operator. In the following, we
denote with f(p;q;r;z1;z2) the operator

hfA(p; q; z1); A(q + 1; r; z1)g; fA(p; q; z1); A(q + 1; r; z1)g; fA(p; r; z2)gi:

An example operator in dlp is

f(0;0;1;a;b) = hfA(0; 0; a); A(1; 1; a)g; fA(0; 0; a); A(1; 1; a)g; fA(0; 1; b)gi

Applying f(0;0;1;a;b) to axiom state Ax yields fA(0; 1; b); A(2; 2; c); A(3; 3; c)g.

De�nition 3.3 The set of operators de�ned within a domain is denoted by
Uf .

Using de�nition 3.3 we de�ne for our instance of dlp the set of operators
Uf as

ff(p;q;r;z1;z2) j 0 � p � q < r � 3 ^ z1 2 fa; b; c; d; eg ^ z2 2 succpred(z1)g

Here succpred(z) denotes a set containing the circular alphabetical successor
and predecessor of z.

De�nition 3.4 We denote the set of initial states by Ui, with Ui � Us. We
denote the set of goal states by Ug, with Ug � Us.

For our instance of dlp,

Ui = ffA(0; 0; a); A(1; 1; a); A(2; 2; c); A(3; 3; c)gg

Ug = ffA(0; 3; a)g; fA(0; 3; b)g; fA(0; 3; c)g; fA(0; 3; d)g; fA(0; 3; e)gg:

3.3.2 Paths

In this section we �rst de�ne paths, which are just sequences of operators.
We de�ne the application of a path to a state S, as one by one applying the
operators, starting from state S. Then solutions for a state S are de�ned as
the paths which, if applied to S yield a superset of a goal state. We then
de�ne the extension of a path P , which is a path consisting of all operators of
P , in the same order, plus one additional operator. An equivalence relation
for paths is de�ned, which states that two paths are equivalent if one is
a permutation of the other. Then, a notation for equivalence classes of
paths is introduced. Finally, we describe the behavior of conventional search
algorithms in terms of paths.
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De�nition 3.5 Any element P of Uf
� is a path. Let P = (f1; : : : ; fn) be a

path. Let concatenation of two paths P and Q be denoted by P � Q. Then,
P is applicable to S if (1) P = �, or (2) P = (f) � Q and f(S) is de�ned
and Q is applicable to f(S). If P is applicable to S, then

P (S) = fn(fn�1(: : : (f2(f1(S))) : : :)):

For path P = (f(0;0;1;a;b); f(2;2;3;c;b); f(0;1;3;b;c)), applicable to the axiom
state Ax, it follows from de�nition 3.5 that

P (Ax) = f(0;1;3;b;c)(f(2;2;3;c;b)(f(0;0;1;a;b)(Ax))) =

= f(0;1;3;b;c)(f(2;2;3;c;b)(fA(0; 1; b); A(2; 2; c); A(3; 3; c)g)) =

= f(0;1;3;b;c)(fA(0; 1; b); A(2; 3; b)g) =

= fA(0; 3; c)g

De�nition 3.6 The set of paths Up, is de�ned as follows.

Up = fP j S 2 Ui ^ P is applicable to Sg

It can be checked that for our instance of dlp with initial state Ax, Up

(de�nition 3.6) consists of 17 paths.

Up = f�; (f(0;0;1;a;b)); (f(0;0;1;a;e)); (f(2;2;3;c;b)); (f(2;2;3;c;d));

(f(0;0;1;a;b); f(2;2;3;c;b)); (f(2;2;3;c;b); f(0;0;1;a;b)); (f(0;0;1;a;b); f(2;2;3;c;d));

(f(2;2;3;c;d); f(0;0;1;a;b)); (f(0;0;1;a;e); f(2;2;3;c;b)); (f(2;2;3;c;b); f(0;0;1;a;e));

(f(0;0;1;a;e); f(2;2;3;c;d)); (f(2;2;3;c;d); f(0;0;1;a;e));

(f(0;0;1;a;b); f(2;2;3;c;b); f(0;1;3;b;a)); (f(2;2;3;c;b); f(0;0;1;a;b); f(0;1;3;b;a));

(f(0;0;1;a;b); f(2;2;3;c;b); f(0;1;3;b;c)); (f(2;2;3;c;b); f(0;0;1;a;b); f(0;1;3;b;c))g

De�nition 3.7 Let P = (f1; : : : ; fn) be a path applicable to S. We de�ne
the following terminology with respect to P .

1. P is a solution for S, if 9x 2 Ug x � P (S).

2. A path Q is an extension of P , if Q = P � (f), for some operator f .

We give examples for de�nition 3.7 using path

P = (f(0;0;1;a;b); f(2;2;3;c;b); f(0;1;3;b;c)):
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1. P is a solution for axiom state Ax, because P (Ax) = fA(0; 3; c)g and
fA(0; 3; c)g 2 Ug.

2. P is an extension of path (f(0;0;1;a;b); f(2;2;3;c;b)).

.

De�nition 3.8 Let P and Q be paths. P and Q are equivalent, denoted by
P � Q, if P is a permutation of Q.

An example of de�nition 3.8 from the set of paths in dlp applicable to
Ax is

(f(0;0;1;a;b); f(2;2;3;c;b); f(0;1;3;b;c)) � (f(2;2;3;c;b); f(0;0;1;a;b); f(0;1;3;b;c))

De�nition 3.9 Let P 2 Up be a path. We denote the set of all paths Q 2 Up

such that P � Q by [P ]� (the equivalence class of P modulo �). The set of
all equivalence classes of Up modulo � is denoted by Up=�.

From de�nition 3.9 and the example after de�nition 3.6 it follows that for

P = (f(0;0;1;a;b); f(2;2;3;c;b); f(0;1;3;b;c));

[P ]� = f(f(0;0;1;a;b); f(2;2;3;c;b); f(0;1;3;b;c)); (f(2;2;3;c;b); f(0;0;1;a;b); f(0;1;3;b;c))g:

We mention that in our instance of dlp Up=� consists of 11 equivalence
classes.

Traversing Up

In this section we describe how a conventional tree search algorithm traverses
Up, as de�ned within our framework.

As an example tree search algorithm, we discuss depth-�rst search (dfs).
Starting from initial state Ax, dfs traverses a tree such that each node N
represents a path P applicable to initial state Ax. At node N , an operator
f of Uf can be applied, if f is applicable to P (Ax). In other words, f can
be applied at node N , if P � (f) is applicable to Ax, i.e., P � (f) 2 Up.
Clearly, dfs will traverse a �nite Up fully, unless terminated early.

A reduction of state space Up is applied in many practical domains. We
say that P �= Q if P (Ax) = Q(Ax). Thus, if P �= Q, then P (Ax) and Q(Ax)
are transpositions. From the de�nition of a path, it is clear that in such a
case P and Q can be extended in exactly the same way. Thus, even though



3.3 A formal framework for db-search 75

several paths may lead to the same state, the continuations from that state
need to be investigated only once. Instead of traversing Up, we may therefore
restrict ourselves to traversing Up=�=. To do so, transposition tables are used
to store the results of investigating the continuations starting at each node.
Before investigating a node, it is checked whether the node has already been
investigated (indicating that the node is a transposition) (Greenblatt et al.,
1967).

We conclude that conventional tree search algorithms traverse the state
space Up, which may be reduced by investigating each transposition only
once.

3.3.3 Key classes

In this section we de�ne the key operator of a path (which is just the last
operator of the path), key classes (which are equivalence classes of paths
where all paths have the same key operator), and the set of all key classes. We
de�ne monotonicity, which indicates that in the course of executing operators,
an attribute can never be recreated after it has been deleted. We de�ne
singularity, which means that each goal state consists of a single attribute.
Furthermore, we de�ne redundant paths, which are extensions of solutions.
Finally, we show that the set of all key classes is complete under the condition
of monotonicity, singularity and the absence of redundancy. Completeness
means that each solution in Up is an element of a key class.

De�nition 3.10 Let P = (f1; : : : ; fn) be a path applicable to S. The last
operator of a non-empty path P (i.e., fn), is called the key operator of the
path. Notation: key(P ) = fn.

For path P = (f(0;0;1;a;b); f(2;2;3;c;b); f(0;1;3;b;c)) we obtain from de�nition
3.10 that key(P ) = f(0;1;3;b;c).

De�nition 3.11 Let C 2 Up=� be a class. C is a key class, if for all Pi; Pj 2
C, key(Pi) = key(Pj). The set of all key classes of Up=� is denoted by Uk.
The key of a key class C is de�ned to equal the key of the paths in C and is
denoted by key(C).

From de�nition 3.11 and the example after de�nition 3.9, it follows
that for P = (f(0;0;1;a;b); f(2;2;3;c;b); f(0;1;3;b;c)), [P ]� is a key class. For
Q = (f(0;0;1;a;b); f(2;2;3;c;b)), [Q]� is not a key class, since Q has key f(2;2;3;c;b),
while (f(2;2;3;c;b); f(0;0;1;a;b)) has key f(0;0;1;a;b). We note that Uk for our
instance of dlp consists of 7 key classes.
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De�nition 3.12 A path P = (f1; : : : ; fn) applicable to S is monotonous for
S if

8i 6=j f
add
i \ faddj = ; ^ 8i S \ faddi = ;:

Up is monotonous if all paths in Up are monotonous for all S 2 Ui.

In our instance of dlp, there are 17 paths. Investigation shows that each
path P is monotonous for Ax. From de�nition 3.12 it follows that Up is
monotonous.

De�nition 3.13 We say that Ug is singular if each S 2 Ug consists of a
single attribute, i.e., jSj = 1.

The Ug de�ned for dlp,

Ug = ffA(0; 3; a)g; fA(0; 3; b)g; fA(0; 3; c)g; fA(0; 3; d)g; fA(0; 3; e)gg

is singular, according to de�nition 3.13.

De�nition 3.14 A path Q is redundant, if Q is an extension of P , and P
is a solution for an initial state, or P is redundant. Up is non-redundant, if
no path in Up is redundant.

In dlp, there are no operators applicable to goal states. Therefore, there
are no redundant paths in dlp, as de�ned in de�nition 3.14.

Completeness of Uk

In section 3.3.2 we have shown that conventional search algorithms traverse
Up. Through the equivalence relation �, we have de�ned classes of paths,
Up=�. Of these classes, the subset Uk of key classes has been singled out.
In this section we will show that to �nd all solutions in Up, it is su�cient
to consider only paths which are elements of key classes, thereby restricting
the size of the state space. Our proof is based on the assumption that Up is
monotonous and non-redundant, and that Ug is singular.

Our proof consists of three steps. First, in lemma 3.1 we show that
either all paths in a class are a solution, or none are. It follows that instead
of focusing on paths, we need only to focus on classes of paths, thereby
restricting our state space to Up=�. Second, in lemma 3.2 we show that each
equivalence class containing a solution must be a key class. Third, in theorem
3.1 we combine these two results to show that it is su�cient to examine the
set of all key classes Uk.

Lemma 3.1 Let P and Q, paths applicable to S, be elements of [P ]�, for P
and Q monotonous for S. Then P (S) = Q(S).
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Proof

We assume without lack of generality that P = (f1; : : : ; fn) for some natural
n. Let a 2 P (S) be an attribute. Then, because of monotonicity, a is an
element of exactly one of the following sets: S; fadd1 ; fadd2 ; : : : ; faddn . Now let
us suppose that a 2 fdeli , for some i. Then from de�nition 3.2 it follows
that a 2 fprei , restricting a to membership of exactly one of the following
sets: S; fadd1 ; fadd2 ; : : : ; faddi�1 . But then, since a 62 fi(: : : (f1(S))), also a 62
P (S). This contradicts our assumption that a 2 P (S). Thus, there is no
i 2 f1; : : : ; ng such that a 2 fdeli . Since Q is a permutation of P , a 2 Q(S)
and P (S) � Q(S). Analogously, Q(S) � P (S). 2

Lemma 3.2 Let Ug be singular and let Up be monotonous and non-redun-
dant. If P is a solution applicable to S then [P ]� is a key class.

Proof

Let Q 2 [P ]�. We assume without lack of generality that Q = (f1; : : : ; fn)
for some natural n. Let x be an attribute in an element of Ug. If x 2 faddp ,
for some p 2 f1; : : : ; ng, then (f1; : : : ; fp) is a solution, since Ug is singular.
Since Up is non-redundant, Q is non-redundant. Thus, fp must be the last
operator (i.e., the key operator) of Q. As fp occurs in all paths in [P ]�, it
must be the key operator in each of these paths. Thus, [P ]� is a key class 2

Theorem 3.1 Let Up be monotonous and non-redundant and let Ug be
singular. Then Uk is complete (i.e., each solution path in Up is element
of a class in Uk, and each class in Uk either consists of only solutions, or no
solutions).

Proof

From lemma 3.1 it follows that either all paths in the equivalence classes
of Up=� are solutions, or none are. From lemma 3.2 it follows that the
equivalence class modulo � for any solution path is a key class. Thus, for any
solution path, its equivalence class is a key class, of which each representative
is a solution. Thus Uk is complete. 2

3.3.4 Traversing Uk

In this section we de�ne two relations, to support and to precede, between
operators. These relations create a partial order between operators in
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monotonous paths. Using the partial order we can de�ne the parents
(operators which directly support or precede an operator) and ancestors
(operators which directly or indirectly support or precede an operator). Last,
we de�ne the merge of a set of classes, which itself is a class. The merge of a
set of classes consists of paths containing exactly the operators in the paths of
the classes merged. Stated more simply, if we merge a class containing path
P with a class containing path Q, the merge contains all paths consisting of
exactly the operators in P and Q. Operators in both P and Q occur only
once in the paths of the merge.

The purpose of these de�nitions is to create a meta-operator which is
capable of traversing exactly Uk. We have shown in section 3.3.3 that Uk

is complete. Together with a proof that we have a meta-operator which
traverses exactly Uk, we have shown that a restricted state space can be
traversed, without reduced e�cacy. The de�nition of the meta-operator
and the proof of its soundness (each application leads to a key class) and
completeness (all key classes will be created by application of the meta-
operator) follow the de�nitions in this section.

De�nition 3.15 Let f1; f2 2 Uf . We de�ne the two relations � (supports)
and � (precedes) on Uf � Uf as follows.

1. f1 � f2 () fadd1 \ fpre2 6= ;.

2. f1 � f2 () fpre1 \ fdel2 6= ;.

We remark that we will use both the phrases f1 supports f2 and f2 depends
on f1 to describe f1 � f2. We provide examples in our instance of dlp, for
the two relations of de�nition 3.15.

1. f(0;0;1;a;b) � f(0;1;3;b;a), as f
add
(0;0;1;a;b) \ fpre(0;1;3;b;a) = fA(0; 1; b)g.

2. f(0;0;1;a;b) � f(0;0;1;a;e), as f
pre

(0;0;1;a;b) \ fdel(0;0;1;a;e) = fA(0; 0; a); A(1; 1; a)g.
We remark that also f(0;0;1;a;e) � f(0;0;1;a;b). Which shows that
f(0;0;1;a;e) and f(0;0;1;a;b) cannot occur in the same monotonous path.

De�nition 3.16 Let P be a non-empty path applicable to S, and let f be an
operator in path P . The set of parents of f in P is de�ned as follows.

Parf(P ) = ffi j fi 2 P ^ (fi � f _ fi � f)g
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Between f(0;0;1;a;b), f(2;2;3;c;b) and f(0;1;3;b;c) the following two relations
hold: f(0;0;1;a;b) � f(0;1;3;b;c) and f(2;2;3;c;b) � f(0;1;3;b;c). Thus, for path P =
(f(0;0;1;a;b); f(2;2;3;c;b); f(0;1;3;b;c)), de�nition 3.16 states that Parf(0;1;3;b;c)(P ) =
ff(0;0;1;a;b); f(2;2;3;c;b)g.

De�nition 3.17 Let P be a non-empty path applicable to S, and let f be an
operator in P . The set of ancestors of f in P is de�ned as follows.

Ancf(P ) = ffg [
[

fi2Parf (P )

Ancfi(P )

Furthermore, a parent fi of f is named a relevant parent if for all parents fj
of f , with fj 6= fi, fi 62 Ancfj (P ).

In our example instance of dlp, Ancf (P ) = ffg [ Parf(P ), for all paths
P and all operators f . In more complex instances of dlp, however, not all
ancestors of f as de�ned in de�nition 3.17 will be parents of f (or f itself).
In each instance of dlp, each parent is a relevant parent.

De�nition 3.18 Let P1; : : : ; Pn be paths applicable to S. Then the merge
of P1; : : : ; Pn, denoted by P1 k : : : k Pn, is de�ned as the set of all paths Q
applicable to S, such that Q is a permutation of the set of all operators in
the Pi. The merge of a set of classes [Pi]� is de�ned as the merge of a set of
representatives of the classes. Thus,

[P1]� k : : : k [Pn]� = P1 k : : : k Pn:

We present three examples of merges of paths, as de�ned in de�nition
3.18.

(f(0;0;1;a;b)) k (f(2;2;3;c;b)) = f(f(0;0;1;a;b); f(2;2;3;c;b)); (f(2;2;3;c;b); f(0;0;1;a;b))g

(f(0;0;1;a;b)) k (f(0;0;1;a;e)) = ;

(f(0;0;1;a;b)) k (f(2;2;3;c;b)) = f(f(0;0;1;a;b))g k f(f(2;2;3;c;b))gg

A meta-operator

So far, we have de�ned Uk and proved its completeness, under the assump-
tions of singularity, non-redundancy and monotonicity. For the remainder
of this section we assume that these three conditions hold, unless stated
otherwise.



80 Chapter 3. Dependency-Based Search

Traversing Uk is not as straightforward as traversing Up. For instance,
f(f(0;0;1;a;b))g is a key class in the unsolvable instance aacaa of dlp, whose
axiom is represented by

fA(0; 0; a); A(1; 1; a); A(2; 2; c); A(3; 3; a); A(4; 4; a)g:

We can extend the only path in the key class to the paths (f(0;0;1;a;b); f(3;3;4;a;b))
and (f(0;0;1;a;b); f(3;3;4;a;e)). However, in both cases the equivalence classes of
these paths are not key classes. Thus, extending elements of key classes
may lead to paths which are not element of a key class. We conclude that
traversing Uk involves more than just extending paths.

In this section we introduce the meta-operator F (N; f) which is capable of
traversing Uk. First, we de�ne F (N; f). Then we prove that each application
of F (N; f) in a graph where each node represents a key class, creates only
nodes representing key classes. Finally, we prove through induction that each
key class is created through application of F (N; f).

De�nition of the meta-operator

We de�ne meta-operator F (N; f) in de�nition 3.19.

De�nition 3.19 Let N � Uk, with N = fC1; : : : ; Cng, all Ci 6= ;, and
n � 1. Let C1 k : : : k Cn = C, with C 6= ;. Let operator f 2 Uf , such
that 81�i�n (key(Ci) � f _ key(Ci) � f), and let f be an extension to a
path P 2 C. We then say that f is valid in N . F (N; f) is applicable if
and only if f is valid in N and there is no proper subset M of N , such
that f is valid in M . If F (N; f) is applicable, then F (N; f) = [P � (f)]�.
Furthermore, F (;; f) is applicable if and only if f(Ax) is de�ned. In those
cases, F (;; f) = f(f)g.

An informal interpretation of F (N; f) is as follows. Operator f can only
be applied to states containing all elements of fpre. Each element Ci of the
set of key classes N contributes one or more attributes of fpre, implying that
f depends on or is preceded by the key operators of each Ci. If all operators
in the Ci can be combined without conicts (i.e., the merge of all Ci is not
empty) and paths in the merge extended with f are applicable, then F (N; f)
is applicable.

We give two examples. First, we look at instance aacc of dlp. Both C1 =
f(f(0;0;1;a;b))g and C2 = f(f(2;2;3;c;b))g are key classes. Operator f = f(0;1;3;b;a),
with fpre = fA(0; 1; b); A(2; 3; b)g depends on the keys of the paths of C1 and
C2. Furthermore, C1 k C2 = f(f(0;0;1;a;b); f(2;2;3;c;b)); (f(2;2;3;c;b); f(0;0;1;a;b))g.
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For both paths Q1 and Q2 in the merge, Q1 � (f) and Q2 � (f) are
applicable to Ax. Finally, F (fC1g; f) and F (fC2g; f) are not valid. Thus,
F (fC1; C2g; f) is applicable.

Second, we look at the production system P 0 of section 3.1. In P 0, each
of the applications of r0; : : : ; r9 results in a key class of one element, which
we name C0 through C9. Rule r10 depends on each of the applications of
r0 to r9 to have been executed. Thus, F (fC0; : : : ; C9g; r10) is applicable and
yields the solution of P 0.

Soundness of the meta-operator

In theorem 3.2 we prove that each application of meta-operator F (N; f)
creates a key class. Before we give the proof of theorem 3.2, we prove lemmas
3.3 and 3.4.

Lemma 3.3 Let P = (f1; : : : ; fn) be a path applicable to S. Let fi 6� fi+1 ^
fi 6� fi+1. Then (f1; : : : ; fi�1; fi+1; fi; fi+2; : : : ; fn) is also a path applicable
to S.

Proof

Let fi�1(: : : (f1(S)) : : :) = T . Then fi(T ) is de�ned, and fprei � T . Since
fi 6� fi+1 we know that faddi \ fprei+1 = ;. Thus, fprei+1 � T and fi+1(T ) is
de�ned. Furthermore, fi 6� fi+1 implies that fdeli+1 \ fprei = ;. Therefore
fi(fi+1(T )) is de�ned. Since fi(fi+1(T )) = fi+1(fi(T )) according to lemma
3.1, (f1; : : : ; fi�1; fi+1; fi; fi+2; : : : ; fn) is a path. 2

Lemma 3.4 Let C be a key class with key fn. Let P = (f1; : : : ; fn) be a path
in C. Then the following two statements are true.

1: 81�i�n�1 9j>i (fi � fj _ fi � fj)

2: 81�i�n�1 (fn 6� fi ^ fn 6� fi)

Proof

1. Suppose that there exists an fp, with 1 � p � n�1, such that 8j>p(fp 6�
fj^fp 6� fj). Then, by repeated application of lemma 3.3, we can move
fp to the end of P . However, this contradicts the assumption that C is
a key class. Thus, 81�i�n�19j>i(fi � fj _ fi � fj).
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2. Suppose that there exists an fp, with 1 � p � n� 1, such that fn � fp.
Then faddn \ fprep 6= ;. Let x 2 faddn \ fprep . Then, by monotonicity,

x 62 S and x 62 faddi , for all i < n. Thus, fp is only applicable if p � n,
which is a contradiction. Thus, fn 6� fp. Suppose that there exists an
fp, with 1 � p � n � 1, such that fn � fp. Then fpren \ fdelp 6= ;. Let

x 2 fpren \ fdelp . Then, by de�nition 3.2 x 2 fprep , and either x 2 S, or

x 2 faddi for exactly one i < p, but not both. And thus, x 62 faddj for all
j � p. Thus, fn is only applicable, if n � p, which is a contradiction.
Thus, fn 6� fp. Therefore, 81�i�n�1 (fn 6� fi ^ fn 6� fi). 2

Theorem 3.2 If F (N; f) is applicable, then F (N; f) is a key class.

Proof

Consider arbitrary P 2 F (N; f) and suppose that key(P ) 6= f . Then either
key(P ) = key(Pi) for some Pi in a class in N or key(P ) is a non-key operator
fj in a path in some class in N . The �rst case leads to a contradiction, since
key(Pi) � f according to de�nition 3.19, which contradicts lemma 3.4. The
second case also leads to a contradiction, since [Pi]� is a key class, and from
lemma 3.4 it follows that fj precedes or supports at least one operator fk
in Pi and thus cannot be the key in Pi. We conclude that the assumption
key(P ) 6= f is invalid, thus F (n; f) is a key class with key f . 2

Completeness of the meta-operator

In this section we prove by induction that each key class can be created
through applications of F (N; f), as formulated in theorem 3.3. Before we
present the proof of theorem 3.3, we prove lemmas 3.5 and 3.6.

Lemma 3.5 Let P be a path applicable to S, and f 2 P . Then there is a
path Q applicable to S, such that

1. Q consists of exactly the operators in Ancf (P ).

2. [Q]� is a key class, with key f .

We name [Q]� the key class induced by f in P .
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Proof

1. Let P = (f1; : : : fn) and Q be the path consisting of the operators in
Ancf (P ) in the same order as they appear in P . Now let us suppose
that Q is not applicable to S, i.e., there is an operator fi in Q, such
that fi is not applicable. Then, there is an attribute x 2 fprei , such
that x 2 faddj , while fj 62 Ancf (P ). However, then faddj \ fprei 6= ;,
and thus fj � fi, and thus fj 2 Ancf(P ) if fi 2 Ancf (P ). Thus, Q is
applicable to S.

2. By de�nition of Ancf (P ), for each operator fi 2 Ancf (P ) with fi 6= f ,
there is an operator fj, such that fi � fj _ fi � fj . And thus, fi must
occur before fj in any path containing both. Thus, only f may be the
last operator in a path containing all operators in Ancf (P ). Therefore,
[Q]� is a key class, with key f .

2

Lemma 3.6 Let C be a key class with key fn and let P 2 C be a path, with
P = (f1; : : : ; fn). Let N be the set of relevant parents of fn in P . Then the
merge M of the key classes induced by the elements of N is non-empty, and
for each path Q 2M , Q � (fn) 2 [P ]�.

Proof

Let fi 2 P (1 � i � n � 1) be the operator with highest index such that
fi is not in any path of the key classes induced by the relevant parents of
fn. Since P is a path in a key class, it follows from lemma 3.4 that there
exists an fj such that fi � fj _ fi � fj . If fj = fn, then fi is a parent of
fn and by de�nition a relevant parent. If fj 6= fn, then fi is in a path in the
same key class as fj induced by a relevant parent of fn. Thus, in both cases,
fi is in a path in a key class induced by a relevant parent of fn. From this
contradiction, it follows that all fi 2 P are in a path in a key class induced by
a relevant parent of fn. Thus, the merge of all these key classes contains at
least the path Q such that Q � (fn) = P . From this it follows immediately
that for each path Q 2M , Q � (fn) 2 [P ]�. 2

Theorem 3.3 For each non-empty key class C 2 Uk, there is a set N of key
classes and an operator f , such that F (N; f) = C.
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Proof

� Basis.
Let C = f(f1)g. Then by de�nition F (;; f1) = C.

� Induction step.
We assume that each class C consisting of paths with length less than
n is the result of an application of F (N; f). Let P = (f1; : : : ; fn) and
let C = [P ]� be a key class, with key fn. Let R be the set of relevant
parents of fn in P . Furthermore, let N be the set of key classes induced
by the elements of R (cf. lemma 3.5). Then, from lemma 3.6 it follows
that the merge M of all paths in N is non-empty, and that for each
path Q 2M , [Q � (fn)]� = C. Thus, F (N; fn) = C.

2

3.3.5 Summary

In this section we have created a framework for db-search. We have shown
that conventional search algorithms traverse the set of all paths Up. The
object of determining the state space traversed by conventional search
algorithms was to create a standard for comparison with db-search.

Next we have de�ned the set of key classes Uk, which is a subset of the
equivalence classes of Up modulo �. We have proved that Uk is complete,
which means that all solutions in Up are elements of classes in Uk under
the conditions of monotonicity, non-redundancy and singularity. Thus, even
though the cardinality of Uk is not larger than that of Up, and often (much)
smaller, all solutions are present in the smaller state space.

Finally, we determined a meta-operator which can be used to traverse
the smaller state space Uk. The meta-operator F (N; f) was de�ned, and we
have shown that it is both sound and complete. The former indicates that
each operation of the meta-operator yields an element of the reduced state
space, while the latter indicates that each element of the reduced state space
can be reached by application of the meta-operator.

Summarizing, we have succeeded in creating a framework which allows
us to search a smaller state space, while being assured that the smaller
state space contains all solutions of the original state space, and that the
smaller state space is fully traversed. What remains to be done, is to describe
practical algorithms for applying the meta-operator in an e�cient manner.
This is the topic of the next section.
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3.4 Informal description of db-search

In section 3.3.4 we have de�ned meta-operator F (N; f). F (N; f) can be
applied to a set of nodes N (each node representing a key class) and an
operator f , under the three conditions that (1) the merge M of all key
classes in N is non-empty; (2) the concatenation of a path P in M with
f is applicable to the initial state; (3) for each of the key operators fi of the
classes in N , fi � f or fi � f .

Clearly, trying all subsets N of nodes of a tree T as parameter for F (N; f),
has a search complexity exponential in the number of nodes of T . In such a
case, searching Uk may be more expensive than searching the larger set Up

using a conventional search algorithm. The way in which db-search traverses
the search graph is designed to limit the cost of applying F (N; f) as much
as possible. We present a short informal description of db-search, followed
by an explanation of the application of db-search to an instance of dlp

Db-search repeatedly executes levels, where each level consists of two
stages. In the �rst stage, named the dependency stage, only sets of nodes
with cardinality 1 are selected for application of F (N; f). If new eligible sets
of nodes with cardinality 1 are created during a stage, F (N; f) is applied to
these sets as well. The dependency stage ends when F (N; f) has been applied
to all such sets. In the second stage, called the combination stage, sets of
nodes with larger cardinality are considered. A node A created during the
combination stage may not be element of a set N to which F (N; f) is applied
during the same stage. This ensures that the computationally expensive
combination stage does not continue any longer than is strictly necessary.

We remark that during each combination stage of db-search, we only
perform preparatory work for application of F (N; f). We create a combina-
tion node A for each set of nodes N , such that at least one f exists allowing
the execution of F (N; f). During the dependency stage of the next level,
f will be executed from A. Thus, nodes created during the combination
stage do not themselves represent elements of Uk, but are aids to a clear
implementation. They correspond to the merge of the classes represented by
the nodes in N .

In the following, we describe the application of db-search to instance
aaccadd of dlp.

Figure 3.1 shows the search graph after executing the �rst dependency
stage for axiom aaccadd. In each child node we have capitalized the letter
which has been created through the last applied operator. In each of the
1-ply nodes of the tree four operators are applicable. However, none of these
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aaccadd

Eccadd Bccadd aaBadd aaDadd aaccaC aaccaE

Figure 3.1: Search graph after 1st dependency stage for theorem aaccadd.

aaccadd

Eccadd Bccadd aaBadd aaDadd aaccaC aaccaE

BBadd

Figure 3.2: Search graph after 1st combination stage for theorem aaccadd.

correspond to an application of meta-operator F (N; f), since the operator f
does not depend on the operator leading to the 1-ply node. To clarify this,
we look at the node representing theorem Eccadd. The rules cc ! bjd and
dd! cje are applicable and correspond to the operators f(2;2;3;c;b), f(2;2;3;c;d),
f(5;5;6;d;c) and f(5;5;6;d;e). Neither of these operators depends on the operator
f(0;0;1;a;e) which has led to the creation of this node. Therefore, the meta-
operator is not applicable in node Eccadd.

Having �nished the �rst dependency stage, we proceed with the �rst
combination stage. In dlp, each precondition set of an operator consists of
two attributes. As a result, during the combination stage only combinations
of exactly two nodes need to be considered. Figure 3.2 shows the search
graph for our instance of dlp after �nishing the �rst level of db-search.
It was created by examining all 15 combinations of two 1-ply nodes, to
see if the combination of two nodes would lead to a valid application of
the meta-operator. In one case it did, resulting in the creation of node
BBadd. The operators which led to the creation of the parents BBadd are
f(0;0;1;a;b) and f(2;2;3;c;b). Depending on both these operators are f(0;1;3;b;a) and
f(0;1;3;b;c). Thus, two operators are applicable in BBadd, for which reason
the combination node representing theorem BBadd was created.

Next, we execute the dependency stage of the second level of db-search.
For this stage, we apply F (N; f) to the combination node created in the
�rst level. The application of f(0;1;3;b;a) and f(0;1;3;b;c) from the combination
lead to the creation of Aadd and Cadd. From Aadd we can apply two more
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aaccadd

Eccadd Bccadd aaBadd aaDadd aaccaC aaccaE

BBadd

Cadd

Bdd Edd

Aadd

Figure 3.3: Search graph after 2nd dependency stage for theorem aaccadd.

aaccadd

Eccadd Bccadd aaBadd aaDadd aaccaC aaccaE

BBadd

Cadd

Bdd Edd

Aadd
EE

D A

Figure 3.4: Complete dependency-based search graph for theorem aaccadd.

operators which depend on the operator leading to Aadd. Thus, a total of
four nodes is added in the second dependency stage. Figure 3.3 shows the
search graph after the second dependency stage.

For the second level of combination nodes, not all combinations of nodes
in the tree need to be checked. Only combinations involving at least one
node created during the second dependency stage need to be investigated. In
our example this leads to a combination between second-level node Edd and
�rst-level node aaccaE. Using the new combination node, the third level of
nodes is created, again consisting of a dependency stage and a combination
stage.

The complete dependency-based search graph for theorem aaccadd is
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procedure DbSearch()
CreateRoot(root);
level := 1;
while ResourcesAvailable() and TreeSizeIncreased() do

AddDependencyStage(root);
AddCombinationStage(root);
level := level + 1

od

end

Table 3.2: Main db-search algorithm.

procedure AddDependencyStage(node)
if node 6= nil then

if level = node.level+1 and

node.type in [Root, Combination] then
AddDependentChildren(node)

� ;
AddDependencyStage(node.child);
AddDependencyStage(node.sibling)

�

end

Table 3.3: Dependency-stage algorithm.

shown in �gure 3.4.

The graph consists of three dependency levels, and two combination
levels. The third combination level is empty, which terminates the search.
From �gure 3.4 we see that the instance of dlp with axiom aaccadd has two
solutions: single-letter theorems a and d can be created.

3.5 Algorithms

In this section we present the db-search algorithms in pseudo-code. We
remark that many implementation details have been omitted in the algo-
rithms.

Table 3.2 shows the main loop of db-search. Repeatedly, a level is created,
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procedure AddDependentChildren(node)
for operator in LegalOperators(node) do

if Applicable(operator, node) then

LinkNewChildToGraph(node, operator);
AddDependentChildren(node.newChild)

�

od

end

Table 3.4: Dependent-children algorithm.

procedure AddCombinationStage(node);
if node 6= nil then

if node.type = Dependency and node.level = level then

FindAllCombinationNodes(node, root);
� ;
AddCombinationStage(node.child);
AddCombinationStage(node.sibling)

�

end

Table 3.5: Combination-level algorithm.

consisting of a dependency stage and a combination stage, as described in
section 3.4.

Table 3.3 shows the algorithm for creating the dependency stage. It is
assumed that each node has a child pointer and a sibling pointer. The child
pointer points to the �rst child of the node, while the child's sibling pointer
points to the next child, etc. This assumption explains the recursive calls in
AddDependencyStage(). In the graph, we distinguish between three types of
nodes: Root, Combination and Dependency. A dependency stage is started
only from combination nodes, and, for the �rst level, from the root.

The algorithm of table 3.4 determines all operators dependent on a node
and creates children for each eligible operator. The functionApplicable() tests
to see if the selected operator and node form a pair of parameters which is
eligible for application of the meta-operator F (N; f).

The second stage of each level of db-search consists of creating the
combinations of independent paths. In our example algorithm (see table
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procedure FindAllCombinationNodes(partner, node);
if node 6= nil then

if NotInConict(partner, node) then

if node.type = Dependency then

combination := Combine(partner, node);
operators := DependingOn(combination);
if operators 6= nil then

AddCombinationNode(node, combination)
�

� ;
FindAllCombinationNodes(partner, node.child)

� ;
FindAllCombinationNodes(partner, node.sibling)

�

end

Table 3.6: Algorithm to �nd combinations of nodes.

3.5) we have assumed that each combination consists of exactly two nodes.
In the double-letter puzzle and qubic, this is indeed the case. In go-moku,
combinations of up to four nodes exist. Extending the algorithm to include
combinations of three or more nodes is not di�cult. A disadvantage is,
however, that searching for combinations of c nodes in a graph of size N
has a time complexity in the order of N c. Domain-speci�c reductions of
the complexity may often be possible. We have therefore refrained from
presenting a general algorithm for combinations of other than two nodes.

The algorithm of table 3.6 �nds a node in the graph for a selected
partner. It is checked that the nodes are not in conict, that its type is
a dependency node, and that the combination of the two nodes allows at
least one application of the meta-operator. This last condition is important
to prevent the creation of a large number of useless combination nodes.

3.6 Test results

Earlier, we stated that conventional search algorithms traverse Up, while db-
search traverses Uk. In this section we investigate through experiments on
dlp the di�erence in cardinality between Up and Uk.

First, we describe the four algorithms used in the experiments. Second,
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we describe the set of test problems used for the experiments, as well as the
conditions in which the experiments took place. Third, we present the results
of the experiments.

Selected algorithms

As a conventional tree-search algorithm for our experiments, we have selected
dfs of which we have implemented two variants: (1) without transposition
tables (dfs-), and (2) with transposition tables (dfs+). Since we intend
to run the algorithms in our experiments until the complete state space has
been traversed, the performance of alternatives like breadth-�rst search are
equivalent to the performance of dfs.

The other two implemented algorithms are the domain-speci�c algorithm
triangle, presented in appendix A, and, of course, db-search. An advantage
of db-search over triangle is that in cases where only few theorems can be
deduced, db-search may search less nodes than the �xed number of entries
needed for triangle. A disadvantage of our implementation of db-search
is that we did not implement a transposition table. However, transpositions
resulting from the order in which operators are executed are non-existent in
Uk, as they are all part of the same key class. As a result, transpositions
have only a minor inuence on the performance of db-search on dlp.

Test problems

We have generated random instances of dlp. For each string length of 1
to 20, 100 strings were generated, for a total of 2000 axioms. For each of
these 2000 axioms, all four algorithms were to run to completion. However,
in order not to have extremely large state spaces dominate the results and to
keep the required resources within practical limits, we have set limits for the
state spaces examined by dfs+ and dfs-. We terminated dfs+ as soon as
the tree size exceeded 100,000 nodes, while dfs- was terminated as soon as
the tree size exceeded 1,000,000 nodes. Both triangle and db-search were
run to completion on all selected test problems.

Results

The tree-size limit set for dfs+ terminated the search 26 times out of the
2000 runs. Only once did the early termination result in missing a solution.
For dfs- a million nodes was insu�cient to complete the search in 129 of the
2000 runs. In 24 of these, at least one of the solutions was missed.
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Figure 3.5: Tree size per algorithm applied to the double-letter puzzle.

Db-search's most di�cult problem was dbdeabbaacccddaeecda, for which
it needed 3934 nodes to determine that it has no solutions. Both variations
of depth-�rst search did not complete the search on this axiom within their
respective tree-size limits.

The average number of nodes visited by each algorithm is illustrated in
�gure 3.5. The horizontal axis is the axiom length, while the vertical axis is
the log2 of the number of nodes created.

Up to strings of length 18, db-search outperforms triangle. For
those strings, transpositions do not outweigh the gain db-search makes in
terminating the search early if possible. Still, the time complexity of db-
search, in particular in the combination stage of each level, is higher than
for the domain-speci�c algorithm. Therefore, we do not claim that db-search
outperforms triangle.

The trees traversed by both variants of dfs su�er from a combinatorial
explosion. At theorem length 20 the average cardinality of Up (the size of
the trees searched by dfs-) is more than 1200 times the average cardinality
of Uk (the size of the graphs searched by db-search). As can be seen from
the size of the graph traversed by dfs+, transpositions are responsible for
a factor 20. The more than 60 times smaller graph traversed by db-search
compared to dfs+ indicates that db-search is far more e�cient on dlp than
conventional search algorithms.

In chapters 4 and 5 db-search has been applied to qubic and go-moku,
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resulting in signi�cantly reduced state spaces, while no domain-speci�c algo-
rithm has yet been developed which does the same.

3.7 Applicability

Db-search is a single-agent search algorithm. The main source of applications
therefore lies within that area. In some games, such as qubic and go-

moku, a restricted search concentrates on sequences of threatening moves
only. If the opponent is constantly restricted to only a single reply, the
state space is conceptually transformed into a single-agent state space. In
those circumstances db-search may be applied to games. For details of such
transformations on qubic and go-moku see chapters 4 and 5.

In section 3.3.3 we have proved that Uk is complete if three conditions
are met. While these conditions all hold for dlp, they do not hold fully
in domains such as qubic and go-moku (i.e., after the transformation to a
single-agent state space). As a result, Uk may neither be sound nor complete.
Searching a non-complete Uk may still be favorable to searching Up, if the
size of Up prohibits full investigation. However, further research is necessary
to understand the implications of applying db-search to such domains in
general.
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Chapter 4

Qubic

In chapters 2 and 3 two new search techniques, pn-search and db-search, were
introduced. Pn-search attempts to use non-uniformity in and/or trees to
traverse the state space more e�ciently than the various conventional search
algorithms. Db-search traverses a smaller graph than conventional search
algorithms. Still, for a special class of problems it has been shown that the
smaller graph is sound and complete. This means that each solution found
by a conventional search algorithm will also be found by db-search.

Pn-search and db-search were developed during the investigation of
several games: connect-four (Allis, 1988), awari (Allis et al., 1994), qubic

(Allis and Schoo, 1992) and go-moku (Allis et al., 1993). The application of
pn-search and db-search to qubic and go-moku are discussed in this and the
next chapter. The purpose of these chapters is twofold:

1. to explain in detail how pn-search and db-search were applied to two
combinatorially complex problems, and

2. to show that qubic and go-moku can be solved, thereby positively
answering our �rst research question (cf. section 1.4) for two speci�c
games.

At this point it is important to mention that qubic was solved more than
a decade before we started our research. Oren Patashnik solved qubic in 1977
and his solution was con�rmed by Ken Thompson (Patashnik, 1980).

Our interest in qubic sprang from its potential as a test bed for go-moku,
due to the similarity between these two games. While threat sequences (see
section 4.2.2) play an important role in both games, threat sequences in go-

moku are more complex than threat sequences in qubic.

95
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Being ignorant of Patashnik's work, there was the added challenge of
solving the game. After we were informed of Patashnik's work by Ingo
Alth�ofer and Ralph Gasser, we nevertheless decided to �nish our work on
the game. The experience gained has helped to solve go-moku, while it also
provided the means for a comparison of db-search and pn-search with the
search techniques applied by Patashnik.

The chapter is organized as follows. In section 4.1 we provide a
background to the investigations in qubic. The rules of qubic and common
strategies are presented in section 4.2. The application of db-search to qubic

is described in section 4.3. The role of pn-search in the solution of qubic

transpires from section 4.4. The results of our investigations, as well as
comparisons with the results of Patashnik, are presented in section 4.5.

4.1 Background

Among the games of the Olympic List, qubic is one of the lesser-known
games. Despite its simple rules, qubic has a severe handicap: it is played
on a three-dimensional board. Therefore, visualizing sequences of moves is a
di�cult task for human players, while most games end in a long sequence of
threatening moves requiring careful analysis.

Nevertheless, at least some strong human players exist, as is apparent
from Patashnik (1980), who describes how qubic is solved using a combination
of human expert knowledge and a standard search algorithm.

Patashnik assumed that qubic would be a �rst-player win. Therefore, to
prove a win in a position with white (the �rst player) to move, only one
winning move had to be selected. To prove a win in a position with black
(the second player) to move, all moves had to lead to wins for white. Using a
standard ��� search, Patashnik created a tactical module which determined
in a given position whether the player to move had a forced win. For each
position in the search tree, it was determined whether the player to move
had to make a forced move. Otherwise, if black was to move, for each legal
black move a child position was created. If white was to move, a so-called
strategic move had to be made. These moves were selected by hand by
Patashnik. Using some 1500 hours of cpu time, and 2929 strategic moves,
qubic was solved. The database with the solution tree has been checked by
Ken Thompson, who con�rmed Patashnik's results.

Our research in 1991 consisted of creating a tactical module based on
db-search. Furthermore, instead of selecting strategic moves by hand, pn-
search guided the search process. After the program was created we were
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informed that qubic had already been solved. Nevertheless, as qubic was
not yet removed from the Computer Olympiad, we �nished our solution in
collaboration with Patrick Schoo. Since then our understanding of db-search
has improved, resulting in a new implementation of our qubic program. In
this chapter we describe the 1993 implementation and its results, which di�er
somewhat from Allis and Schoo (1992).

In earlier publications (Allis and Schoo, 1992; Allis et al., 1993) we used
the term threat-space search for the application of db-search to qubic and go-

moku. In this text we only use the term db-search. We gladly acknowledge
that both names were suggested by Barney Pell.

4.2 Rules and strategies

Qubic is a three-dimensional instance of a category of games of which well-
known two-dimensional analogs are tic-tac-toe, go-moku and renju. First,
we present the rules in section 4.2.1. Second, in section 4.2.2 we discuss
the role of threats and threat sequences in qubic. Finally, we analyze the
automorphisms (i.e., mappings of the playing board onto itself, such that all
relevant properties of the board are preserved) of the qubic board and its two
di�erent types of cubes in 4.2.3.

4.2.1 Rules

Qubic is played on a 4�4�4 cube, thus consisting of 64 small cubes. Players
move alternately by occupying any empty cube. The game ends as soon as
one of the players has occupied four consecutive cubes in a straight line (either
in one, two or three dimensions). Such a set of four cubes in a straight line
is called a group. There are 3� 16 = 48 one-dimensional groups, 3� 8 = 24
two-dimensional groups and 4 three-dimensional groups, for a total of 76
groups.

In �gure 4.1 the three di�erent types of groups are shown. Group a is one-
dimensional, group b is two-dimensional, while group c is three-dimensional.

4.2.2 Threats and threat sequences

If a player has occupied three cubes in a group, with the fourth cube empty,
she threatens to win at her next move. In such a position, the opponent is
forced to refute the threat (unless she can win at her next move). The game
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Figure 4.1: Three types of groups in qubic.

is usually decided by a player creating a threat sequence ending in a double
threat, which cannot be stopped by the opponent.

In �gure 4.2 an example winning threat sequence in a single plane is
shown. White has occupied three cubes in the plane (in the corners), while
black has played her moves elsewhere (i.e., in other planes). White now has
an 11-ply winning threat sequence starting with moves 1 through 9 in �gure
4.2. After move 9, white threatens to win at a and b, which cannot both be
countered by black's next move.

In general, a threat sequence may end in one of three possible ways. First,
a double threat may be created, resulting in a win for the attacker. Second,
the attacker may run out of threats. Third, the forced moves of the defender
may result in her accidentally creating a threat of her own, and changing her
role from defender to attacker.

If a threat sequence ends without success for the attacking player, she
has normally exhausted most of her threat potential, reducing her winning
chances. Therefore, early in the game, both players try to occupy cubes which
increase their potential for creating threats, without actually executing those
threats.
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Figure 4.2: An 11-ply winning threat sequence.

4.2.3 Cube types and automorphisms

The 64 cubes fall into two categories. The 8 corner cubes and 8 center cubes
are named 7-cubes, as each is part of 7 groups (3 one-dimensional groups, 3
two-dimensional groups and 1 three-dimensional group). The other 48 cubes
are called 4-cubes as they are part of four groups only (3 one-dimensional
groups and 1 two-dimensional group).

The number of automorphisms in qubic is surprisingly high: 192. This
can be explained as follows. By rotation, each of the six sides of the cube
can be brought on top in four di�erent ways, resulting in a total of 24
automorphisms by rotation. There are three more operations, each doubling
the number of automorphisms. First, reection in a plane through the center
of the cube. Second, turning the cube inside out, i.e., exchanging (in all three
dimensions) the inner planes with the outer planes. Third, internal exchange,
i.e., exchanging the inner planes in all three dimensions, while leaving the
outer planes untouched.

Due to the automorphisms, there are only two distinct opening moves in
qubic, one at any 7-cube, and one at any 4-cube. After White's �rst move
at a 7-cube, black has 12 distinct answers, as presented in �gure 4.3. Each
of the empty 51 cubes in the �gure can be mapped to at least one of the 12
black cubes, through at least one of the automorphisms of qubic.

4.3 Applying db-search

As mentioned before, threat sequences play a dominant role in qubic. Obvi-
ously, to play qubic well, it would be advantageous to have a module which
determines whether a winning threat sequence exists. Our application of
db-search to qubic is restricted to searching for winning threat sequences.

This section consists of three parts. First, in section 4.3.1 we describe
how the adversary-agent state space, when restricted to threat sequences,
can be transformed into a single-agent state space. Second, in section 4.3.2
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Figure 4.3: The 12 two-ply moves.

we illustrate how the single-agent state space thus created for qubic �ts in
the framework for db-search presented in chapter 3. Third, in section 4.3.3
we discuss three properties of the single-agent state space for qubic which
have not been included in the framework of section 4.3.2. For each of these
properties there is an explanation of how our implementation of db-search
handles them.

4.3.1 A single-agent search in qubic

Our description of the single-agent state space of threat sequences in qubic

consists of a set of de�nitions, an interpretation of the de�nitions, and the
transformation of the adversary-agent state space to a single-agent state
space.

De�nitions

In the previous sections we informally introduced the concept of threats,
threat sequences and winning threat sequences in qubic. These notions are
de�ned in de�nitions 4.1, 4.2 and 4.3.
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De�nition 4.1 A threat in qubic is a move by the attacker leading to a

position such that

1. The defender cannot win at her next move, and

2. The defender has at most one move stopping the attacker from winning

at her next move.

If a threat leaves the defender without any moves to stop the attacker
from winning at her next move, it is called a double threat, otherwise the
threat is called a single threat.

De�nition 4.2 A threat sequence (a1; d1; a2; d2; : : : ; an; dn), with n � 1, is
any sequence of moves such that each ai, 1 � i � n is a single threat, and

each di the single response to ai which does not lose immediately,

De�nition 4.3 A winning threat sequence in qubic is a sequence of moves

(a1; d1; : : : ; an; dn; an+1; dn+1), such that (a1; d1; : : : ; an; dn) is a threat se-

quence, an+1 is a double threat and dn+1 is any legal move.

Interpretation

Here we elaborate on the de�nitions presented above, interpreting them in
the context of groups.

To win in qubic, a player must occupy all four cubes in a group. Thus,
a player who occupies three cubes in a group, while the last cube is empty,
threatens to win. According to de�nition 4.1, such a move is only a threat
if the opponent has not obtained three cubes in a group herself. In other
words, a threat consists of a local property for the attacker (i.e., the state of
one speci�c group) and the global lack of a similar property for the defender
(i.e., no group on the board having the property).

In a threat sequence, each attacker move occupies the third attacker cube
in a group, while the fourth cube is empty. Each defender move occupies
the fourth cube in that group. In each case, the defender has no alternative
move which wins immediately and, although the rules of qubic allow playing
anywhere else, alternative moves are blunders as they would result in losing
at the next move. In other words, a threat sequence consists of a sequence of
moves where each attacker move is followed by its only non-blundering reply.

A winning threat sequence is a threat sequence followed by a double
threat and any legal move. Since there are at least two places where the
attacker threatens to win at the next move, and the defender cannot win



102 Chapter 4. Qubic

herself immediately, all moves are equally bad. Therefore, any legal move
may be selected.

Adversary-agent vs. single-agent

As we have seen, in threat sequences and winning threat sequences each move
by the defender is implied by the previous attacker move. Therefore, we may
conceptually merge these two moves into a single meta-move.

If we examine the state space created by these meta-moves, it is no longer
an adversary-agent state space, but instead a single-agent state space. For
each meta-move, the attacker selects any of the possible threats in a position.
If the threat is a single threat, the move by the opponent is implied by the
previous move. If the threat is a double threat, all moves by the opponent
are equally bad, and a random move may be selected to represent all possible
moves. In both cases the defender has no real choice, e�ectively transforming
the state space into a single-agent state space. In the remainder of this
section, we will only regard meta-moves, and assume that the attacker move
and defender move in a meta-move are made at the same time.

4.3.2 A db-search framework for qubic

In this section, we describe a db-search framework for the single-agent state
space of qubic. We mention that the framework only involves local properties,
i.e., occupation of single groups, while ignoring global properties, i.e., possible
counter threats of the defender. Global properties of a position will be
handled in section 4.3.3. The terminology introduced in chapter 3 is used
throughout this section.

Attributes

The set U of all attributes is de�ned as follows. U = fC(i; x)j0 � i �
size � 1 ^ x 2 f�; �; �gg. Attribute C(i; x) represents the fact that cube i is
occupied by the attacker (�), occupied by the defender (�) or empty (�). The
constant size equals the number of cubes on the playing board (i.e., 43 = 64).
It can easily be checked that U has 192 elements.

Operators

The operator fc1;c2;c3;c4 is de�ned as follows.

fpre
c1;c2;c3;c4

= fC(c1; �); C(c2; �); C(c3; �); C(c4; �)g
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fdel
c1;c2;c3;c4

= fC(c3; �); C(c4; �)g

fadd
c1;c2;c3;c4

= fC(c3; �); C(c4; �)g

The set of all operators Uf is de�ned as follows.

Uf = ffc1;c2;c3;c4jfc1; c2; c3; c4g is a groupg

We remark here that a group is a set of four squares which, if all occupied
by one player, result in that player winning the game. In qubic there are 76
groups. For each group, the 4 elements can be ordered in 4! = 24 possible
ways. Thus, there are 24 � 76 = 1824 operators in Uf . Since c1 and c2 can be
exchanged without changing the operator, there are e�ectively 912 operators
in Uf .

Initial state and goal states

The initial state consists of exactly 64 attributes, one per cube indicating
the contents of the cube. Each qubic position which is to be checked for the
existence of a winning threat sequence can serve as an initial state. The set
Ug of goal states is independent of the initial state, and is de�ned as follows.

Ug = ffC(c1; �); C(c2; �); C(c3; �); C(c4; �)g j fc1; c2; c3; c4g is a groupg

In other words, any state in which a group exists of which three cubes
have been occupied by the attacker and the fourth cube is empty, is a goal
state. We remark that each meta-move starts with a move by the attacker.
Therefore, a state as described here in the single-agent search, ensures that
in the adversary-agent search the attacker can win at her next move. Ug has
304 elements and is not singular.

Properties of the qubic framework

The framework we have described above is monotonous. Furthermore, we
can easily restrict ourselves to non-redundant paths. If Ug were singular, our
Uk would be complete.

We can create a singular Ug0 = f fGg g, by de�ning a special goal
attribute G and operators which transform any element of Ug into G, which
would result in a complete Uk. A discussion of the completeness of Uk would
be premature, however, since we have ignored the global properties of qubic
so far.



104 Chapter 4. Qubic

4.3.3 Qubic-speci�c enhancements to db-search

The db-search framework for qubic presented in the previous section focuses
only on the local properties of threats. In this section we discuss the three
global properties which need to be incorporated in db-search. Each property
is described followed by the method of inclusion in db-search.

Defender four

In each winning threat sequence, both the attacker and defender occupy
cubes. Even though the defender has no choices of which cubes to occupy,
the attacker may, accidentally, force her to occupy all four cubes in a group.
Such a group is named a defender four. If this happens, the threat sequence
by the attacker has failed.

During the dependency stage of each level of db-search, it is easy to check
after each meta-move (a; d), consisting of attacker move a and defender move
d, whether d has created a defender four. It is su�cient to investigate the
4 or 7 groups in which d lies. During the combination stage of each level
of db-search, a defender four could be created by the merge of two or more
paths. To detect such a defender four, all 76 groups must be investigated
when creating a combination.

We remark that the qubic-speci�c enhancements mentioned below render
the dependency-stage test for defender fours superuous and it has therefore
been omitted in our implementation.

Closed defender three

Each meta-move results in a group containing three attacker cubes and one
defender cube. Such a group is named a closed attacker three. Similarly,
a closed defender three is a group containing three defender cubes and one
attacker cube. A group where one player has occupied three cubes, while the
fourth cube is empty are named open attacker three or open defender three.

Even though closed defender threes cannot be converted into a winning
group, they may represent a subtle problem. If two paths in db-search are
merged they may create one or more closed defender threes on the board.
Let us assume that the three defender cubes are occupied during meta-moves
m1, m2 and m3, while the attacker cube is occupied during meta-move m.
Furthermore, let us assume that a path P in the merge exists, consisting
of the following sequence of moves: (m1;m2;m3;m4;m), where m4 is any
meta-move. Then, after move m3, an open defender three exists. Clearly,
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the only way for the attacker to stop the open defender three is to immediately
play move m. In P move m4 is played �rst, which means that meta-movem4

erroneously ignores the option for the defender to win. We remark that (some
of) the cubes in a closed defender three need not be part of a meta-move,
but could be part of the initial state.

Summarizing, closed defender threes present a problem when the meta-
move occupying the attacker cube is played later than immediately after the
third defender cube has been occupied. In other words, an ordering exists
between the set of meta-operators occupying the defender cubes in the closed
defender three, and the operator occupying the attacker cube.

During the dependency stage of db-search, to create a closed defender
three, �rst an open defender three must be created, otherwise the closed
defender three does not pose a problem. As these are monitored separately,
we can safely ignore closed defender threes during the dependency stage.
During the combination stage, a merge may create one or more closed
defender threes. Only paths in which the attacker cube for each closed
defender three is occupied in time (i.e., not later than immediately after
the third defender cube has been occupied) should be included in the merge.

Determining whether a merge is non-empty may be time-consuming when
fully incorporating the closed defender tests. Instead, we have implemented a
simple and surprisingly e�ective heuristic. Previously, for each combination
node (i.e., for each merge), a path representing the merge was selected
randomly. The heuristic consists of investigating whether the selected path
honors the ordering criteria imposed by the closed defender threes. If so, the
merge is not empty. If not, the merge is assumed to be empty. Clearly, in this
way valid merges may be rejected, but invalid merges are never wrongfully
accepted.

To investigate the amount of error created through the use of this
heuristic, we ran the program twice on a set of test positions. The �rst variant
of the program contained the heuristic test, while the second variant did not
test for closed defender threes at all. In less than 1% of the test positions did
the second variant suggest a winning line, while the �rst variant failed to �nd
any winning line, although several times the �rst variant suggested a di�erent
winning line. We remark that in the extra 1%, the suggested winning line
may have been incorrect, due to defender threes, or may have been valid
and have been accidentally rejected by the above heuristic. A non-heuristic
implementation for investigating closed defender threes is expected to yield
only a small gain in e�cacy while causing a signi�cant decrease in e�ciency.
Such an implementation has therefore been omitted.
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Open defender three

When a threat sequence contains an open defender three, the attacker must
respond to that defender three immediately or lose at the next move.

During the dependency stage of db-search, only meta-moves are consi-
dered which depend on, or are preceded, by the node from which the meta-
move is made. Therefore, during the dependency stage it is often not possible
to counter a defender three. Instead, we solve the problem of open defender
threes during the combination stage.

In standard db-search, to apply meta-operator F (N; f), set N must be a
minimal set of key classes, such that f depends on, or is preceded by, the key
operator in each of those classes. We extend the application of meta-operator
F (N; f) as follows.

Let F (N; f) be applicable and let P be an element in the merge of classes
of N . Furthermore, we assume that (x1; : : : ; xn) is the priority queue of
empty cubes in open defender threes in P (A), where A is the initial state.
Then, we de�ne F (N 0; f), with N 0 = N [ P1, to be applicable, if (1) the key
operator f1 of P1 occupies with its attacker move x1, and (2) the merge of
all elements in N 0 is non-empty.

Using the extended meta-operator, we can create combinations of paths
to counter open defender threes. Clearly, a combination should only be
created if F (N; f) is applicable and its priority queue of empty cubes in
open defender threes is empty. In our db-search implementation for qubic we
have implemented the extended meta-operator.

Summary of db-search enhancements

In this section we have introduced three qubic-speci�c enhancements to db-
search. The main question yet to be answered is whether the state space
searched by db-search with these qubic-speci�c enhancements is complete.
Of course, the heuristic applied to counter closed defender threes renders the
state space incomplete, but as has been argued, only a marginal number of
solutions are incorrectly rejected. Without proof we state that, except for
the aforementioned heuristic, our implementation of db-search is complete.

In other words, in each position where a winning threat sequence exists,
db-search �nds a winning threat sequence, unless the meta-moves within each
winning threat sequence can be reordered such that a closed defender three
is countered too late by the attacker.



4.4 Applying pn-search 107

4.4 Applying pn-search

To apply pn-search to qubic, we need to convert the qubic game tree into
an and/or tree. This is described in section 4.4.1. The enhancements to
basic pn-search adopted for our qubic implementation are described in section
4.4.2.

4.4.1 Qubic as an AND/OR tree

Proof-number search (as described in chapter 2) is an and/or-tree algorithm.
To apply it to qubic, we represent positions where white is to move as or
nodes, and positions where black is to move as and nodes. A win for white is
represented by the value true, while a draw and a win for black are represented
by the value false. Thus, proving the pn-search tree means that white can
win in the root position, while disproving the pn-search tree means that black
can achieve at least a draw.

At each or node, white is to move. At such nodes, db-search with white
as attacker is used as evaluation function. If db-search �nds a winning threat
sequence, the node is proved, otherwise it obtains the value unknown. In and
nodes, black is to move. In such nodes, db-search with black as attacker is
used as evaluation function. If a winning threat sequence is found, the node is
disproved, otherwise the value of the node is unknown. A node representing a
position with all 64 cubes occupied, while neither player has created a winning
con�guration, is a draw and therefore has value false, without applying the
evaluation function.

4.4.2 Enhancements

The above description explains how standard pn-search is applied to qubic.
However, four enhancements have been added to speed up the search. The
enhancements are discussed in this section.

Transpositions

A dag is created instead of a tree, using the algorithm described in section
2.3.3. This ensures that if a position has already occurred in the dag, or if
a position is equivalent through automorphisms to another position in the
dag, the position is not investigated again.
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Threatening moves by white

Pn-search favors subtrees in which the mobility (i.e., the number of choices
available to a player) of one player is restricted, while the mobility of the
other is enlarged. In qubic, this means that threatening moves are favored
above all other moves, as they leave the opponent with just a single response.
After a threatening move, and the forced response by the opponent, again
threatening moves are favored above all other moves, and so on. Thus, pn-
search automatically focuses on the space of threatening moves. This is
undesirable for pn-search in qubic, since the evaluation function (db-search)
will already have investigated whether a winning threat sequence exists. If
such a sequence does not exist, the potential for threats should be increased,
instead of decreased by executing them. Therefore, in our pn-search tree, we
have restricted white to non-threatening moves, simply by omitting moves
which create a threat in the move-generation module. For black, of course,
all moves are investigated.

Heuristic (dis)proof number initialization

In chapter 2 we have suggested several methods to include some domain-
speci�c knowledge in the initialization of proof and disproof numbers. Here
we describe our qubic-speci�c initializations.

After expansion of an and node (black to move), usually many nodes
are proved immediately by db-search. Nodes in which black has just created
a threat, however, are not proved immediately, because white is forced to
counter the threat. A good estimate of the number of nodes which must
still be proved at an and node is the number of threatening moves black
can make. Therefore, the proof number of an and node is initialized to the
number of threatening moves for black (with a minimum of 1), while the
disproof number is initialized to 1.

After expansion of an or node (white to move), usually several nodes are
disproved immediately by db-search. Moves which create potential threats
(named positional moves), however, are usually not disproved immediately.
We determine the number of positional moves using the following heuristic.
For a move M we consider the set of groups G which contain M , while
not containing any black cubes. M is named positional if G consists of at
least three groups, each containing zero or one white cubes (besides M), or
at least two groups, each containing at least one white cube (besides M).
At or nodes, the disproof number is initialized to the number of positional
moves for white (with minimum 1), while the proof number is set to 1.



4.5 Solving qubic 109

Removing solved terminal nodes

In section 2.3.1 it was described how solved subtrees in a pn-search tree may
be removed. Such a technique has disadvantages when applied to a dag
instead of a tree.

Assume that a node J has been solved and is subsequently removed from
the dag. If in another subtree a new instance of node J is created, the work
to solve J will be duplicated. The decision of which solved nodes to remove
may depend on the size of the working memory and the probability that this
scenario will occur. Generally, nodes which have been solved with little e�ort
may be removed with less cost than nodes which have been solved only after
a large search.

We have decided to remove nodes from the dag only if they were solved
through evaluation. As evaluations of nodes require only a small amount of
time, the reduced memory requirements were judged to outweigh the cost
of re-evaluation for the terminal nodes which occur more than once in the
search. In our experiments the memory requirements were thus reduced by
approximately 70%.

4.5 Solving qubic

In this section we describe how we solved qubic. First, in section 4.5.1
we describe how we subdivided the game tree into 195 subtrees. Second,
in section 4.5.2 we present statistics on solving each of the 195 subtrees.
Third, we compare our results with those of Patashnik (1980) in section
4.5.3. Finally, in section 4.5.4 we discuss the reliability of our results.

4.5.1 Subdividing the game tree

In this section we explain why and how we subdivided the qubic game tree
in 195 subtrees. First, we explain why this was necessary. Second, we show
how we subdivided the game tree into four-ply subtrees. Third, we explain
how each of the four-ply subtrees was investigated.

Necessity of subdividing the game tree

Before white can create a threat, she must have occupied two cubes in the
same group. After the threat is executed by white and countered by black,
white has three cubes in one group together with a black cube. To create a
new threat she must have occupied at least one other cube. Thus, winning
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threat sequences can only be found in positions with at least six cubes (three
white and three black) on the board. As we have seen in �gure 4.2, in some
positions with exactly three white cubes, winning threat sequences exists.

From the above, it follows that any evaluation by db-search of positions
with 0 to 5 cubes occupied will return the value unknown. Furthermore, the
number of children per qubic position at level d equals size-d. Therefore,
the �rst 5 ply of the qubic game tree, using evaluation function db-search,
has a uniform branching factor per level of the tree. Executing pn-search
for the full game tree (with the root representing the empty board) will be
ine�ective, as pn-search relies on non-uniformity. For this reason, we decided
to split the game tree into subtrees.

Selecting a minimal set of subtrees

The subtrees each represent positions 4-ply into the game. A depth of four
was selected since it was deep enough to overcome the uniformity problem for
pn-search mentioned above, while it required the selection of only 13 strategic
moves by hand (i.e., one move for the initial position, and 12 moves in the
twelve 2-ply positions of �gure 4.3) thus leaving as much work to pn-search
as possible.

Starting from the empty board, we suggested a move for white. Since
there are only two distinct moves, one at a 4-cube, and one at a 7-cube, we
selected the 7-cube move as white's best chance for winning.

As shown in �gure 4.3, black has 12 di�erent �rst moves. Thus, at ply two
we have 12 positions to solve. In each of these positions we suggested a move
for white. In Patashnik (1980), moves at 7-cubes were selected, such that the
number of di�erent resultant positions (after applying automorphisms) was
as small as possible. There, 7 three-ply positions are presented. To obtain
the 7 three-ply positions, in each of the 12 two-ply positions, white played
in a one-dimensional group containing white's �rst move. Since white's �rst
move at a 7-cube is an element of 3 one-dimensional groups, it is possible to
select such a move with the extra constraint that black's �rst move is not an
element of the same group.

Using this approach, it turns out that there are eight di�erent ways in
which the 12 two-ply positions are reduced to 7 three-ply positions. We
represent a three-ply position by a three-tuple < w1; w2; b1 >, with w1 and
w2 the cube number of the white stones, and b1 the cube number of the
black stone. The cube numbers for each of the 64 cubes of the qubic board
are shown in �gure 4.4. The eight ways to create 7 three-ply positions is as
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0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

32 33 34 35

36 37 38 39

40 41 42 43

44 45 46 47

48 49 50 51

52 53 54 55

56 57 58 59

60 61 62 63

Figure 4.4: Cube numbers on the qubic board.

follows.

< 0; 3; 12 >;< 0; 3; 21 >;< 0; 3; 60 >;

((< 0; 3; 5 >;< 0; 3; 29 >) _ (< 0; 3; 20 >;< 0; 3; 24 >));

((< 0; 12; 1 >; (< 0; 3; 28 > _ < 0; 3; 61 >))_

(< 0; 3; 28 >; (< 0; 3; 1 > _ < 0; 12; 1 >)))

For each of these eight groups of 7 three-ply positions, we have created
the set of all four-ply positions. Since there are 61 legal moves per position,
initially 427 four-ply positions were created. After applying automorphisms,
however, 195, 195, 217, 217, 226, 226, 241 or 241 positions remain, depending
on the group of three-ply positions. The 3-ply position < 0; 3; 1 > looks bad
for white, since black has blocked the potential white threats. Therefore, the
group expanding to 195 four-ply positions of which < 0; 3; 1 > is an element
is ignored. The remaining group of 7 three-ply positions expanding to 195
four-ply positions is listed below.

< 0; 3; 12 >;< 0; 3; 20 >;< 0; 3; 21 >;< 0; 3; 24 >;
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< 0; 3; 60 >;< 0; 3; 61 >;< 0; 12; 1 >

The same group of three-ply positions was selected by (Patashnik, 1980).

Since each 7-cube move is also an element of three two-dimensional
groups, we could instead try moves at 7-cubes in the same two-dimensional
group as the �rst white move. Again, the 12 two-ply positions can be reduced
to 7 three-ply positions, this time in seven di�erent ways, all of which have
been listed below.

< 0; 15; 51 >;< 0; 15; 21 >;< 0; 60; 3 >;< 0; 51; 6 >;< 0; 51; 5 >;

((< 0; 15; 1 >; (< 0; 60; 1 > _ < 0; 60; 7 >))_

(< 0; 60; 7 >; (< 0; 15; 1 > _ < 0; 60; 1 >))_

(< 0; 60; 1 >; (< 0; 60; 7 > _ < 0; 51; 7 > _ < 0; 15; 1 >)))

The number of four-ply positions grown from each of these groups is 219,
229, 229, 229, 229, 240 and 240.

We have selected the same set of three-ply positions as Patashnik (1980),
since it yields the smallest set of four-ply positions. This choice also allows
us to compare his results with ours.

Investigating the subtrees

Pn-search has been applied to all but two of the 195 four-ply positions. The
two remaining positions have the property that the two black stones lie within
a group G1 which intersects the group G2 containing the two white stones.
By playing at the intersection c of G1 and G2, either player can create a
threat and counter a potential threat by the opponent at the same time.
Therefore, move c is regarded as a strong move for white. However, in pn-
search we explicitly forbid white to create threats. In these two positions,
this heuristic deprives white of her best move, and allows black to gain
counterplay. Therefore, in these two positions we played white's third move
at c and countered the threat with black's third move before applying pn-
search.

Tests on these two four-ply positions showed that one position was quickly
solved through an alternative third move for white, while the pn-search for
the other position was terminated after a dag of a million nodes had been
created. In the latter case, these tests suggest that playing at intersection c
may be white's only path to a win.
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4.5.2 Statistics

In this section we present the statistics of running pn-search on the 195
positions described in the previous section. We distinguish between execution
time, pn-search dag size, db-search evaluations and solution size. We also
present an example winning line.

Execution time

All experiments were run on a sparcstation 2 at the Vrije Universiteit in
Amsterdam. The machine has 128 Megabytes of internal memory, allowing
pn-search trees of up to 1 million nodes to �t in internal memory, without
slowing down the search by swapping to disk. The sparcstation 2 is
estimated to have an execution speed of 28 mips.

The cpu time needed for the 195 positions (193 four-ply positions and 2
six-ply positions) was 55,700 seconds, or roughly 15.5 hours.

Pn-search DAG size

The pn-search tree size is the number of nodes created during the search.
Since no nodes are removed from the dag once created, this equals the size
at termination. We remark that terminal nodes solved by db-search are not
included in the dag, as described in section 4.4.2.

The smallest pn-search dag consisted of 884 nodes, while the largest
consisted of 310,000 nodes, with the median at 4,000 nodes and the average
at 10,000 nodes. Only one other dag was larger than 60,000 nodes, at
118,000. These two di�cult positions are < 0; 3; 1; 7 > (118,845 nodes)
and < 0; 3; 21; 22 > (310,424 nodes). (The positions are described by the
two cubes containing white stones, followed by two cubes containing black
stones.)

Db-search evaluations

A total of 3.5 million positions were evaluated with db-search, for white to
move, and 0.9 million positions for black to move. Comparing the total
number of evaluations, 4.4 million, with the sum of the sizes of the pn-search
dag's created, 2.0 million, it follows that not creating nodes for the solved
positions in the tree shrinks the tree to be held in memory by a factor of
almost 3.2.

Each time db-search created a dag of 500 nodes or more it was reported.
This occurred just 241 times, out of over 4 million evaluations. Among these,
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depth positions

0 1
2 12
4 195
6 2000
8 1426
10 1074
12 772
14 573
16 345
18 142
20 62
22 36
24 8
26 4
28 4

total 6654

Table 4.1: Number of positions in the qubic solution

31% were successful evaluations. The largest successful evaluation took 2,008
nodes, while the largest failed evaluation took 3,153 nodes. Creating the db-
search dag of 3,153 nodes took less than 5 seconds cpu time.

Solution size

The solution tree we found for qubic consists of a set of positions with white
to move, and a winning move for each of these positions. The number of
positions at each depth of the tree is shown in table 4.1.

A deep winning line

Our approach to solving qubic makes it di�cult to determine the length of
the winning line constituting optimal play by both sides. First, db-search
does not search for the shortest winning threat sequence, but terminates as
soon as any winning sequence is found. Second, pn-search does not search for
the shallowest solution, but for one which reduces the work still to be done
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Figure 4.5: A deep winning line.

to complete the proof.

Therefore, the 4 lines of depth 28, as shown table 4.1, followed by the
winning threat sequence found by db-search are not necessarily the longest
lines with optimal play by both sides. Nevertheless, the winning line shown
in �gure 4.5, consisting of 33 ply, is one of these four.

Below follows a short analysis of the game. The �rst four ply consist of
white and black occupying 7-cubes. White 5 comes somewhat as a surprise:
white occupies a 4-cube to block the potential threat created by black. Black
6 similarly blocks white's potential threat. With white 7 two more potential
threats are created, of which one is countered by black 8. White 9, again
at a 4-cube, creates several opportunities for white to win through a threat
sequence. Black then starts creating threats up to black 28, each of which is
followed by a forced move by white. White 29, countering black 28, regains
the initiative for white by creating a threat. After black's forced reply, white
creates a double threat with white 31 and wins with white 33.

We remark that while this may be the line of play where black postpones
the end as long as possible, after white 9 all white had to do is counter threats
created by black. The �rst time white had to select a move again, she had
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many options to win, of which white 31 is the simplest way. Therefore, from
the point of view of human players, playing white in this line only requires
skill up to white 9. We remark that other lines exist in the solution to qubic

which require more strategic moves by white, although the winning line is
shorter.

4.5.3 Comparison with Patashnik

In this section we compare our solution with that of Patashnik. This
comparison is not meant to criticize Patashnik's work in any way. On the
contrary: his ability to solve qubic in the late 1970s constrained by the
computing resources of that time should be regarded as one of the more
impressive achievements in games research. The goal of our comparison is
only to obtain information on the performance of db-search and pn-search.

First, we compare the performance of pn-search in selecting strategic
moves with that of Patashnik as strong human player. Second, we compare
the performance of db-search with that of the forced-sequence searcher used
by Patashnik. Third, we summarize the results.

Pn-search vs. human expert

As stated in section 4.5.1, we have researched the same 195 four-ply positions
as Patashnik (1980). Patashnik de�nes a strategic move as a non-obvious
move for white, thus excluding moves suggested by the tactical search, and
excluding forced moves for white when countering threats made by black. To
compare our results with Patashnik's we must exclude all forced moves for
white from the 6,654 moves in our solution to qubic. The number of strategic
moves per depth, for both Patashnik and our solution, are shown in table
4.2.

From table 4.2 it follows that Patashnik made 10% fewer strategic moves
than pn-search. For Patashnik, making the strategic moves was a bottleneck
in solving qubic, as each strategic move was made by hand. Consequently,
minimizing the number of strategic moves was a major concern in his
research. Therefore, we feel that pn-search, while not explicitly trying
to minimize the number of strategic moves in our solution to qubic, has
performed well.
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level Patashnik pn-search

0 1 1
2 12 12
4 195 195
6 1448 1960
8 788 668
10 309 248
12 110 113
14 51 41
16 15 14
18 0 2

total 2929 3254

Table 4.2: Number of positions in qubic solution per depth.

Db-search vs. forced-sequence search

Before we can compare the total amount of cpu time spent by Patashnik with
our results, we must allow for the di�erent types of machines used. Although
it is di�cult to compare such vastly di�erent machines, an expert indicated
that if the performance had to be expressed in mips, his best estimate for the
dec-10 would be between 2 and 3 mips (Witmans, 1994). Compared with the
approximately 28 mips of the sparcstation 2, we assume that our machine
was between 10 and 20 times faster than the hardware used by Patashnik. In
our comparison we disregard the fact that today's computers are equipped
with much larger memories than 15 years ago.

Our �rst comparison is based on the total solution time. Patashnik's
solution took approximately 1500 hours, not counting time wasted on back-
tracking due to bad strategic moves, and computer failure. We compare
this �gure with our 15.5 hours of cpu time. Factoring out the di�erence in
machine speed, our solution is between 5 and 10 times faster than the solution
found by Patashnik. As almost all cpu time is spent on searching forced
sequences, for both Patashnik's solution and ours, this is a �rst indication
that db-search may be 5 to 10 times more e�cient than a conventional forced-
sequence search as implemented by Patashnik.

Comparing the execution time of individual instances of Patashnik's
forced-sequence search and our db-search is slightly more di�cult. Patashnik
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remarks that typically his forced-sequence search took about two seconds,
but occasionally as long as half an hour. He also remarks that if his strategic
moves had been slightly worse, an uncontrollable combinatorial explosion
would have occurred in some positions.

For a second comparison, we will assume an average of two seconds per
forced-sequence search for Patashnik. To simplify matters for db-search,
we assume that all 55,700 seconds of cpu time were spent on db-search
evaluations (disregarding the time necessary to perform pn-search, to check
for automorphisms, and to �nd transpositions in the pn-search dag). During
this time over 4.4 million evaluations were performed, for an average of almost
80 evaluations per second. Given the di�erence in machine speed, we �nd that
db-search is between 8 and 16 times faster than Patashnik's forced-sequence
search.

As a third comparison, we look at the slowest evaluation of db-search
(less than 5 seconds) and the slowest forced-sequence search of Patashnik
(approximately 30 minutes). This di�erence implies a gain factor for db-
search of 20 to 40 on the di�cult positions.

Summarizing comparison with Patashnik

We conclude that applying expert knowledge (Patashnik) to solve qubic,
results in a marginally smaller solution compared to applying the knowledge-
free search technique pn-search. On qubic, db-search performs between 5 and
40 times better than a conventional search algorithm. In our opinion, the
qubic results illustrate the strengths of both pn-search and db-search.

4.5.4 Reliability

There are many sayings concerning the number of errors made by program-
mers, among which one of the most famous is: There is always one more bug.
These bugs may vary from uninitialized variables to serious programming-
logic errors. For a program the size of our qubic implementation (over 6,000
lines of C code), there may thus be some doubts about the reliability of
our results. In this section we present some measures taken to ensure their
correctness.

The most complicated part of the program consists of the db-search
implementation. During the implementation errors were made, and corrected
but, of course, ensuring that this code is error free is a di�cult task.
Therefore, the products of db-search, viz. winning threat sequences, were
independently examined for their correctness. Once a potential winning
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threat sequence was found, the program started from the initial search
position and played the sequence move by move. After each move by the
attacker it is investigated whether (1) the defender has a threat, and (2) the
attacker has a threat at the cube suggested as next move for the defender.
After the last move by the attacker, it is investigated if indeed a group of
four cubes has been occupied by the attacker. If any of these investigations
show that db-search made an error, this is reported. No errors have been
discovered in db-search during the process of solving qubic. We conclude that
the product of the most complicated part of the program is independently
veri�ed.

The second most complicated part of the program consists of the pn-
search implementation. Fortunately, pn-search has been implemented for
several di�erent games, ensuring that the chances of implementation errors
are much lower than for new code. Still, the search process is too complicated
to monitor fully, and thus errors may go unnoticed. To examine our results, a
successful pn-search produces a small database consisting of the positions in
the solution tree. After we solved all 195 four-ply positions, we merged these
databases. Next, we created a database-checking module. For each position
in the database with white to move a successor should be contained in the
database. For each position in the database with black to move, all successors
are generated. A successor should either be contained in the database, or
white should have a winning threat sequence as found by db-search. We
have thus checked the database and found it complete.

Third, our solution is consistent with the results of Patashnik (1980), but
arrived at independently. In conclusion, we believe that our implementation
may be regarded as reliable.
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Chapter 5

Go-Moku

In this chapter we discuss the application of pn-search and db-search to go-

moku. In the previous chapter we stated two goals for chapters 4 and 5,
which we repeat here. The �rst goal is to explain in detail how pn-search
and db-search have been applied to two combinatorially complex problems.
The second goal is to show that qubic and go-moku can be solved, thereby
positively answering our �rst research question (cf. section 1.4) for two
speci�c games.

In several ways, qubic and go-moku are related games, with go-moku

being the more complex one. The relationship between qubic and go-moku

is expressed in the organization of this chapter: almost every section has
a corresponding section in chapter 4. We mention this relationship for
readers who are particularly interested in the application of db-search or
pn-search. Comparing corresponding sections on qubic and go-moku may
provide additional insight in these algorithms.

The chapter is organized as follows. In section 5.1 we provide a
background to investigations in go-moku. The rules of go-moku and common
strategies are presented in section 5.2. The application of db-search to go-

moku is described in section 5.3. The role of pn-search in the solution of
go-moku is explained in section 5.4. The results of our investigations are
presented in section 5.5.

5.1 Background

Among the games of the Olympic List, go-moku has the simplest rules: two
players (black and white) alternate placing stones on a 15� 15 square lattice
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with the goal of obtaining a line of exactly �ve consecutive stones of the
player's color. While its roots lie in China and Japan, it is also popular in
several countries of Europe and the former Soviet-Union. Part of go-moku's
popularity must be ascribed to the fact that it can be played with pencil and
paper, allowing it to be played virtually everywhere (including classrooms)
by virtually everyone (including bored students).

In Japan professional renju players (renju being a complicated variant of
go-moku) have studied go-moku in detail and have stated that the player
to move �rst (black) has an assured win (Sakata and Ikawa, 1981). These
statements are sometimes accompanied by a list of main variations, such
as the 32-page analysis in Sakata and Ikawa (1981). Close examination of
these analyses reveals that in each position only a small number of white
moves are analyzed. For example, after black's �rst move at the center of a
15�15 board, white has 35 distinct moves, of which 2 are adjacent to black's
�rst move, ignoring symmetrically equivalent moves. In Sakata and Ikawa
(1981) only the variations after the 2 moves adjacent to black's �rst move
are discussed. As far as we know, prior to this work no complete proof of
black's win in go-moku has been published.

Until this study, all go-moku programs have been defeated at least once
or been in a lost position when playing black. As an example of the latter
we mention the game between the go-moku 1991 world-champion program
Vertex (black) and the program Polygon (white). Vertex maneuvered itself
into a position provably lost for black (Uiterwijk, 1992a). As an aside we
note that Polygon played its �rst move non-adjacent to the �rst black stone,
indicating that �nding a win in such a variation may not be entirely obvious.

Summarizing, go-moku is assumed to be a �rst-player win but, as far as
we know, no complete proof has been published nor has any go-moku program
ever been shown to be unbeatable when playing black.

At this point we reiterate our remark of section 4.1. In earlier publications
we have used the term threat-space search for the application of db-search to
qubic and go-moku. In this text we only use the term db-search.

5.2 Rules and strategies

Go-moku is a two-player game, related to the well-known trivial game of tic-
tac-toe. While in tic-tac-toe players must create a line of three consecutive
markers of their color on a restricted 3 � 3 board, in go-moku players must
create a line of �ve on a practically unrestricted lattice. Through the years,
several variants of go-moku have been developed, which are described in detail
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in section 5.2.1. Next, threats and threat trees are discussed in section 5.2.2.
Finally, in section 5.2.3 some insight is given into the way human go-moku

experts think.

5.2.1 Rules

In go-moku, simple rules lead to a highly complex game, played on the 225
intersections of 15 horizontal and 15 vertical lines. Going from left to right
the vertical lines are lettered from a to o; going from the bottom to the top
the horizontal lines are numbered from 1 to 15. Two players, black and white,
move in turn by placing a stone of their own color on an empty intersection,
henceforth called a square. Black starts the game. The player who �rst
makes a line of �ve consecutive stones of her color (horizontally, vertically or
diagonally) wins the game. The stones once placed on the board during the
game never move again nor can they be captured. If the board is completely
�lled, and no one has �ve-in-a-row, the game is drawn.

Go-moku variants

Many variants of go-moku exist; they all restrict the players in some sense,
mainly reducing the advantage of black's �rst move. We mention four
variants.

Non-standard boards In the early days the game was played on a 19� 19
board, since go boards have that size. Some people prefer to think of
go-moku as being played on an in�nite board. However, a larger board
increases black's advantage (Sakata and Ikawa, 1981), which resulted
in the standard board size of 15� 15.

Free-style go-moku An overline is a line of six or more consecutive stones
of the same color. In this variant, an overline is regarded as a win.

Standard go-moku In the variant of go-moku played most often today, an
overline does not win (this restriction applies to both players). Only a
line of exactly �ve stones is considered as a winning pattern.

Renju A professional variant of go-moku is renju. White is not restricted in
any way, e.g., an overline wins the game for white. However, black is not
allowed to make an overline, nor a so-called double three or double four
(cf. Sakata and Ikawa (1981)). If black makes any of these patterns,
she is declared to be the loser. Renju is not a symmetric game: to play
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it well requires di�erent strategies for black and for white. Even though
black's advantage is severely reduced, she still seems to have the upper
hand.

We have investigated both free-style go-moku and standard go-moku. We
remark that in this chapter we discuss free-style go-moku unless it is explicitly
stated otherwise.

Opening restrictions

In an attempt to make the game less unbalanced, opening restrictions have
been imposed on black. We mention two such restrictions.

Professional go-moku In professional go-moku, black is forced to make her
�rst move in the center of the board. White must play her �rst move at
one of the eight squares adjacent to black's �rst move. Black's second
move must be outside the set of 5� 5 squares centered by black's �rst
stone.

Professional renju In professional renju, the game starts with two players
which are named temporary black and temporary white. Temporary
black plays her �rst move at the center of the board, while temporary
white plays her �rst move adjacent to the black stone on the board.
Due to symmetry, there are only two distinct �rst moves for temporary
white. For each of these two, there are 12 selected squares where
temporary black is allowed to play her second move. Thus, there are
24 possible 3-ply sequences in this variant. Next, temporary white
may choose between playing black or white for the remainder of the
game. Temporary black automatically plays the other color. Then,
white plays her second move. Finally, black selects two squares for her
third move and gives white the choice between these two. From there,
the game continues according to the rules of standard renju.

In our research we have investigated variants of go-moku without any
opening restrictions.

5.2.2 Threats and threat trees

We describe the four types of threats in go-moku, followed by a discussion of
threat trees and winning threat trees.
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Figure 5.1: Threats in go-moku.

Threats

In go-moku a threat is an important notion; the main types have descriptive
names: the four (�gure 5.1a) is de�ned as a line of �ve squares, of which the
attacker has occupied any four, with the �fth square empty; the straight four
(�gure 5.1b) is a line of six squares, of which the attacker has occupied the
four center squares, while the two outer squares are empty; the three (�gure
5.1c and 5.1d) is either a line of seven squares of which the three center
squares are occupied by the attacker and the remaining four squares are
empty, or a line of six squares with three consecutive squares of the four center
squares occupied by the attacker and the remaining three squares empty; the
broken three (�gure 5.1e) is a line of six squares of which the attacker has
occupied three non-consecutive squares of the four center squares, while the
other three squares are empty. A winning pattern, i.e., a line of �ve squares,
all occupied by one player, is named a �ve.

If a player constructs a four, she threatens to win on the next move.
Therefore, the threat must be countered immediately at the empty square of
the four. If a straight four is constructed, the defender is too late, since there
are two squares where the attacker can create a �ve at her next move (unless,
of course, the defender has the opportunity to win at her next move). With
a three, the attacker threatens to create a straight four at her next move.
Thus, even though the threat has a depth of two moves, it must be countered
immediately. If an extension at both sides is possible (�gure 5.1c), then there
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Figure 5.2: Complicated threats.

are two defensive moves: both directly adjacent to the attacking stones. If
only one extension is possible then three defensive moves are available (�gure
5.1d). Moreover, against a broken three, three defensive moves exist (�gure
5.1e).

We remark that more complicated threats exist, which threaten to win in
two or more moves. Three examples are shown in �gure 5.2, in each of which
black threatens to play at the intersection of the two lines of black stones.
In �gure 5.2a, black threatens to create a double four, in �gure 5.2b, black
threatens to create a four-three, and in �gure 5.2c, black threatens to create
a double three. Each of these is a winning pattern. White can counter the
threats of �gure 5.2 in 3, 4 and 5 possible ways, respectively.

In our research we have not included the patterns of �gure 5.2 as threats
for three reasons. First, the large number of defensive moves per threat does
not combine well with our transformation of the winning threat-tree search
to a single-agent search, as described in section 5.3.1. Second, recognizing
threats which consist of a single line on the board can be performed more
e�ciently than recognizing threats which consist of combinations of lines.
Third, the threats shown in �gure 5.2 are only a small sample of the complete
set of more complicated threat patterns, making inclusion of all possible
threats of go-moku a complex task. In Uiterwijk (1992b) a program based
on a large set of threat patterns is described.
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Figure 5.3: Winning threat variations

Threat trees

To win the game against any opposition a player needs to create a double
threat (either two threes, two fours, or a three and a four). In most cases,
several threats are executed before a double threat occurs. A tree in which
each attacker move is a threat is called a threat tree. A threat tree leading to
a (winning) double threat in each variation is called a winning threat tree. A
variation in a winning threat tree is called a winning threat variation. Each
threat in the tree forces the defender to play a move countering the threat.
Hence, the defender's possibilities are limited.

In �gure 5.3a a position is shown in which black can win through a winning
threat variation consisting of fours only. Since a four must be countered
immediately, the whole sequence of moves is forced for white.

In �gure 5.3b a position is shown in which black wins through a winning
threat variation consisting of threes, twice interrupted by a white four. As
mentioned earlier, white has at each turn a limited choice. During the play,
she can create fours as is shown in �gure 5.3b. Still, her loss is inevitable.
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5.2.3 Human strategies

During the second and third Computer Olympiad (Levy and Beal, 1991; Van
den Herik and Allis, 1992), we observed two human expert go-moku players
(A. Nosovsky, 5th dan and N. Alexandrov, 5th dan). These Russian players
are involved in two of the world's strongest go-moku playing programs (Vertex
and Stone System). While observing the experts, it became clear that they
are able to �nd quickly sections on the board where a winning threat tree can
be created, regardless of the number of threes which are part of the winning
threat tree. The depth of these winning threat trees are typically in the range
of 5 to 20 ply.

The way a human expert �nds winning threat trees so quickly can be
broken down into the following four steps.

1. A section of the board is chosen where the con�guration of stones seems
favorable for the attacking player. It is then decided whether enough
attacking stones can collaborate making it useful to search for a winning
threat tree. This decision is based on a "feeling", which comes from a
long experience in judging patterns of stones (cf. De Groot (1965)).

2. Threats are considered, and in particular the threats related to other
attacking stones already on the board. Defensive moves by the
opponent are mostly disregarded.

3. As soon as a variation is found in which the attacker can combine her
stones to form a double threat, it is investigated how the defender can
refute the potential winning threat variation. Whenever the opponent
has more than one defensive move, an examination is made to see
whether the same threats work in all variations of the threat tree.
Moreover, it is investigated whether the opponent can insert one or
more fours, e�ectively neutralizing the attack.

4. If only a few variations of the tree do not lead to a win via the same
threat variation, an examination is made to see whether the remaining
positions can be won via other winning threat trees.

In practical play, a winning threat tree often consists of a single set of
attacking moves applicable to each variation of the tree, independent of the
defensive moves.

We remark that the size of the state space is considerably reduced by
�rst searching for one side (the attacker). Only if a potential winning
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threat tree is found is the impact of defensive moves investigated. This
approach is supported by the analyses given in (Sakata and Ikawa, 1981).
When presenting a winning threat tree, they only provide the moves for the
attacker, thus indicating that the set of attacking moves works irrespective
of the defensive moves. Possible fours which the defender can create without
refuting the threat tree can be neglected altogether

In positions without winning threat trees, the moves to be played
preferably increase the potential for creating threats or, whenever defensive
moves are called for, the moves chosen will reduce the opponents potential for
creating threats. The human evaluation of the potential of a con�guration is
based on two aspects: (1) direct calculations of the possibilities, (e.g., if the
opponent does not answer in that section of the board) and (2) a so-called
good shape (i.e., con�gurations of which it is known that stones collaborate
well).

In section 5.3 we model the above thinking process in our application of
db-search to go-moku.

5.3 Applying db-search

As mentioned before, threat trees play a dominant role in go-moku. To play
go-moku well, it would be advantageous to have a module which determines
whether a winning threat tree exists. Our application of db-search to go-moku

is restricted to searching for winning threat trees.

This section consists of four parts. First, in section 5.3.1 we describe
how the adversary-agent state space, if restricted to a subset of all possible
threat trees, can be transformed into a single-agent state space. Second, in
section 5.3.2 we illustrate how the single-agent state space thus created for
go-moku �ts in the framework for db-search as presented in chapter 3. Third,
in section 5.3.3 we discuss properties of the single-agent state space for go-

moku which have not been included in the framework of section 5.3.2. For
each of these properties it is explained how our implementation of db-search
handles them. Fourth, in section 5.3.4 heuristics are described which lead to
a signi�cantly improved e�ciency, at the cost of a slightly reduced e�cacy.
Fourth, in section 5.3.5 we describe the additional requirements necessary to
apply db-search to standard go-moku instead of free-style go-moku.
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5.3.1 A single-agent search in go-moku

Our description of the single-agent state space in go-moku consists of a set
of de�nitions, an interpretation of the de�nitions, and the transformation of
the adversary-agent state space to a single-agent state space.

De�nitions

In the previous sections we have introduced the concept of threats, threat
trees and winning threat trees. For our application of db-search to go-moku,
we formally de�ne the notions threat (de�nition 5.1), reply (de�nition 5.2),
threat sequence (de�nition 5.3), potential winning threat sequence (de�nition
5.4) and winning threat sequence (de�nition 5.5).

De�nition 5.1 A threat in go-moku is a move by the attacker creating a
�ve, a straight four, a four, a three or a broken three. A �ve and a straight
four are called double threats, while a four, three and broken three are called
single threats. The squares related to a threat are the 5 (�ve and four),
6 (straight four, three, broken three) or 7 (three) squares in the line of the
threat (cf. section 5.2.2).

De�nition 5.2 A reply to a threat T in go-moku is the set of defender moves
R, such that each element of R counters T . Against a �ve and a straight four,
R is empty, against a four, R consists of one move, against a three R consists
of two or three moves, and against a broken three, R consists of three moves.

De�nition 5.3 A threat sequence in go-moku is any sequence of moves
(a1; d1; a2; d2; : : : ; an; dn), with n � 1, such that each ai, 1 � i � n is a
single threat, and each di is the reply to ai.

De�nition 5.4 A potential winning threat sequence in go-moku is any
sequence (a1; d1; : : : ; an; dn; an+1; dn+1), such that (a1; d1; : : : ; an; dn) is a
threat sequence, an+1 is a double threat and dn+1 is the reply to an+1.

De�nition 5.5 A winning threat sequence in go-moku is a potential winning
threat sequence (a1; d1; : : : ; an; dn; an+1; dn+1), for which it has been checked
that the defender cannot counter the threat sequence by:

1. interjecting a sequence of threats the attacker must respond to, leading
to a win for the defender

2. interjecting a sequence of threats the attacker must respond to, leading
to occupation of a square related to a threat ai, before the defender has
played the reply to di.
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Interpretation

Here we elaborate on the de�nitions presented above. De�nition 5.1 de�nes
threats in accordance with the de�nitions of section 5.2.2. The only di�erence
is our inclusion of the �ve as a threat, and naming the straight four and the
�ve double threats. The reason for doing so is explained below.

When a double three is created, it is assumed that the defender counters
one of them, allowing the attacker to convert the remaining three into a
straight four at the next move. When a double four is created, it is assumed
that the defender counters one of them, allowing the attacker to convert the
remaining four into a �ve at the next move. When a four-three is created,
depending on the threat countered by the defender, the attacker can create
either a �ve or a straight four. Thus, we may recognize double threats one
move after they appear in the form of straight fours or �ves.

The de�nition of a reply forms a crucial step in our conversion of
the adversary-agent state space of go-moku into a single-agent state space.
Human strategies imply that often threat trees are found such that in each
variation the same attacking moves are played. In other words, the choice
between defensive moves in such threat trees is irrelevant. We convert these
threat trees to threat sequences by allowing the defender to play all defensive
moves as a single reply. In �gure 5.4, we have depicted such a winning threat
sequence, consisting of four threats. After black 1, white has the three-move
reply 2. After black 3, white has the two-move reply 4. After black 5, white
has the three-move reply 6. Black 7 creates a straight four, to which the
reply set is empty.

Clearly, in free-style go-moku, having extra stones on the board is never a
disadvantage. Thus, if a variation wins for the attacker when the defender is
allowed to play replies consisting of multiple stones, then the variation wins
also if the defender is forced to select one stone from each multiple-stone
reply.

Positions exist in which the multiple-stone reply leads to counter play for
the defender, while the attacker would win in all variations through the same
attacking moves if the defender were restricted to playing one stone per reply,
but these are rare.

A potential winning threat sequence as de�ned in de�nition 5.4 has in-
vestigated only local defensive moves, i.e., after each threat, it is assumed
that the defender must immediately counter the threat. A winning threat
sequence has also been checked for global defensive moves, i.e, that the squares
not related to the threat sequence have been investigated for their inuence
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Figure 5.4: White defending with multiple-stone replies

on the success of the threat sequence.

Adversary-agent vs. single-agent

As we have seen, in (winning) threat sequences, each reply by the defender
is implied by the previous attacker move. Therefore, we may conceptually
merge these two moves into a single meta-move.

The state space created by these meta-moves is no longer an adversary-
agent state space, but instead a single-agent state space. In the remainder of
this section, when discussing meta-moves, we assume that the attacker move
and defender move in a meta-move are made simultaneously.

5.3.2 A db-search framework for go-moku

In this section we de�ne a db-search framework for the single-agent state
space of go-moku, de�ned in the previous section. We mention that the
framework only involves local defensive moves, while ignoring global defensive
moves. Global defensive moves of a position will be discussed in section 5.3.3.
The terminology introduced in chapter 3 is used throughout this chapter.
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Notation

Lines of �ve, six and seven squares play an important role in go-moku. For
notational purposes, we de�ne the following sets.

G5 = ffs1; s2; : : : ; s5g j s1; : : : ; s5 form a line of �ve squaresg

G6 = ffs1; s2; : : : ; s6g j s1; : : : ; s6 form a line of six squaresg

G7 = ffs1; s2; : : : ; s7g j s1; : : : ; s7 form a line of seven squaresg

We mention that on a 15 � 15 board, G5 has 572 elements, G6 has 500
elements and G7 has 432 elements.

Furthermore, we de�ne a linear order on the squares of the go-moku board,
such that a1 < a2 < : : : < a15 < b1 < : : : < o15. Clearly, the outer squares
of a line are always minimal and maximal within the line, with respect to
this ordering.

Attributes

The set U of all attributes is de�ned as follows. U = fS(i; x) j a1 � i �
o15 ^ x 2 f�; �; �gg. Attribute S(i; x) represents the fact that square i is
occupied by the attacker (�), occupied by the defender (�), or empty (�). It
can easily be checked that U has 675 elements.

Operators

The operator fFI;g5 (�ve), for g5 = fs1; : : : ; s5g and g5 2 G5, is de�ned as
follows.

fpreFI;g5
= fS(s1; �); S(s2; �); S(s3; �); S(s4; �); S(s5; �)g

fdelFI;g5
= fS(s5; �)g

faddFI;g5
= fS(s5; �)g

The operator fSF;g6 (straight four), for g6 = fs1; : : : ; s6g and g6 2 G6,
and s1 < s2; s3; s4; s5 < s6, is de�ned as follows.

fpreSF;g6
= fS(s1; �); S(s2; �); S(s3; �); S(s4; �); S(s5; �); S(s6; �)g

fdelSF;g6
= fS(s5; �)g

faddSF;g6
= fS(s5; �)g
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The operator fFO;g5 (four), for g5 = fs1; : : : ; s5g and g5 2 G5, is de�ned
as follows.

fpreFO;g5
= fS(s1; �); S(s2; �); S(s3; �); S(s4; �); S(s5; �)g

fdelFO;g5
= fS(s4; �); S(s5; �)g

faddFO;g5
= fS(s4; �); S(s5; �)g

The operator fBT;g6 (broken three), for g6 = fs1; : : : ; s6g and g6 2 G6,
and s1 < s2; s3; s4; s5 < s6 and s4 neither minimum nor maximum in
fs2; s3; s4; s5g, is de�ned as follows.

fpreBT;g6
= fS(s1; �); S(s2; �); S(s3; �); S(s4; �); S(s5; �); S(s6; �)g

fdelBT;g6
= fS(s1; �); S(s4; �); S(s5; �); S(s6; �)g

faddBT;g6
= fS(s1; �); S(s4; �); S(s5; �); S(s6; �)g

The operator fT2;g7 (three with 2 reply moves), for g7 = fs1; : : : ; s7g and
g7 2 G7, and s1 < s2 < s3; s4; s5 < s6 < s7, is de�ned as follows.

fpreT2;g7
= fS(s1; �); S(s2; �); S(s3; �); S(s4; �); S(s5; �); S(s6; �); S(s7; �)g

fdelT2;g7
= fS(s2; �); S(s5; �); S(s6; �)g

faddT2;g7
= fS(s2; �); S(s5; �); S(s6; �)g

The operator fT3;g6 (three with 3 reply moves), for g6 = fs1; : : : ; s6g and
g6 2 G6, and s1 < s2; s3; s4; s5 < s6 and s2 either minimum or maximum in
fs2; s3; s4; s5g, is de�ned as follows.

fpreT3;g6
= fS(s1; �); S(s2; �); S(s3; �); S(s4; �); S(s5; �); S(s6; �)g

fdelT3;g6
= fS(s1; �); S(s2; �); S(s5; �); S(s6; �)g

faddT3;g6
= fS(s1; �); S(s2; �); S(s5; �); S(s6; �)g

The set of all operators Uf is de�ned as follows.

Uf = ffFI;g5 j g5 2 G5g [ ffSF;g6 j g6 2 G6g [ ffFO;g5 j g5 2 G5g [

ffBT;g6 j g6 2 G6g [ ffT2;g7 j g7 2 G7g [ ffT3;g6 j g6 2 G6g

We mention that on a 15� 15 board, Uf contains 3076 operators, of which
each can be applied in more than one way, resulting in a total number of
23596 possible applications of operators.
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Initial state and goal states

The initial state consists of exactly 225 attributes, one per square indicating
the contents of the square. Each possible con�guration of black, white and
empty squares in which neither player has occupied a line of �ve can serve
as initial state. The set Ug of goal states is independent of the initial state,
and is de�ned as follows.

Ug = f fS(s1; �); S(s2; �); S(s3; �); S(s4; �); S(s5; �)g j

fs1; s2; s3; s4; s5g 2 G5g [

f fS(s1; �); S(s2; �); S(s3; �); S(s4; �); S(s5; �); S(s6; �)g j

fs1; s2; s3; s4; s5; s6g 2 G6 ^ s1 < s2; s3; s4; s5 < s6g

In other words, each state containing a �ve or straight four is a goal state.
Ug is not singular.

Properties of the go-moku framework

The framework we have described above is monotonous. Furthermore, we
can easily restrict ourselves to non-redundant paths. If Ug were singular, our
Uk would be complete.

We can create a singular Ug0 , by de�ning a special goal attribute G and
operators which transform any element of Ug into G, which would result in
a complete Uk. A discussion of the completeness of Uk would be premature,
however, since so far we have ignored global defensive moves.

5.3.3 Go-moku speci�c enhancements to db-search

The db-search framework for go-moku presented in the previous section
focuses only on the local defensive moves. For those moves we de�ned replies
such that each defender move was forced, allowing us to transform the search
into a single-agent search.

A search for global defensive strategies is only necessary to investigate
whether a potential winning threat sequence is correct. Thus, given such
a threat sequence, it should be investigated whether the defender has
alternatives to the local reply to refute the threat sequence. To investigate
the global defensive strategies, we perform single-agent searches, this time
�xing the attacker choices. After each attacker move speci�ed in the threat
sequence, the resultant position is investigated for a global defensive strategy
by the defender. We describe the investigations in four steps.
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First, we de�ne the threat categories, which play an important role
in determining for each position the types of global defensive moves
available. Second, we describe two ways in which global defensive moves may
successfully counter a potential threat sequence. Third, we describe a set of
parameters for db-search. Fourth, we describe how the module searching for
winning threat sequences is composed of a series of db-searches.

Threat categories

The operators de�ned in section 5.3.2 can be divided in three categories.
Category 0 consists of the �ve, category 1 of the straight four and four, and
category 2 consists of the three and the broken three. Using these categories
we can state exactly what kind of global defensive moves may be interjected
by the defender while countering a threat sequence. Against a threat from
category i, only threats from categories j can be used as global defensive
moves, with j < i. Thus, against a �ve no global defensive moves exist,
against a (straight) four only a �ve can serve as global defensive move, while
against a three or broken three, both �ves, straight fours and fours may serve
as global defensive moves.

The above relation between global defensive moves and threat categories
can easily be veri�ed by noting that each threat in category i threatens to
win in exactly i moves.

Global defensive strategies

In section 5.3.1 we have listed two ways in which the defender may successfully
counter a threat by interjecting global defensive moves. First, she may create
a sequence of threats leading to a win. Second, she may create a sequence of
threats leading to the occupation of a square in the threat sequence.

Here we describe how db-search can be used to determine whether such a
global defensive strategy exists. Our application of db-search for this purpose
is such that we may erroneously decide that a defensive strategy exists, thus
rejecting a winning threat sequence for the attacker, but that we will never
overlook the existence of a defensive strategy.

To prevent confusion arising from the terms attacker and defender in this
context, we assume here that player A has found a potential winning threat
sequence, and we investigate whether player B has a global defensive strategy
after move ai by A. Three remarks concerning the application of db-search
to search for global defensive strategies for player B are in order.
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1. The goal set Ug for player B should be extended with singleton goals
for occupying any square in threat aj or reply dj , with j � i.

2. If B �nds a potential winning threat sequence (i.e., a global defensive
strategy against the potential winning threat sequence ofA), this threat
sequence is not investigated for counter play of player A. Instead,
in such a case we always assume that A's potential winning threat
sequence has been refuted.

3. In the application of db-search for player B, only threats of categories
less than the category of the threat played by A may be applied. Thus,
in a db-search for player B, only threats having replies consisting of a
single move are applied.

If we examine the description of db-search for B, we may �nd that the
search is monotonous and contains no redundant paths. As argued before, Ug

can be easily transformed into a singular Ug0 , without a conceptual di�erence
in the resulting Uk. Since any sequence found for player B is accepted as
refutation of the potential winning threat sequence of A, we claim that if
application of db-search does not �nd a global defensive strategy, such a
strategy does not exist for player B.

We stress this point as it is a vital element in the process of solving go-

moku: we must ensure that in no position we accept a threat sequence as
winning, if the threat sequence could be refuted.

Parameters to db-search

Above, we have seen that db-search is used to �nd potential winning threat
sequences as well as to investigate whether the defender has a global defensive
strategy refuting a potential winning threat sequence. These searches are all
performed by the same module, whose parameters are listed below.

1. The position to which db-search is to be applied.

2. The attacker, i.e., the player for whom a db-search is applied.

3. The goal squares, i.e., the set of squares, which, if one is occupied by
the attacker, terminates the search.

4. The defensive check option. This is a Boolean value indicating whether
a potential winning threat sequence should be investigated for counter
play.
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Figure 5.5: White refutes a potential winning threat sequence.

5. The maximum category, i.e., only threats of this category and lower
categories may be applied.

The winning threat sequence module

Here we present a step by step description of the winning threat sequence
module, with the aid of the position in �gure 5.5.

To �nd the winning threat sequence for black in the position before black
1 of �gure 5.5, db-search may be called with (1) that position; (2) attacker
black; (3) the empty set of goal squares; (4) the defensive check option at
value true; (5) maximum category 2. If the potential winning threat sequence
shown in �gure 5.5 is found, db-search will be called �ve more times, after
black 1, black 3, black 5, black 7 and black 9. The parameters to db-search
after, for instance, black 1 are: (1) the position after black 1; (2) attacker
white; (3) the set consisting of the 28 squares related to the threats black
1 (7 squares), black 3 (5 squares), black 5 (5 squares), black 7 (5 squares)
and black 9 (6 squares); (4) the defensive check option at value false; (5)
maximum category 1.

After black 5, which is of category 1, black can only use a defensive
strategy involving threats of category 0, i.e., �ves only. However, to create
a �ve after black 5, white should have created several fours after black 1 (of
category 2), followed by the local defensive reply white 2. Therefore, we need
to try threats of category 0 after black 5, for all positions which could arise
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after sequences of fours by white, in earlier global defensive strategy searches.
Indeed, if white, instead of playing 2 immediately after 1, interjects move

a (followed by black's forced reply b) and move c (followed by black's forced
d), then after white 2, black 3, white 4 and black 5, white can create a �ve
at e.

Summarizing, to �nd the global defensive strategies, after each attacker
move of category 2, a search for category 1 for the defender should be
performed, while after each attacker move of category 1, a search for category
0 for the defender should be performed, from every position which could be
reached by interjecting defender fours after previous threats of category 2 by
the attacker.

5.3.4 Heuristically improving the e�ciency of db-search

As we have argued before, the module which searches for winning threat
sequences will only return a winning threat sequence if the winning threat
sequence is guaranteed to lead to a win for the attacker. The opposite is not
true: not all winning threat sequences will be found. This is caused by our
acceptance of a global defensive strategy, without investigating whether the
defensive strategy itself can be countered.

In the context of winning threat trees our search is far from complete,
as we only �nd winning threat sequences, i.e., threat trees in which each
variation leads to a win through the same attacking moves, in the same
order.

In this section we present three heuristics which signi�cantly increase
the e�ciency of our winning threat sequence module, at the cost of another
(small) reduction in e�cacy. Each of the heuristics, if at all applicable, is
not applied during searches for global defensive strategies, in order to ensure
that all existing refutations of potential winning threat sequences are found.

Global refutation

Our �rst heuristic for increasing the e�ciency of db-search is based on the
existence of global refutations in some positions. A global refutation is a
con�guration on the board which refutes all winning threat sequences of the
attacker. An arti�cial example is depicted in �gure 5.6.

Black to move has a large number of distinct potential winning lines at
her disposal, each starting with a three. For instance, black 1 creates a double
three immediately. White 2, however, creates a double four, thus successfully
countering the three created by black 1. Alternative lines for black, such as
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●a

●b ●c

1

2

Figure 5.6: Global refutation of all potential winning lines.

black a, black b and black c, again creating a double three, are all also refuted
by white 2.

Thus, while db-search, focusing on local defenses, �nds many potential
winning threat sequences, each of these is refuted by the search for global
defensive strategies. Finding all several hundreds or thousands of potential
winning threat sequences in such a position is clearly a waste of time.

As heuristic to recognize those positions, we check at the end of each db-
search level the number of potential winning threat sequences investigated
so far. If this number exceeds a preset threshold T , the search is terminated.
Experiments showed that T = 10 leads to a largely increased e�ciency, at a
small cost in e�cacy.

We remark that while searching for global defender strategies, the �rst
potential winning threat sequence found is accepted as refutation. The search
is therefore not inuenced by this heuristic.

Category reduction

The category reduction heuristic is designed for a special type of global
refutations. Let us suppose that the defender has a threat Tc1 of category
c1. If the attacker creates a threat Tc2 of category c2, then either (1) c2 < c1,
or (2) Tc2 should counter Tc1, or (3) Tc1 is a refutation of Tc2 . As the search
for potential winning lines does only consider local replies, countering Tc1 by
Tc2 will only occur by accident.
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Ignoring the option that this may happen, we obtain the category
reduction heuristic: if in a node N of the db-search dag, the defender has a
threat of category c1, for each descendent of N the attacker is restricted to
threats of categories less than c1.

We remark that this heuristic is switched o� while searching for global
defender strategies.

Restricted threes

The de�nitions of operator fT3;g6 (three with 3 reply moves) and operator
fT2;g7 (three with 2 reply moves) imply that if the latter is applicable, the
former is too. While in most positions where both are applicable they are
interchangeable, operator fT2;g7 is superior in that its reply consists only of 2
moves, thus diminishing the chances for counterplay. Only in rare occasions
are both applicable, while only fT3;g6 leads to a winning threat sequence.

To prevent the creation of threat sequences with as only di�erence the
occurrence of fT3;g6 instead of fT2;g7, we restrict application of fT3;g6 to lines
where fT2;g7 is not applicable.

We remark that while searching for global defender strategies, only threats
of categories 0 and 1 are applicable. The search is therefore not inuenced
by this heuristic.

5.3.5 Additional requirements for standard go-moku

Standard go-moku di�ers from free-style go-moku in the value of overlines: an
overline is a win in free-style go-moku, while it is not in standard go-moku.

To apply our winning threat sequences module, as described in the
previous sections, to standard go-moku, a few additional requirements are
necessary. We discuss these requirements briey.

First, we introduce the concept of a line extension. Second, we describe
how a line extension inuences a db-search for potential winning threat
sequences. Third, we describe the inuence of line extensions to the search
for global defensive strategies.

Extensions

For each line g 2 G5, a square c is an extension of g, if g[fcg 2 G6. Similarly,
for each line g 2 G6, a square c is an extension of g, if g [ fcg 2 G7. We
mention that the extension of a line g 2 G7 is de�ned analogously, after the
set G8 has been de�ned. The extension set of a line g, i.e., the set of all
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extensions of g consists of 0, 1 or 2 elements, depending on the position of g
on the board, with respect to the board edge.

Line extensions and winning threat sequences

A winning threat sequence in standard go-moku must meet all the requi-
rements for a winning threat sequence in free-style go-moku. An added
requirement is that at the moment of execution of threat ai, the squares
in the extension set of ai must not be occupied by an attacker stone.

An attacker stone may be placed at the extension of a threat in three
distinct ways.

1. The stone was present in the initial position.

2. The stone is played while executing an earlier threat in the threat
sequence.

3. The stone is played as forced response to a defender threat.

The �rst and second way of placing an attacker stone at a threat extension
is checked during the db-search for potential winning threat sequences: an
operator can only be applied if the extension squares are empty or occupied
by the defender. During the combination stage of db-search, we ignore the
occupation of extensions. Instead, after a potential winning threat sequence
has been found, the extensions of all threats in the threat sequence are
examined.

Line extensions and global defensive strategies

The third way of placing an attacker stone in a threat extension provides the
defender with an extra global defensive strategy. This strategy �ts as follows
within the parameters provided to db-search. In addition to the set of goal
squares provided for free-style go-moku, the set of extensions to the threats
which have not yet been executed by the attacker is passed to db-search. A
refutation of the potential winning threat sequence has been found, if one
of the extensions has been occupied by the attacker (i.e., the player whose
potential winning threat sequence is being examined).

Special attention must be paid to the multiple-stone replies. While having
extra stones on the board does not harm a player in free-style go-moku, it
may harm a player in standard go-moku. To ensure that each global defensive
strategy is found, we perform the db-search for global defensive strategies
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as a free-style go-moku search. Thus, a potential winning threat sequence
in standard go-moku may be refuted through a sequence of defender threats
containing overlines.

5.4 Applying pn-search

To apply pn-search to go-moku, we need to convert the go-moku game tree
into an and/or tree. This is described in section 5.4.1. Furthermore,
we describe the enhancements to basic pn-search adopted for our go-moku

implementation in section 5.4.2.

5.4.1 Go-moku as an AND/OR tree

Pn-search (as described in chapter 2) is an and/or-tree algorithm. To apply
it to go-moku, we represent positions where black is to move as or nodes, and
positions where white is to move as and nodes. A win for black is represented
by the value true, while a draw and a win for white are represented by the
value false. Thus, proving the pn-search tree means that black can win in
the root positions, while disproving the pn-search tree means that white can
achieve at least a draw.

In each or node, black is to move. As evaluation function at such a node,
we apply db-search with black as attacker. If db-search �nds a winning threat
sequence, the node evaluates to true, otherwise to the value unknown. In each
and node, white is to move. The same procedure as in or nodes is applied,
this time with white as attacker. If a winning threat sequence is found, the
node evaluates to false, otherwise to the value unknown. A node representing
a position with all 225 squares occupied and neither player having a winning
con�guration, is a draw, and therefore obtains value false, without applying
db-search.

5.4.2 Enhancements

The above description explains how standard pn-search is applied to go-moku.
However, �ve enhancements have been added to speed up the search. The
enhancements are discussed in this section.

Transpositions

A dag is created instead of a tree, using the algorithm described in section
2.3.3. This ensures that if a position has already occurred in the dag, or
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if a position is equivalent through automorphisms to another position in
the dag, the position is not investigated again. We test for the 8 standard
automorphisms of a square board.

Restricting black's moves

In go-moku, the average branching factor is more than 200. Most of these
moves are unrelated to the battle at the center of the board and should be
ignored. However, since we want to prove the value of the root position, we
cannot simply ignore moves using heuristic selection functions.

A large reduction of the branching factor at the or nodes can be made,
however. Since we want to prove a win for black in the root position, it is
su�cient to prove for each internal or node that (at least) one child leads to
a win for black. For each internal and node all children must be proved.

Using these properties, we may at each or node restrict black to, say,
the N most-promising children, using a heuristic ordering function. If in the
restricted game tree a proof of black's win is found, the same proof is valid
in the full game tree. In our investigations presented in section 5.5 we have
restricted black in each or node to the 10 most-promising children. Before
the ordering function is applied, we �rst restrict the set of all legal moves to
the set of moves which counter the threats of the opponent, as described in
the next section.

The heuristic ordering function used is rather simple: each square is
assigned 4 points for each three with a two-stone reply, 3 points for each three
with a three-stone reply, 2 points for each broken three, 2 points for each open
two, which is de�ned as two black stones in the center of an otherwise empty
line of 6 and 1 point for each broken two, which is de�ned as two black stones
with a one-square gap in the center three squares of an otherwise empty line
of 7. Among all children, the 10 children with the highest score are selected.

No points are given for the creation of a four. Creating a four is often
only a strong move if it stops a threat of the opponent, or if it creates a
winning threat sequence. Since a node is only expanded if no winning threat
sequence exists and it is ensured that we select the 10 best moves among the
moves which counter the existing threats of the opponent, there was no need
to assign any points for creating fours.

Clearly, a thorough analysis of the strategic knowledge of experts would
have led to a more re�ned move-ordering function. As we show in section
5.5, the function described here was su�cient for our purposes.
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Figure 5.7: Black threatens to win by moves 1 through 7.

Related squares

As stated before, most of the approximately 200 legal moves per position
are unrelated to the battle at the center of the board and should be ignored.
Although we cannot ignore moves by white using heuristic selection functions,
we may try to apply a winning threat sequence found as reply to one move to
a large number of other moves. In this section we describe how this is done
in a reliable way.

For each winning threat sequence of the attacker, we de�ne the set of
related squares as follows. An empty square c is related to a winning threat
sequence in a given board position, if the threat sequence no longer wins, if
c would have been occupied by the defender.

Before we use the notion of related squares, we introduce the term implicit
threat, for any position where a player threatens to win through a winning
threat sequence. In �gure 5.7 black threatens to win through the threat
sequence consisting of black 1 through 7. Therefore, the position is an implicit
threat for black.

Now let us suppose that we have algorithms to determine whether a
position is an implicit threat, and that we can determine for each winning
threat sequence the set of related squares. Given a position with white to
move, which is an implicit threat for black, we determine the set of squares
related to the winning threat sequence. Then, it follows directly from the
de�nition of related squares that we may restrict white to these related
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(a) Superset of related squares
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●a ●a ●a ●a
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●a ●a

(b) Related squares

Figure 5.8: Replies to the threat sequence of �gure 5.7

squares.

Clearly, by determining implicit threats and sets of related squares in an
e�cient way, we could speed up our search. To determine an implicit threat,
it su�ces to make a null-move for the opponent (white in �gure 5.7) and to
apply db-search to �nd a winning threat sequence for black. Determining the
exact set R of squares related to a winning threat sequence is computationally
expensive. Instead, we determine a superset S of the set of related squares.
The set consists of all squares meeting one of the following two conditions.

1. The square is in one of the lines of the threats in the winning threat
sequence.

2. The square may be used in any counter threat by the opponent, in any
of the global defensive strategy searches performed to investigate the
winning threat sequence.

Using db-search S can be determined e�ciently. Without proof we state that
R � S. For empirical evidence of this claim we refer to section 5.5.4.

In �gure 5.8a, we have shown the set S for the threat sequence of �gure
5.7. The squares labeled a are part of the lines of the threats. The squares
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labeled bmay, together with white stones on the board or the defensive moves
in the threat sequence, form new defensive threats for white.

Iterated related squares

The related-squares concept can be used to even further reduce the set of
white moves to be examined. After having determined the superset S of
the set of related squares, an element s of S is selected. A white stone is
placed at s, and the position is investigated with db-search. If no winning
threat sequence is found, a child is added to the tree for s. Otherwise, the
superset S1 of squares related to the newly found winning threat sequence
is determined. Only squares in S \ S1 need further be investigated, since all
moves at other squares lead to a win through one of the two winning threat
sequences found so far. This procedure is repeated until all moves have been
examined.

In �gure 5.8b we have marked the set of squares for which child nodes
are grown. Of the 35 related squares of �gure 5.8a (set S), only 19 squares
(set R) remain in 5.8b.

The null-move heuristic and the related-squares heuristic are applied for
both players in the pn-search dag. For the attacker in the search (the player
for which we select only 10 moves per node) we �rst determine the set of
counter moves using the heuristics of this section, and then order the moves
according to the move-ordering function of the previous section. Of course,
if less than 10 counter moves exist, these are all selected.

The implicit-threat heuristic

The branching factor of go-moku is such that the search tree may become
quickly intractable. To force black to select moves where white has a
restricted number of moves, we evaluate a position which is not an implicit
threat for black to false. Only early in the game tree (i.e., when there are
less than 9 stones on the board), if no black move leads to an implicit threat,
is the above restriction lifted.

We have found that no later than move 11 in the game, black can ensure
that each move is an implicit threat. By enforcing this restriction, the size
of the search tree is signi�cantly reduced.
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Heuristic (dis)proof number initialization

During our initial experiments, we have used the standard proof and disproof
numbers initialization of 1 each. While studying the trees grown, it became
apparent that pn-search tended to pursue some deep lines longer than
desirable. This is mainly caused by continuously executing threats, without
creating a potential for a winning threat sequence.

In qubic, as described in chapter 4, we chose to remove all threatening
moves for the attacker from the search tree. We could safely do so, since our
db-search implementation for qubic searched the full space of threatening
sequences. The incompleteness of db-search in go-moku with respect to the
space of all threat trees blocks a similar approach in go-moku. Instead, we
have opted to attach a small penalty to all deep lines. At each frontier
node the proof and disproof numbers are initialized to the number of full
moves made from the root position. Thus, at depth d, the proof and disproof
numbers are initialized to 1 + bd=2c.

This heuristic initialization ensures that forcing lines are not searched
too deeply (before su�cient alternatives have been tried), without interfering
with the essence of pn-search.

5.5 Solving go-moku

The program Victoria consists of the pn-search algorithm described in the
previous section, using db-search as evaluation function. In this section we
describe how Victoria solved both free-style go-moku and standard go-moku.
First, we describe the i/o of Victoria. Second, it is explained how the game
tree was split in several hundreds of subtrees. Third, we present statistics
regarding the search process. Finally, we discuss the reliability of our results.

5.5.1 Victoria's I/O

The input to Victoria consists of (1) A go-moku position; (2) The game
variant (free-style go-moku or standard go-moku); (3) The player to move;
and (4) The maximum tree size for pn-search.

The output of Victoria consists of (1) the value upon termination of
pn-search (true, false, unknown) (2) a database containing a record for
each position in the solution tree. The database returned by Victoria is
empty unless the value true was returned. For each record in the database
representing a position with black to move, at least one child position will also
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be represented in the database. For each record in the database representing
a position with white to move, only child positions are represented in the
database in which black does not have a winning threat sequence.

The database created by Victoria served two purposes. First, the merged
database of all subtrees investigated should provide us with a solution tree
for the full go-moku game tree. Second, the databases created by solved
subtrees were used as transposition table for pn-searches. We have seen
several occasions where a search of several hundreds of thousands of nodes
without transposition tables was reduced to a mere few thousands nodes, by
hitting the database early during the search.

5.5.2 Subdividing the game tree

We have divided the go-moku game tree into several hundreds of smaller
problems. The main reason for doing this is that the size of the go-moku

game tree is such that we could not solve it through a single pn-search, due
to the limits imposed on pn-search by the size of our computer's working
storage.

We remark that by splitting the game tree into subtrees, part of the
solution process has been performed by hand. Most of these moves have been
made with the aid of Sakata and Ikawa (1981), while others where suggested
by the proof and disproof numbers of failed pn-searches. The number of black
moves selected by hand (several hundreds) is less than one percent of the total
number of black moves in the solution tree (many tens of thousands).

5.5.3 Statistics

In this section we present the statistics of running pn-search on go-moku. As
mentioned before, we have subdivided the problem in several hundreds of
subtrees, each of which was individually solved. Since each completed search
extended the database of solved positions, the number of positions searched
partly depend on the order in which the subproblems were solved.

Execution time

Our calculations were performed in parallel on 11 sun sparcstations of the
Vrije Universiteit in Amsterdam. Each machine was equipped with 64 or
128 megabytes internal memory, ensuring that pn-search trees of up to 1
million nodes would �t in internal memory, without slowing down the search
by swapping to disk. The processor speed of the machines ranged from 16
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to 28 mips. Our processes could only run outside o�ce hours. As a result,
sometimes processes which had not �nished at 8am were killed, and had
to be restarted at 6pm. Still, over 150 cpu hours per day were available
for solving go-moku. In the �gures below, we have not included cpu time
spend on processes which were killed in the morning and restarted in the
evening, nor have we included the cpu time spent on test runs during which
we discovered bugs in our software (see also section 5.5.4). Thus, the time
mentioned indicates the amount of time necessary to solve go-moku without
interruptions, using the �nal version of Victoria.

Free-style go-moku was solved using 11.9 days of cpu time, while standard
go-moku (thus banning wins through overlines) was solved with 15.1 days of
cpu time.

Pn-search tree size

The summed size of all pn-search trees built during the calculations (again
excluding terminated processes and runs of initial versions of the program)
for free-style go-moku is 5.3 million. For standard go-moku, 6.3 million nodes
were grown.

Comparing these �gures with the execution time necessary for the
solutions, we see that both variations ran at the speed of approximately 5
nodes per second. The rejection of potential winning lines involving overlines,
resulted in the creation of a 20% larger search tree.

Db-search evaluations

For each internal node of the pn-search tree, 10-20 independent db-searches
(excluding global defensive strategy searches) were performed on the average,
resulting in, between 50 and 100 db-searches per cpu second. Multiplied by
the total calculation time, the number of independent db-searches executed
to solve go-moku lies between 50 million and 130 million.

Solution size

The solution tree found by Victoria for free-style go-moku is slightly smaller
than the solution tree found for standard go-moku: 138,790 versus 153,284
database records. Comparing these numbers with the total size of the pn-
search trees, we �nd that 1 out of every 40 nodes created participates in the
solution. The deepest variation in both solution trees is 35 ply.
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depth free-style standard depth free-style standard

0 1 1 18 1351 1885
1 1 1 19 1094 1590
2 35 35 20 710 1125
3 35 35 21 594 954
4 7227 7242 22 408 641
5 6824 7251 23 327 506
6 20859 22749 24 193 296
7 20239 21078 25 154 241
8 20686 22056 26 85 159
9 20550 21898 27 74 128
10 8959 10015 28 40 67
11 8637 9570 29 35 54
12 5246 6015 30 7 19
13 4778 5492 31 7 18
14 2999 3663 32 1 8
15 2647 3282 33 1 6
16 2173 2810 34 1 1
17 1811 2392 35 1 1

Table 5.1: Nodes per tree depth in go-moku solutions.

In table 5.1 we have listed the number of nodes per depth for both solution
trees. We remark that for each position with black to move, only one child
position needs to be included. Due to transpositions, the number of nodes
at each odd ply should therefore be less or equal to the number of nodes at
the preceding even ply. The only exception in the table, ply 5 for standard

go-moku, is caused by the fact that we have included several options for black
for some opening positions in our set of positions to be checked by pn-search.

Deep winning lines

The combination of db-search and pn-search makes it di�cult to determine
the maximin of go-moku (i.e., the length of the game after optimal play
of both players). Both db-search and pn-search do not aim at �nding the
shortest winning paths, while the longest path found by the combination of
the algorithms may well be di�erent from the game leading to the single
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Figure 5.9: Deep variations

position at level 35 of the solution tree. Even though the games leading to
positions at level 35 of the solution trees do not necessarily show optimal
play of either side, we have depicted two of these games in �gure 5.9.

5.5.4 Reliability

In section 4.5.4, we have explained the hazards of solving games through large
computer programs. The same hazards mentioned there exist in go-moku in
even greater form.

Our go-moku implementation consists of almost 20,000 lines of C-code.
Approximately half is dedicated to the X-interface created by Loek Schoen-
maker, while the other half consists of db-search, pn-search, database look-up
and database creation, automorphism management, etc. Errors in programs
this size are virtually unavoidable. Many errors have been created and
corrected during implementation and testing of the program, but there is
no guarantee that all bugs have been found.

A further source of error is the complexity of the calculation process.
We used 11 sparcstations in parallel to solve each of the several hundreds of
subtrees. These 11 sparcstations created their own databases when solving a
position, while they all used one large database as transposition table. After
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solving a position, the transposition table should be extended with the newly
created small databases. A locking mechanism was created to ensure that
no databases would be corrupted. Still, computers going down at critical
moments introduced the possibility that data would get lost. This, in fact,
has happened during our calculations.

To ensure the completeness of the solution found, we have created a
module which examines the �nal database created. For each position with
black to move a successor position must be present in the database. For
each position with white to move, for each legal move either a winning
threat sequence must exist, or the successor position must be present in
the database. The only common element with the solving process is db-
search. Thus, an error in db-search may go unnoticed, while all other parts,
including pn-search and the related-squares generator, are eliminated from
the checking process. Using the database checking module, we have both
located missing database parts, due to computers failing at critical moments
and human error, and have found an error in our related-squares generator.
The �nal investigations, however, for both the free-style go-moku and standard

go-moku variants were successful.
The correctness of our db-search implementation is based on meticulously

testing all possible types of counterplay, including intricate ways in which the
opponent forces the attacker, after a sequence of fours, to occupy an extension
square of a threat in the threat sequence. After the �nal database creation,
which was checked and accepted by the database-checking module, no errors
have been found in this part of the program. Therefore, go-moku should be
considered a solved game.
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Chapter 6

Which Games Will Survive?

6.1 Scope

In chapters 2 and 3, we presented two new search techniques which have been
applied to qubic and go-moku in chapters 4 and 5, thereby partly answering
our �rst research question (see section 1.4). In this chapter, we broaden our
scope to all three research questions and the problem statement. The chapter
consists of four parts.

First, in section 6.2, we de�ne four properties of games. These are perfect
information, convergence, sudden death, and complexity.

Second, in section 6.3, we discuss four aspects of each of the games of the
Olympic List.

1. The relation between the game and the four game properties introduced
in section 6.2.

2. The state of the art in game-playing programs.

3. Techniques currently applied.

4. Obstacles to progress.

Third, in section 6.4 we review our three research questions on the basis
of the discussion of individual games presented in section 6.3, leading to a
review of the problem statement.

Finally, in section 6.5, we speculate about the future playing strength of
computer game playing programs, as well as of the future of thinking games
in our society.

155
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For the rules of the games discussed in this chapter, we refer to Levy and
Beal (1989), Levy and Beal (1991) and Van den Herik and Allis (1992).

6.2 Game properties

In this section we de�ne four properties of games, viz. perfect information
(section 6.2.1), convergence (section 6.2.2), sudden death (section 6.2.3) and
complexity (section 6.2.4).

6.2.1 Perfect information

The perfect-information property divides the set of games into two disjoint
subsets: the set of perfect-information games and the set of imperfect-
information games. In a perfect-information game, all players, at any time
during the game, have access to all information de�ning the game state and
its possible continuations. Any game which is not a perfect-information game
is de�ned to be an imperfect-information game.

For example, chess is a perfect-information game. Relevant information
de�ning the game state in chess includes: (1) the con�guration of chess pieces
on the board; (2) the number of moves made since a pawn was moved, or
a piece has been captured; (3) the en-passant capturing opportunities in
the current game state; (4) the castling options left to both players; and
(5) previous con�gurations with their en-passant capturing opportunities
and castling options. The information described here allows each player to
determine the game state and its possible continuations, including en-passant
capturing moves, castling moves, repetition of positions, and the status with
respect to N -move rules. In practice, a player needs only three pieces of
information: (1) the con�guration of chess pieces; (2) the game score, i.e.,
all moves played since the start of the game; and (3) the o�cial rules of
chess. The combination of these three pieces of information allows a player
to deduce all necessary information during a game.

Bridge is an example of an imperfect-information game. During the
bidding phase of bridge, each player sees only her own cards, leaving her
unaware of the distribution of the remaining 39 cards over her partner and
her opponents. During the playing phase, each player sees her cards, those
of the dummy and the cards already played, still leaving her unaware of the
distribution of the remaining cards over the undisclosed hands.

Optimal play in a perfect-information game always consists of a pure
strategy, while in imperfect-information games optimal play may require a
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mixed strategy. In a pure strategy, for each game state a single move can
be determined, which leads to the game-theoretic value of the position.
In a mixed strategy, optimal play requires a player to play a move i with
probability pi, while at least two such pi are non-zero. For a discussion of
pure and mixed strategies, we refer to von Neumann and Morgenstern (1944).

6.2.2 Convergence

The convergence property labels games as either converging, diverging or
unchangeable. Before we can de�ne these classi�cations, we introduce con-
versions in de�nition 6.1.

De�nition 6.1 A move M from state A to state B is a conversion, if no
con�guration of pieces which could have occurred in any game leading to the
con�guration of pieces in A, can occur in a game continuing from state B.

Examples of conversions in chess are moving a pawn, or capturing a piece. In
checkers, any move except for a non-capture move by a king is a conversion.

For most games, the main conversions involve the addition (e.g., connect-
four, go-moku, qubic and othello) or removal (e.g., chess, checkers, bridge) of
pieces from play. We may divide the state space of all legal positions of a
game into disjoint classes, where each class contains all positions with the
same number of pieces on the board. Let us de�ne a directed graph G in
which each class is a node, and an arc exists between class A and class B if
and only if a position P exists in A such that a move exists from P which
leads to a position Q in B. We can now de�ne convergence using this notion
of classes of positions. A game converges if for the majority of edges from A

to B in G, the cardinality of A is larger than the cardinality of B. A game
diverges if for the majority of edges from A to B in G, the cardinality of B
is larger than the cardinality of A. A game is unchangeable if the game does
not have conversions, or if it neither converges nor diverges.

An example of a converging game is checkers. The initial position in
checkers consists of 24 men, while during the game the number of men
decreases. After the �rst few captures, the number of legal checkers positions
decreases as the number of pieces on the board decreases.

An example of a diverging game is othello. Each move in othello adds a
piece to the board. Except for the endgame, the number of legal positions
increases as the number of stones on the board increases.

An example of an unchangeable game is shogi. Although shogi contains
captures, there are no conversions in shogi. Captured pieces may be brought
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into play again by the player who captured the piece. As a result, the total
number of pieces participating in a shogi game does not increase or decrease.
Thus, shogi is an unchangeable game.

The relevance of the convergence property is that for converging games
endgame databases (Thompson, 1986) can be created, while this is generally
unfeasible for diverging or unchangeable games.

6.2.3 Sudden death

The sudden-death property labels games as either sudden-death or �xed-ter-
mination. A sudden-death game may end abruptly by the creation of one of
a prespeci�ed set of patterns. A �xed-termination game lacks sudden-death
patterns.

An example of a sudden-death game is go-moku: the game is terminated
if one of the players has created a line of �ve stones in her color. Sudden-
death games need not always terminate through the creation of a sudden-
death pattern: go-moku is declared a draw when all 225 squares have been
occupied without either player creating a winning pattern.

An example of a �xed-termination game is othello. Othello lasts until
both players run out of moves or one of the players has no discs left on the
board. In practice, games last between 55 and 60 moves. Even though a
game might be decided within 15 moves by one player capturing all the discs
of the opponent, such an anomaly is only of marginal relevance.

The sudden-death property often is an important property in restricting
the search tree of a game. For games of high complexity (see section 6.2.4)
the sudden-death element in combination with a clear advantage for one of
the players may be the main property that allows the game to be solved.
Examples are qubic and go-moku (both sudden-death games) described in
chapters 4 and 5.

6.2.4 Complexity

The property complexity in relation to games is used to denote two di�erent
measures, which we name the state-space complexity and the game-tree
complexity.

State-space complexity

The state-space complexity of a game is de�ned as the number of legal game
positions reachable from the initial position of the game. While calculating
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the exact state-space complexity of games such as chess is hardly feasible, we
present a method for calculating an approximation, using tic-tac-toe as an
example.

A crude approximation to tic-tac-toe's state-space complexity is obtained
through the notion that each of the nine squares can be occupied by cross,
nought, or be empty. Thus, an upper bound to the state-space complexity is
39 = 19; 683. A sharper upper bound is obtained by noting that the number of
crosses should equal the number of noughts, or exceed it by one. This results
in an upper bound of 6; 046. The exact state-space complexity, however, is
obtained by observing that a position is illegal if a move has been added after
a player has created three-in-row. Thus, positions containing a line of three
noughts with nought to move, or a line of three crosses with cross to move
must be excluded. The resulting 5; 478 legal positions determine the state-
space complexity of tic-tac-toe. The de�nition of the state-space complexity
could be re�ned so that symmetrically equivalent positions are counted only
once. We refrain from such a re�nement.

Let us assume that we have established a superset of all legal positions
of the game and the cardinality of that superset. Let us also assume that
for each individual position of the superset we have an evaluation function
which determines whether the position is legal. Using the combination of
these two and a Monte-Carlo simulation, we may obtain an estimate of the
true state-space complexity. We performed 10 Monte-Carlo simulations,
with a thousand samples per simulation, chosen from the superset of 39

con�gurations mentioned above. For each simulation we determined the
fraction of the positions which were legal. Multiplication of this fraction
by the size of the superset, 39, gave an estimated state-space complexity in
our 10 simulations ranging from 4; 920 to 5; 983 with an average of 5; 479,
surprisingly close to the true state-space complexity.

The main application of the state-space complexity of a game is that it
provides a bound to the complexity of games which can be solved through
complete enumeration. With today's (1994) technology, where computer
networks have access to Gigabytes of disk storage, the boundary of solvability
by exhaustive enumeration lies at a state-space complexity of approximately
1011.

Game-tree complexity

Before we are able to de�ne the game-tree complexity of a game, two auxiliary
de�nitions are needed.
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De�nition 6.2 The solution depth of a node J is the minimal depth (in ply)
of a full-width search su�cient to determine the game-theoretic value of J.

According to de�nition 6.2, the solution depth of a mate-in-n position in
chess, n � 1, is 2n� 1 ply.

De�nition 6.3 The solution search tree of a node J is the full-width search
tree with a depth equal to the solution depth of J.

As an example we consider a chess position J with white to move. White has
30 legal moves. For simplicity's sake, we assume that after each legal white
move, black has 20 legal moves of which at least one mates white. Then,
the solution search tree of J consists of J , the 30 children of J , and the 600
grandchildren of J .

De�nition 6.4 The game-tree complexity of a game is the number of leaf
nodes in the solution search tree of the initial position(s) of the game.

If J were the initial position of a game, its game-tree complexity would be
600.

While calculation of the exact game-tree complexity of games such as
chess is hardly feasible, we can calculate a crude approximation as follows.
Using tournament games, we can observe the average game length. Also, we
may determine the average branching factor, either as a constant, or as a
function of the depth in the game tree. The game-tree complexity can be
approximated by the number of leaf nodes of the search tree with as depth the
average game length (in ply), and as branching factor the average branching
factor (per depth).

For instance, in tic-tac-toe, the average game length is close to nine ply,
since most games end in a draw, which always takes exactly nine half-moves.
The branching factor at level i in the game tree equals 9 � i. Thus, the
minimax search tree with depth 9 and branching factor 9 � i at level i
consists of 9! = 362880 terminal nodes, which is an estimate of the game-tree
complexity of tic-tac-toe. Note that the game-tree complexity of a game may
be larger than the state-space complexity, as the same position may occur at
several di�erent places in the game tree.

The game-tree complexity is an estimate of the size of a minimax search
tree which must be built to solve the game. Thus, using optimally-ordered
�-� search, we may expect to search a number of positions in the order of
the square root of the game-tree complexity (Knuth and Moore, 1975).

As a guide to the perplexed, anticipating results duely credited in the
following section, we present a graphical overview of the two complexities we
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Figure 6.1: Estimated game complexities.

distinguish in �gure 6.1. For credits and sources see the discussions of the
individual games.

6.3 The games of the Olympic List

In this section we discuss each of the games of the Olympic List individually.
For each game, we describe (1) its properties, as introduced in section 6.2;
(2) the currently strongest computer programs; (3) the techniques applied in
these programs; and (4) the obstacles to progress in the game.

We have ordered the games of the Olympic List as follows. First, we
discuss four solved games (qubic, connect-four, go-moku and nine men's morris)
in the order in which they were solved. Second, we discuss the eight unsolved
perfect-information games, in an order depending on the strengths of the
currently strongest game-playing program: (1) stronger than the current
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world champion (awari and othello) (2) Grand Master strength or stronger
(checkers, draughts and chess) (3) below Grand Master strength (Chinese
chess, renju and go). Third, we discuss the three imperfect-information games
of the Olympic List (scrabble, backgammon and bridge).

6.3.1 Qubic

Game properties

Qubic is a diverging, perfect-information game with sudden death. An upper
bound to the state-space complexity of qubic is 364 � 1030. To estimate the
game-tree complexity, we assume an average game length of 20 ply. With
64� i legal moves in a position at ply i, the game-tree complexity of qubic is
approximately 64!

44!
� 1034.

The state of the art

Qubic was the �rst game of the Olympic List to be solved. It was proved
that the game is a win for the player to move �rst (Patashnik, 1980). The
main game property responsible for qubic being solvable is sudden-death. For
details on the solution of qubic, we refer to chapter 4.

Techniques currently applied

Qubic was solved by Patashnik using a standard �-� search for determining
the existence of winning threat sequences. All non-forced moves leading to
the solution were made by hand, using expert knowledge. Qubic has been
solved again using db-search for determining the existence of winning threat
sequences, and pn-search for making the non-forced moves, as described in
chapter 4.

Obstacles to progress

It could be argued that qubic provides additional challenges beyond solving
the game. For instance, one might want to determine the game-theoretic
value of every legal position, or determine the shortest winning threat
sequence from each position. However, we believe that with respect to human
performance on qubic, all interesting problems within qubic have been solved.
During the solution processes, no obstacles to progress have been discovered.
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6.3.2 Connect-Four

Game properties

Connect-four is a diverging, perfect-information game with sudden death.
Although at �rst sight the sudden death in connect-four may seem as
important as in qubic, most games in connect-four are decided between moves
37 and 42, i.e., while �lling the last column of the board.

The state-space complexity of connect-four has been estimated at 1014

(Allis, 1988). With an estimated average game length of 36 ply, and an
average branching factor of 4, the game-tree complexity of connect-four is
approximately 436 � 1021.

The state of the art

In September 1988, James Allen determined the game-theoretic value through
a brute-force search (Allen, 1989): a win for the player to move �rst.
A few weeks later, in October 1988, connect-four was solved through a
knowledge-based approach, resulting in the tournament program victor
(Allis, 1988; Uiterwijk et al., 1989a; Uiterwijk et al., 1989b). Recently
John Tromp has calculated the game-theoretic value for all 8-ply connect-

four positions (Tromp, 1993).

Techniques currently applied

Both Allen and Tromp used a sophisticated implementation of �-� search.
While Allen spent 300 hours of cpu time to determine the game-theoretic
value of the position after 1: d1, Tromp's calculations took some 40,000 hours
cpu time for his (vastly) more complex task. Our knowledge-based solution
initially took 350 hours of cpu time. However, adding a knowledge rule in
combination with changing the search algorithm to pn-search has resulted
in a program which solves connect-four in less than 25 cpu hours. All these
experiments were performed on comparable hardware.

Obstacles to progress

The current version of victor, in combination with the 8-ply database
created by Tromp, can be used to determine the game-theoretic value of
almost any connect-four position within minutes. Furthermore, victor's
knowledge-based component is able to provide us with an explanation why



164 Chapter 6. Which Games Will Survive?

a position is won. Therefore, we believe that no challenges remain within
connect-four and no obstacles to progress have been discovered.

6.3.3 Go-moku

Game properties

Go-moku is a diverging, perfect-information game with sudden death. An
upper bound to the state-space complexity is 3225 � 10105. To estimate the
game-tree complexity, we assume an average game length of 30 ply. With
225 � i legal moves in a position at ply i, the game-tree complexity of go-
moku is approximately 1070. For the professional variant of go-moku, with
opening restrictions for black, the average game length will be somewhat
larger, resulting in a higher game-tree complexity.

The state of-the-art

As described in chapter 5, two variants of go-moku without opening
restrictions have been solved in August 1992, proving that the game-theoretic
value is a win for the player to move �rst. The current computer go-

moku world champion (according to the rules of professional go-moku) is the
program Vertex written by Shaposhnikov (Uiterwijk, 1992a). It is unclear
at what performance level Vertex plays in relation to the strongest human
players.

Techniques currently applied

As described in chapter 5, the two variants of go-moku without opening
restrictions were solved using a combination of db-search and pn-search.
world champion Vertex is based on standard game-tree search techniques:
a �xed-depth (16-ply) �-� search for the most-promising 14 moves in
each position. Vertex has been provided with expert pattern knowledge
and opening knowledge of two-fold world correspondence Renju champion
Nosovsky .

Obstacles to progress

During the solution process of go-moku, it became apparent that through its
tactical knowledge Victoria was able to suggest strong positional moves in
many positions. In other words, many positionally strong moves could be
explained through tactical calculations. We believe that a combination of
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db-search and pn-search, without the multi-move reply and other e�ciency
measures, can be implemented to outperform all human players in the search
for deep winning threat trees. With similar positional bene�ts as encountered
during the solution process of the free-style and standard go-moku, we
conjecture that the best human players can be defeated at any variant of
go-moku. It is also possible that standard techniques as applied in Vertex
would prove su�cient for the task. Therefore, we conclude that no obstacles
have been discovered in go-moku.

6.3.4 Nine men's morris

Game properties

Nine men's morris is a converging, perfect-information game. The game has a
sudden-death element: if a player is unable to make a move, she loses. Even
though this plays a role in practice, its inuence on the game is much less
than that of the main feature: closing mills and thereby capturing men of the
opponent. Therefore, it seems more appropriate to classify nine men's morris

as a �xed-termination game than as a sudded-death game.
The state-space complexity of nine men's morris, calculated by Gasser

(1990), is the smallest of all games of the Olympic List: 1010. Nine men's

morris' game-tree complexity is much larger. During the opening phase of
the game, the branching factor is 16 on the average In the middle game
and end game, the branching factor ranges from 1 to over 50, resulting in
our conservative estimate of the average branching factor of 10. Setting the
average game length at 50 ply (again a conservative estimate), the game-tree
complexity of nine men's morris is calculated to be at least 1050.

The state of the art

Nine men's morris has been solved in October 1993 by Ralph Gasser, proving
that the game-theoretic value is a draw. In the years preceding the solution of
the game, the program Bushy, also by Gasser, has shown itself to be stronger
than the best human players, as illustrated by defeating the British champion
by 5 to 1 in an exhibition match during the 2nd Computer Olympiad (Levy
and Beal, 1991).

Techniques currently applied

Nine men's morris has been solved through the creation of databases by
retrograde analysis for all positions which may occur during the middle game
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or endgame (Gasser, 1993). For the opening phase, which takes exactly 18
ply, a forward search using �-� search was applied.

Obstacles to progress

During the solution of nine men's morris through the application of standard
search techniques, no obstacles to progress on the game have been discovered.

6.3.5 Awari

Game properties

Awari is a converging, perfect-information game, with �xed termination. Only
in rare circumstances may a player run out of moves early in the game,
terminating it. The chances of this happening, however, are quite remote,
which is why awari is not a sudden-death game.

The state-space complexity of awari is calculated by Allis et al. (1991c) to
be 1012. The game-tree complexity of awari, based on an average branching
factor of 3.5 and an average game length of 60 ply, is estimated at 1032.

The state of the art

Although lack of o�cial human awari champions makes it di�cult to prove,
empirical evidence suggests that today's strongest awari program, Lithidion
(Allis et al., 1991c), outperforms the strongest human players. Lithidion
has lost games against human opponents, but in each of these cases the
game revealed a serious bug in the program. All other games against human
opponents were won, most by large margins.

We believe that awari will be the next game to be solved. Its state-space
complexity is such that, using 2 terabyte of disk space, awari can be solved.
It is only because solving awari is not a high-priority project, that it will
take several years and advances in technology before the hardware becomes
available to solve the game through full enumeration.

A similar approach as applied to nine men's morris, i.e. endgame-database
construction in combination with a forward search, may reduce the memory
requirements for solving awari.

Techniques currently applied

For a detailed description of the techniques applied to today's strongest awari
programs, we refer to section 2.4.3.
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Obstacles to progress

Given the current strength of awari programs, and the impending solution of
the game, no obstacles have been found on awari.

6.3.6 Othello

Game properties

Othello is a diverging, perfect-information game with �xed termination. The
state-space complexity of othello has an upper bound of 364 � 1030. Several
legality tests, such as that the four center squares should not be empty and
that the occupied squares must form a connected set, reduced the upper
bound in a Monte-Carlo analysis to approximately 1028.

To calculate the game-tree complexity of othello, we assume an average
game length of 58 ply. With a conservative estimate of the average number
of moves per position set at 10, we obtain a game-tree complexity of 1058.

The state of the art

Othello programs have played at the level of the human world champion since
1980. In that year the program The Moor won a game against the reigning
world champion. Since then, programs have continued to improve. Currently,
rating lists for othello players show that several programs clearly exceed the
strongest human players in playing strength. Today's strongest program is
Logistello by Michael Buro, which, among other tournaments, has won the
1st Paderborn othello tournament.

Techniques currently applied

All strong othello programs are based on standard game-playing techniques:
(1) a deep �-� search; (2) a large opening database; (3) an endgame search
determining the outcome of a game after approximately 36 ply; and (4) a
�nely-tuned evaluation function.

The chances that othello will be solved in the near future are extremely
remote. The state-space complexity rules out the option of full enumeration,
while the game-tree complexity renders a full-depth forward search imposs-
ible. The diverging nature of othello makes creation of endgame databases
unfeasible. Finally, the property of �xed termination of othello renders solving
the game in similar fashion to the solution of qubic and go-moku impossible.
Only if a so far unidenti�ed structure in the game is discovered, resulting in
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knowledge rules which prove the value of nodes early in the game tree, may
othello be solved in the coming decades.

Obstacles to progress

The strongest othello programs have already surpassed their human oppo-
nents. Even though solving the game is out of reach, human players do
not possess knowledge or skill not shown by their arti�cial opponents. We
conclude that no obstacles have been found in the research on othello.

6.3.7 Checkers

Game properties

Checkers is a converging, perfect-information game with �xed termination.
In checkers a game is lost by a player who runs out of moves. Although
in exceptional cases this may happen while both players still have most of
their pieces, in practice to win a game, (almost) all of the opponent's pieces
must be captured. The state-space complexity of checkers is estimated at
1018 (Schae�er et al., 1991). The average branching factor is surprisingly
low: 2.8, which is mostly due to the forced-capture rule (Schae�er, 1993a).
With an estimated average game length of 70 ply, we obtain a game-tree
complexity of 1031.

The state of the art

As stated in section 1.1, Samuel's learning checkers program has, at least
by some, been wrongfully credited with solving the game, which has
clouded the history of the performance of checkers programs. Recent
e�orts by Schae�er et al. (1992) have led to the development of a true
world-championship level checkers program, named Chinook. Chinook has
challenged the human world champion, Marion Tinsley, for his title. In
a rather close match, 4 wins, 2 losses and 33 draws, Tinsley successfully
defended his title.

A rematch is scheduled for August 1994 in Boston. With the extra e�orts
spent on Chinook (see below), it is not unlikely that 1994 will see a computer
program become the strongest checkers entity in the world.

Techniques currently applied

Chinook consists of (1) a deep �-� searcher (averaging approximately 20
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ply); (2) a �ne-tuned evaluation function; (3) a large, man-made, computer
checked opening book; and (3) endgame databases comprising all endgame
positions of 7 pieces or less, and all endgame positions of 4 pieces against 4.

The inuence of the endgame databases in checkers should not be under-
estimated. Due to forced captures in checkers, removing 16 men o� the board
may happen rather quickly.

With regard to solving checkers, we mention that full enumeration of the
game is ruled out by the size of the state-space complexity. A complete
forward search, even if the game-tree is perfectly ordered, is also out of reach
of current technology. However, convergence in checkers has allowed the
creation of large endgame databases, which decrease the size of the game-tree
signi�cantly. Therefore, we do not rule out that the combination of forward
search (either pn-search or �-� search) and endgame databases may prove
su�cient to solve (some of the openings of) checkers, as stated by Schae�er
(1993a).

Obstacles to progress

While Chinook's strength is its deep tactical searches, combined with perfect-
endgame knowledge, its main weakness is that the value of each pattern
not available in the evaluation function must be compensated for by search.
In contrast, Tinsley's pattern knowledge is such, that he knows of many
positions for which a search of 50 or more plies is necessary to reveal the
value of the position. Each of such patterns corresponds to a weakness of the
program with respect to human players.

Although Chinook's tactical and endgame ability make up for most of
the lack of pattern knowledge, it reveals traces of an obstacle to progress in
checkers: the inability to gain experience from previous plays. The suitability
of checkers to alternative approaches, such as the brute-force approach
applied by Chinook shows that this experience obstacle has not prevented
checkers programs from successfully challenging the strongest human players.

6.3.8 Draughts

Game properties

Draughts is a converging, perfect-information game with �xed termination,
in many ways similar to checkers. The state-space complexity of draughts is
signi�cantly larger than that of checkers, and we have calculated an upper
bound of 1030. The game-tree complexity of draughts is also larger than that
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of checkers. Conservatively estimating the average branching factor at 4,
and the average game length at 90 ply, we obtain an estimated game-tree
complexity of 490 � 1054.

The state of the art

The strongest draughts program is Truus written by Stef Keetman (Keetman,
1993). Truus' current level of play at tournament speed is ranked around the
40th position in the world. In speed draughts, Truus has beaten reigning
world champion Alexei Tsjizjow once, and reached the 9th position in a
tournament entered by almost all strong human players.

Currently, Keetman works towards the goal of creating a tournament
program able to defeat the human world champion. These e�orts may
improve Truus' level of play in the near future.

Techniques currently applied

Truus consists of (1) a deep �-� searcher (averaging a nominal depth of
approximately 10 ply); (2) a �ne-tuned evaluation function; (3) a large, man-
made, computer-checked opening book; and (4) a set of about 1,000 tactical
patterns, which Truus learned through automatic generalization.

According to its author, Truus' undefeated record amongst draughts

programs since 1990, is mostly due to its learning of tactical patterns
(Keetman, 1993). In the near future, Truus' learning abilities will be
extended to positional patterns, which have so far been hand-coded by the
author.

The large state-space complexity, in combination with the large game-tree
complexity, make draughts unsolvable in the foreseeable future.

Obstacles to progress

Truus' strength is mostly based on its knowledge of tactical patterns and
deep tactical searches. Although it has been argued by Keetman (1993) that
tactical knowledge in draughts enhances positional play, positional knowledge
is Truus' main weakness in comparison with human experts. Like in checkers,
each pattern not available in the evaluation function must be compensated
for by search revealing similar traces of an obstacle to progress as in checkers:
the inability to gain experience while playing the game.
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6.3.9 Chess

Game properties

Chess is a converging, perfect-information game with sudden-death. While
convergence and sudden-death are major contributors to high-level play in
games like qubic, go-moku and checkers, there is only a slight inuence on
tournament play in chess. Convergence in chess is slow, and a large majority
of all chess games are decided long before endgame databases come into
play. In chess practice the subgoal of obtaining material superiority often
dominates the sudden-death goal of checkmate. Thus, both convergence and
sudden-death are less pronounced in chess, than in games like checkers and
draughts, or qubic and go-moku, respectively.

In our calculation of the state-space complexity of chess, we have included
all states obtained through various minor promotions. Using rules to
determine the number of possible promotions, given the number of pieces
and pawns captured by either side, an upper bound of 5 �1052 was calculated.
Not all of these positions will be legal, due to the king of the player who just
moved being in check, or due to the position being unreachable through a
series of legal moves. Therefore, we assume the true state-space complexity
to be close to 1050. A state-space complexity of 1043, as mentioned by various
authors (Schae�er et al., 1991), is in our opinion too low an estimate.

The game-tree complexity of chess, 10123 is based on an average branching
factor of 35 and an average game length of 80 ply.

The state of the art

Today's strongest chess program is Deep Thought (Hsu, 1990). Its estimated
elo rating of 2550 ranks it between positions 100 and 150 on the world rating
list. Current e�orts to create Deep Blue, a parallel program consisting of 1000
Deep Thoughts, aim at surpassing the human world champion.

Possibly as early as 1994 a new match with today's strongest computer
chess player and one of the reigning world champions, Garry Kasparov, will
be held. So far, all previous games between Kasparov and Deep Thought
have been won by the human Grand Master (Van den Herik and Herschberg,
1989).

Techniques currently applied

Most ai research on games has focused on chess. Several di�erent approaches
have been tried, ranging from purely knowledge-based (Reznitsky and
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Chudako�, 1990) to purely brute-force (Hsu, 1990).

Deep Thought consists of (1) a deep �-� searcher (averaging approxima-
tely 10 ply); (2) a �ne-tuned evaluation function; (3) a move-generator
embedded in hardware; and (4) a large, man-made, computer-checked
opening book.

Even though deep searches have had a large impact on the strength of
today's chess programs, we should not ignore the contribution of the improved
evaluation functions developed alongside the deeper searches. A strong
example is Ed Schr�oder's 1992 world champion program, which compensates
for one or more plies of search through a highly sophisticated evaluation
function, manually �ne-tuned through years of development and testing.

Obstacles to progress

In chess, just as in checkers, many strategic concepts known to human Grand
Masters are based on gains achieved after a large number of moves. For many
of these patterns, programs cannot compensate for their lack of knowledge
by simply searching a few ply deeper.

Again, but more clearly than in checkers and draughts, the contours of
lack of experience as obstacle to progress in chess becomes visible.

The extent to which this obstacle prevents programs from attaining
dominance over their human counterparts through brute-force alone is
unclear. While some believe that it will still take decades before computers
will defeat the human world champion, others have stated that this event
will occur before the year 2000 (Van den Herik, 1983).

6.3.10 Chinese chess

Chinese chess is similar to (Western) chess in many ways: (1) it is a
converging, perfect-information game with sudden-death; (2) its state-space
complexity, at 1048, is similar to that of chess (at 1050). (3) the approaches
to creating computer programs for playing Chinese chess have been similar
to that of chess. Its game-tree complexity, estimated at 3895 � 10150

(Tsao et al., 1991), is somewhat larger than the game-tree complexity of
chess, at 10123.

In our opinion, the main reason why Chinese chess programs fall somewhat
behind in their challenge of the stronger human players is the lesser amount
of e�ort invested in Chinese-chess research.
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6.3.11 Renju

Game properties

Renju (see also section 5.2.1) is a variant of go-moku, played by professional
players. It is a diverging, perfect-information game with sudden death. Its
state-space complexity and game-tree complexity are similar to that of go-
moku.

The state of the art

In its purest form, without special opening rules restricting black (see section
5.2.1), we believe renju can be proved a �rst-player win, in the same way
as go-moku has been solved. The main extension needed consists of the
de�nition of special types of threats white can create, using squares forbidden
to black (squares where black would create a double three, a double four or an
overline). Using these extra threat types, white may be able to counter threat
sequences which cannot be countered otherwise. Furthermore, potential
winning threat sequences by black must be checked for the occupation by
black of forbidden squares. Despite the extra complications in the program,
and the somewhat enlarged solution complexity, we believe that renju should
be solvable in at most ten times the e�ort required for the go-moku solution.

Professional renju, as described in section 5.2.1, is a game with virtually
equal chances for both players. As go-moku could only be solved through
black's opening advantage, we believe that professional renju will be unsolv-
able in the foreseeable future. Today's strongest renju programs, such as
Vertex by Shaposhnikov, are estimated to play at a level of 2 or 3 kyu (Ohta,
1993), which is the level of intermediate to strong club players.

Techniques currently applied

World champion Vertex is based on standard game-tree search techniques:
a �xed-depth (16 ply) �-� search for the most-promising 14 moves in
each position. Vertex has been provided with expert pattern knowledge
and opening knowledge by two-fold world correspondence Renju champion
Nosovsky.

Obstacles to progress

In go-moku we have seen that the availability of a strong tactical module
allows a program to determine positionally strong moves: through refutation
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of positionally weak moves by tactically forced sequences, the positionally
strong moves automatically emerge as the only options. In renju, a strong
tactical module can be created using the same principles as applied to go-

moku, albeit somewhat more complex. So far, it has not been shown that it is
necessary to master deep positional knowledge as applied by human master
players. In other words, so far no obstacles to progress in renju have been
discovered.

6.3.12 Go

Game properties

Go is a diverging, perfect-information game with �xed termination, We
remark that, in theory, go should be regarded as an unchangeable game,
instead of a diverging game, as any legal state can be reached from any other
legal state, if both players cooperate to this end. However, in practice, the
board is slowly �lled with stones until the board is divided into territories
for both players. For practical purposes, therefore, go is a diverging game..

Go's state-space complexity, bounded by 3361 � 10172, is far larger than
that of any of the other perfect-information games of the Olympic List. Its
game-tree complexity, with an average branching factor of 250, and average
game length of 150 ply, is approximately 10360.

The state of the art

The strongest programs, such as Goliath by Mark Boon and Go-Intellect
by Ken Chen, have achieved ratings roughly between 8 and 10 kyu (Boon,
1991; Chen, 1992), a level equivalent to weak club players. The low playing
strength in comparison to human players cannot be attributed to the lack of
interest by strong players or by �nanciers: both Mark Boon and Ken Chen
have a go-rating of 5 dan, while large sums of money can be won by the
strongest go programs.

The explanation for the low playing strength of current go programs
is found in the nature of the game. While the potential branching factor
averages 250, human players only consider a small number of these, through
extensive knowledge of patterns relevant to go. Similarly, while evaluating
a position, humans determine the strengths and weaknesses of groups on
the board with pattern knowledge. Thus, either programs must obtain
pattern knowledge similar to human experts, or compensate for a lack of
such knowledge through search or other means.
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Techniques currently applied

We restrict our description to two-fold computer world champion Goliath,
written by Mark Boon. Goliath's main strength is its evaluation function.
As part of the evaluation function, heuristics determine the value of groups
under attack, as well as the result of many forcing sequences, without
having to analyze these sequences in detail. The evaluation function is used
in a selective search, where moves are generated using pattern knowledge
indicating candidate moves.

A future version of Goliath, aimed at achieving a playing level of 5 kyu,
is currently being developed.

Obstacles to progress

The main progress made by human go novices can be attributed to learning
important patterns, in go terminology called good shape and bad shape.
Furthermore, after each life-and-death attack, their pattern knowledge re-
garding the liveliness of each group on the go board is enhanced. After
playing a few hundred games, a novice go player will have acquired su�cient
pattern knowledge to defeat today's strongest go programs.

While lack of pattern knowledge is not unique to go (cf. checkers, draughts
and chess), the main reason why it stands out in go is that deep search fails
to mask the lack of pattern knowledge. As a result, in go, the experience
obstacle is clearly visible.

6.3.13 Scrabble

Game properties

Scrabble is a diverging imperfect-information game with �xed termination.
The imperfect information in scrabble consists of not knowing the contents
of the rack of the opponent and of the chance element in drawing tiles from
the heap.

The state of the art

During our investigations we have not been able to determine the current
level of the strongest scrabble programs. While some people stated that
scrabble programs such as TSP by Jim Homan and Tyler by Alan Frank (the
two competitors at the third Computer Olympiad) (Uljee, 1992) are stronger
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than the best human players, others believe that human players still have the
edge.

Techniques currently applied

Scrabble as a family game may be best known for its potential of family
disputes: while one player maintains that a word is valid, another may dispute
it. At o�cial scrabble tournaments, the set of legal words is strictly de�ned.
Either the British O�cial Scrabble Words or the American O�cial Scrabble
Players Dictionary determine the legal words. For words of nine or more
letters, Webster's Ninth Collegiate is decisive. All strong scrabble programs
have these dictionaries in memory.

Generally, a set of legal moves is selected, of which each move is evaluated
according to (1) the number of points scored; (2) the remaining board position
(i.e., the average score the opponent may obtain after the move); and (3) the
potential of the letters remaining on the rack, in combination with the letters
likely to be drawn from the heap.

The endgame of scrabble (i.e., once all letters from the heap have been
drawn) is a perfect-information game. A standard forward search can be
applied to such positions to determine optimal play for both sides.

Obstacles to progress

Scrabble programs have shown to be capable of high-level play, even though
relatively little research has been performed in this area. We believe
that using existing techniques, scrabble programs will surpass their human
opponents, if this is not already the case. Summarizing, no obstacles to
progress in scrabble have been encountered.

6.3.14 Backgammon

Game properties

Backgammon is a converging, imperfect-information game of �xed termina-
tion. Although both players have access to all information determining the
current state, dice determine the legal continuations. Not until a player is
bearing her stones o� or until the game has converted into a running game,
are conversion moves made.
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The state of the art

In 1980, the human world champion in backgammon, Luigi Villa, was beaten
in a short match by the backgammon program bkg (Berliner, 1980). However,
both the length of the match, and the fact that Villa seems not to have taken
the match as seriously as he should have done, suggest that bkg may not
have been truly stronger than the top human players of that time.

Recently, Gerald Tesauro created the program TD-gammon, which nar-
rowly lost a match against former world champion Bill Robertie: 40-39.
Tesauro's investigations suggest that TD-gammon is signi�cantly stronger
than bkg (approximately 0.35 points per game), while being close to current
human world-champion level (Tesauro, 1993).

Techniques currently applied

While bkg has been created through expert knowledge, TD-gammon is a
three-layer neural network, which is trained through the unsupervised TD(�)
learning algorithm. The input to TD-gammon consists of the board position
in combination with some fairly basic backgammon knowledge. From the
input and a random initialized network, TD-gammon has trained itself on
1.5 million games of self play, resulting in world-class level play (Tesauro,
1993).

Using the neural network as the evaluation function, TD-gammon
performs a 3-ply search. Doubling is handled by a separate algorithm, as
well as part of bearing o�, for which an endgame database is used.

Obstacles to progress

Tesauro's work on TD-gammon indicates that a neural network is capable of
capturing pattern knowledge in backgammon as well as the strongest human
players. Therefore, we do not see obstacles which have become apparent
through research on backgammon.

6.3.15 Bridge

Game properties

By declaring bridge to be a two-player game, it was possible to include it
in the Olympic List. Arguments can be adduced for bridge being a two-
player, three-player or four-player game. During the bidding phase, four
players participate in the bidding. During the playing phase, three players
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participate, while the fourth player becomes the dummy. On the score card,
two partnerships are recognized as the players in bridge. Like Blair et al.
(1993), we have chosen to regard bridge as a two-player game.

We remark that double-dummy bridge problems are two-player perfect-
information games, while bridge problems assuming optimal counterplay can
be regarded as two-player imperfect-information games. Finally, we mention
that Blair et al. (1993) call the three and four player phases in bridge, two-
player games without perfect recall.

Restricting ourselves to the playing phase of bridge, it is a converging,
imperfect-information game with �xed termination.

The state of the art

Instead of trying to master the whole game at once, several researchers have
concentrated on single aspects, such as Lindelof (1983), who developed a
special bidding system for computer programs and Berlekamp (1963), who
created a double-dummy analyzer. Recently, Schoo (1992) has created a
program which determines optimal play in single suits.

Despite progress on parts of bridge, the strength of today's best bridge

programs may at best be called amateur level. An example of leading bridge

programs is Bridge Baron by Tom Throop and Tony Guilfoyle, winner of the
bridge tournament at the second and third Computer Olympiads.

Techniques currently applied

Bridge Baron consists of knowledge rules which determine what to bid and
the information each bid contains. A major problem not yet solved is
interpreting the bids of the opponents when they are using vastly di�erent
bidding systems.

Knowledge rules containing standard playing patterns form the basis for
the playing phase, in combination with search. The heuristic nature of the
patterns is the source of errors, as shown in a deciding hand in the �nal of
the third Computer Olympiad (Throop and Guilfoyle, 1992).

Except for double-dummy problems and single-suit problems, exhaustive
search has so far not been successful, predictions by Levy (1989) notwith-
standing that a world-champion level program based on brute-force search
could be created with today's technology.
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Obstacles to progress

The main reason for the slow progress on bridge seems the inability of
programs to truly understand the vague information they are processing.
Instead, programs are taught a bidding system by specifying for each bid the
hands for which the bid may be applicable, and the information transferred
by the bid. The creation of a bidding program in this way su�ers from
the knowledge-acquisition bottleneck (Feigenbaum, 1979). Furthermore,
extracting information from the bidding phase for use during the playing
phase has proved to be rather di�cult. Novice human players learning to
play bridge experience similar problems. However, through experience, they
learn to interpret bids, judge hands, and transfer information gained during
bidding to the playing phase. We believe that the experience obstacle blocks
progress in bridge.

6.4 Reviewing the problem statement

In section 1.4, we have formulated the problem statement consisting of two
questions. To �nd an answer to the questions in the problem statement,
we formulated three research questions. In this section we summarize the
answers found to the three research questions (section 6.4.1) and review the
problem statement (section 6.4.2).

6.4.1 The research questions

In this section, we summarize the answers found to the three research
questions of section 1.4. We discuss each of the questions separately.

Solvable games

The �rst research question reads: `Which games can be solved and what
techniques may contribute to the solution. With respect to the �rst part of
the question, solvable games, we have found the following answer.

1. Four games (qubic, connect-four, go-moku and nine men's morris) have
been solved.

2. Awari and renju without opening restrictions will be solved in the near
future.

3. Checkers is a likely candidate for solution in the future.
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With respect to the second part of the question, contributing techniques, we
have found the following answer.

1. For qubic, go-moku and renju, db-search has been, or will be, a
contributor to �nding winning threat sequences.

2. For qubic, connect-four, go-moku, renju and checkers, pn-search has
been, or may be, a contributor to performing a forward search to solve
the game.

3. For nine men's morris, awari and checkers, retrograde analysis has been,
or will be, a contributor to create endgame databases which reduce the
size of the search tree necessary to solve the game.

4. In connect-four applying knowledge rules to determine the game-
theoretic value of game positions has proved to be successful.

5. Variants of �-� search have proved e�ective as contributors to the
solution of qubic, connect-four and nine men's morris, while they may
aid in solving checkers.

Outperforming the best human players

The second research question reads: `For which games can we create
programs outperforming the best human players in the near future, and what
techniques contribute to their performance.' With respect to the �rst part
of the question, outperforming the best human players, we have found the
following answers (we ignore the games listed in the answers to the �rst
research question.)

1. Today's othello programs are stronger than the best human players.

2. Today's draughts, backgammon and scrabble programs are close to world
champion level. Expected progress in the near future, possibly just by
technological advances, seem su�cient to outperform the best human
players.

3. For chess, Chinese chess and (professional) renju, current techniques may
prove su�cient to obtain world-champion level, although it is rather
di�cult to predict when the last human hurdle will be taken.

With respect to the second part of the question, contributing techniques, we
have found the following answer.
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1. The most important techniques for obtaining high-level tournament
programs have been sophisticated variants of �-� search, with �ne-
tuned static evaluation function. It is a contributing factor in othello,
draughts, chess, Chinese chess and professional renju.

2. Db-search in combination with pn-search may prove a contributing
factor for professional renju.

3. Neural networks are the basis for the high performance level in
backgammon.

Human superiority

The third research question reads: `In which games will humans continue to
reign in the near future (say, at least the next decade) and what are the main
obstacles to progress for computer programs?' With respect to the �rst part
of the question, human superiority, we have found the following answer.

1. For chess, Chinese chess and (professional) renju it is unclear whether
the, seemingly inevitable, defeat of the strongest human players will
take place within the coming decade.

2. For bridge and go the current performance level as well as the obstacles
to progress suggest that humans will remain superior for at least the
coming decade, if not for much longer.

With respect to the second part of the question, we have found that the main
obstacle to progress apparent in several games, but most clearly in bridge and
go, is the lacking ability to gain experience.

6.4.2 The problem statement

Through the answers to the three research questions, as presented in section
6.4.1, we are now able to discuss the questions raised in the problem
statement.

As an answer to the �rst question, concerning new ai techniques
applicable to other domains, we have found in the course of our research
two new search techniques, pn-search and db-search. Pn-search is applicable
to and/or trees (see chapter 2), and can thus be applied outside the area of
games. Db-search is a single-agent search (see chapter 3), for which we have
presented examples including production systems. The applicability of db-
search to problems outside the domains discussed in this thesis needs to be



182 Chapter 6. Which Games Will Survive?

Predicted program strengths in the year 2000

Solved Over Champion World Champion Grand Master Amateur

connect-four checkers

qubic renju chess Chinese chess

nine men's morris othello go

go-moku scrabble draughts bridge

awari backgammon

Table 6.1: Predictions for the Olympic Games in the year 2000

investigated in the future. Clearly, as challenges remain within the domain
of games, with as speci�c examples bridge and go, new ai techniques may be
developed through further investigation of these games.

As answer to the second question, concerning obstacles emerging through
investigation of games, we have found a single obstacle, apparent in several
games, but most pronounced in bridge and go: the lack of an ability to gain
experience. The ability to gain experience is based on learning and exibility.
Flexibility is necessary to generalize while learning, and to recognize the
applicability of patterns learned. While these concepts are not at all new
revelations, we believe that their importance in relation to our research
consists of showing that even without other interfering obstacles, such as
common-sense knowledge, gaining experience is an obstacle in itself. We
believe that to overcome such an obstacle, a recommended approach is to
research it in separation from other known obstacles. Stated di�erently, we
believe that bridge and go are suitable test beds for investigating the nature
of the experience obstacle.

In conclusion, we state that our research has contributed two new search
techniques which may be applied in ai, as well as some additional insight in
the importance of one obstacle to game research.

6.5 Predictions

6.5.1 Future playing strength

In 1990 we have predicted the strength of computer programs in the year
2000 for each of the games of the Olympic List (Allis et al., 1991a). These
predictions have been reproduced in table 6.1. In 1990, we were only aware of
the solution to connect-four even though qubic had been solved over a decade
before. Currently, four of the �ve games listed as predicted to be solved in
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2000 are solved. In the Over Champion category (i.e., signi�cantly stronger
than the human world champion), renju is listed. If we were to recreate
table 6.1 today, we would put renju without opening restrictions in the Solved
category, while we would put professional renju at the Grand Master category.
The Over Champion entry should thus be regarded as a compromise between
these two. Of the �ve games in the Over Champion category, currently
only othello is known to have achieved true Over Champion level. To be at
world champion level means having a rating close to that of the human world
champion. For both games mentioned (chess and draughts), an o�cial rating
system exists, which makes it possible to check such a claim. Equivalent to
such a rating would be a close match over a large number of games. Thus,
Chinook is considered by us to be of world-champion level in checkers. The
main reason for listing Chinese chess at Grand Master level, instead of at
world-champion level, is the little e�ort invested in comparison with chess.
Therefore, we believe that progress in Chinese chess will keep trailing several
years behind that of chess.

The bridge entry at Grand Master level in retrospect seems somewhat
optimistic. Had we introduced a Master level, this is where we would
categorize it with our 1994 knowledge. However, having to choose between
amateur level and Grand Master level, we opted for the latter.

Finally, the go entry speaks for itself. In go terminology, the term
amateur may be ambiguous. To be clear, any dan rating in the year 2000 for
computer programs (even amateur dan ratings) would be above our current
expectations.

6.5.2 The future of games

Even where computers have failed to achieve perfection, which we see as
solving the game, they may succeed at the simpler task of outwitting human
beings. In table 6.1, we predict that for the majority of the games of the
Olympic List computers will have the advantage over their human opponents
before the turn of the century.

This being so, we nevertheless argue that all games will continue to be
played at all levels, from youngsters enjoying tic-tac-toe to Grand Masters
competing in chess tournaments for titles and money. Neither known game-
theoretic values nor the availability of silicon opponents of superior strength
will extinguish man's urge to compete.

It has also been argued that, once a program of over-champion strength
exists, programs will cease to improve. Not so: while human beings construct
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programs, competition among programmers will see to it that programs will
continue to rise in strength. We therefore conclude: all games will survive at
all levels.



Appendix A

Domain-speci�c solution to

DLP

In this appendix we describe the algorithm triangle to determine the
solution to an instance of the double-letter puzzle. Triangle has storage
complexity in the order of n2 and time complexity in the order of n3.

To simplify the description of triangle, we index the letters in the axiom
of dlp from 0 to n � 1, where n is the length of the axiom. We de�ne a
substring of the axiom as any range of letters from a start index i to an end
index j, with 0 � i � j � n� 1.

Triangle uses a triangular array of 1

2
n(n+ 1) entries, where each entry

can store any subset of fa; b; c; d; eg. Rows in the array represent start indices,
and columns represent end indices, i.e., each row i consists of column entries
i to n � 1. In the triangular array, triangle stores for each substring of
the axiom, the single letters to which that substring can be reduced. After
�nishing this task for all substrings, the solution to dlp is found in the entry
representing the substring with start index 0 and end index n � 1, which
represents the whole axiom. The triangular array is �lled in n steps.

First, the n entries with the start index equal to the end index (entries
[i; i], for 0 � i � n�1) are initialized to the singleton set containing the letter
at position i in the axiom. The other 1

2
n(n� 1) entries are not initialized.

Second, we concentrate on entries representing substrings of two letters
(i.e., entries [i; i + 1], for 0 � i � n � 2). In general, the value of [i; i + 1]
can be determined by looking at the sets at table entries [i; i] and [i+ 1; i+
1]. The intersection S of these sets indicates pairs of equal letters which
can be replaced by the predecessor or successor of the letters in S. These
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0 1 2 3 4 5 6 7 8 9 10
a be − − − bd ce bd − abce

a − − − − − − − −
b − −

−
− − − − − −

−

d − − ce − ce − ad
c − bd ce bd − ac

b ac − − − −
b − − − −

d − − −
c − −

a be
a

1
2

3
4

5
6

7
8

9
10

0 ac

Figure A.1: Solution to instance aabdcbbdcaa of dlp.

predecessors and successors are then stored at the entry [i; i+ 1].
Third, we determine the value of the entries representing substrings of

three letters (i.e., entries [i; i + 2], for 0 � i � n � 3). To determine the
value of [i; i+2] we must look at the intersection S1 of the sets at entry [i; i]
and [i+ 1; i+ 2], and at the intersection S2 of the sets at entry [i; i+ 1] and
[i + 2; i+ 2]. The union of S1 and S2 determines the letters from which the
predecessors and successors are included in entry [i; i+ 2].

In general, entry [p; q] is the set of predecessors and successors of the
letters in

Sq�1
i=p ([p; i] \ [i+ 1; q]).

Figure A.1 depicts the array of entries created to solve the instance
aabdcbbdcaa of dlp (the example of section 3.2). The set of letters stored in
entry [0; n� 1] yields the solution. As mentioned in section 3.2, only d is not
a solution.



Summary

In this thesis "intelligent" games are investigated from the perspective of
Arti�cial Intelligence (ai) research. Games were selected in which, at least
partially, human expert players outperformed their arti�cial opponents. By
investigating a game, we envision at least two possible outcomes.

� If we achieve a playing strength su�cient to defeat the best human
players, analysis of the means which led to this improvement may
uncover new ai techniques.

� If the playing strength keeps falling short, even after prolonged
attempts, of that of the best human players a better understanding
of the problems inherent in playing the game at a high level may be
acquired.

We remark that there is a possibility that the results do not lead to
progress (i.e., no new ai techniques and no better understanding of the
inherent problems). In the �rst case, the improvement may be due to entirely
domain-speci�c techniques which cannot be generalized to ai techniques. In
the second case, we may �nd that we have di�culty in isolating the problems
from our failed attempts. By investigating a representative set of games,
the probability increases that new ai techniques are developed or insight
into problems hindering progress is obtained. For our investigations, we
have selected a set of games called the Olympic List, consisting of: awari,
backgammon, bridge, chess, Chinese chess, checkers, connect-four, draughts,
go, go-moku, nine men's morris, othello, qubic, renju and scrabble.

The research is in two parts. First, we have investigated three games
which we believed could be solved: awari, qubic and go-moku. Games can
be solved if it is possible to determine strategies leading to the best possible
result for both players. For qubic and go-moku we have been able to �nd
strategies which guarantee a win for the �rst player. For awari this has
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not yet been achieved, but we did create a program that outperforms the
strongest human players. Analysis and generalization of the methods used
in solving qubic and go-moku resulted in two new ai techniques: the search
techniques proof-number search (pn-search) and dependency-based search (db-
search). Awari is close to its solution, indeed so close that we believe that
extant techniques su�ce to solve it.

Second, for each game of the Olympic List we have investigated whether
the di�erence in playing skill of human beings and computer programs gives
us reason to believe that there is an intrinsic obstacle to progress. We have
found that, based on insu�cient exibility and learning ability, an experience

obstacle exists. This obstacle is particularly conspicuous in bridge and go.
We conjecture that, while such obstacles exist in the games domain, these
same obstacles will stand in the way of progress in other domains.

This thesis consists of six chapters. In chapter 1, the relevance of
investigating games is discussed, leading to the formulation of a problem
statement and three research questions. In chapter 2, pn-search is de�ned.
It is shown that pn-search traverses a set of state spaces much more e�ciently
than alternative search algorithms; awari serves to provide an example. In
chapter 3, db-search is de�ned, a search algorithm that traverses a state
space signi�cantly reduced when compared to traditional search algorithms.
It is shown that under clearly de�ned conditions the reduced state space is
complete, which means that it contains all solutions present in the original
state space. The potential of db-search is demonstrated on an example
domain. In chapter 4, it is demonstrated how pn-search and db-search solved
qubic. Similarly, in chapter 5 it is demonstrated how pn-search and db-search
combined solved go-moku. In chapter 6 all games of the Olympic List are
investigated, resulting in, among others, a prediction of the playing strengths
of the strongest computer programs in the year 2000 and a discussion of the
future of games in our society.



Samenvatting

Dit proefschrift beschrijft onderzoek naar denkspelen in het kader van de
Kunstmatige Intelligentie. Uitgegaan is van denkspelen waarin de sterkste
menselijke spelers hun kunstmatige opponenten, in elk geval op onderdelen,
nog de baas waren. Dergelijke onderzoekingen kunnen leiden tot tenminste
twee nuttige uitkomsten.

� Wanneer de achterstand op de menselijke topspelers geheel wordt
ingelopen, dan leidt analyse van de wijze waarop dit bereikt wordt
mogelijk tot het vinden van nieuwe ai-technieken.

� Wanneer ook na langdurige pogingen het niveau van de mens onhaal-
baar blijkt, kan analyse van de gevonden problemen leiden tot het
ontdekken van algemene obstakels voor vooruitgang in de Kunstma-
tige Intelligentie.

Het is natuurlijk ook mogelijk dat de achterstand op de mens in een
bepaald denkspel wordt ingehaald, maar dat reeds bestaande technieken
gebruikt kunnen worden, of dat de gebruikte technieken geheel speci�ek
zijn voor dat spel en geen algemenere toepassing zullen vinden. Ook zou
het zich kunnen voordoen dat langdurige pogingen tot analyse van de
gevonden problemen tot niets leiden. Door een representatieve verzameling
denkspelen te onderzoeken, achten wij de kans groot dat onderzoek bij een
aantal daarvan tot nieuwe inzichten zal leiden. Deze verzameling, die der
Olympische Denkspelen, bestaat uit: awari, backgammon, bridge, Chinees

schaken, checkers, dammen, go, go-moku, molenspel, othello, qubic, renju,
schaken, scrabble en vier-op-een-rij.

In het onderzoek hebben we ons allereerst geconcentreerd op drie
denkspelen die mogelijk opgelost konden worden: awari, qubic, en go-moku.
Dit zijn denkspelen waarvoor het mogelijk lijkt uitspraken te bewijzen over
strategie�en die tot het best bereikbare resultaat leiden voor beide spelers.
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Voor qubic en go-moku hebben we een strategie kunnen vaststellen die de
eerste speler winst garandeert. Voor awari zijn we nog niet zover; wel is een
programma gecre�eerd dat sterker speelt dan menselijke topspelers. Analyse
en generalisatie van de methoden die tot de oplossing van qubic en go-

moku leidden, hebben twee nieuwe ai technieken opgeleverd, namelijk de
zoektechnieken proof-number search (pn-search) en dependency-based search

(db-search). Awari staat op het punt opgelost te worden. We geloven dan
ook dat bestaande technieken hiervoor afdoende zullen blijken te zijn.

Vervolgens is voor elk van de Olympische Denkspelen nagegaan in
hoeverre de afwijking tussen de speelniveau's van mensen en computers
aanleiding geeft te veronderstellen dat een belangrijk obstakel de vooruitgang
in de weg staat. Wij hebben gevonden dat met name het feit dat
computerprogramma's onvoldoende in staat zijn relevante ervaring op te
doen, door gebrek aan exibiliteit en lerend vermogen, dit bij sommige spelen
leidt tot een wezenlijke achterstand ten opzichte van menselijke spelers. Het
duidelijkst wordt dit gebrek bij bridge en go. We vermoeden dat zolang
bij begrensde onderzoeksgebieden, zoals denkspelen, dergelijke obstakels
vooruitgang in de weg staan, diezelfde obstakels een hindernis vormen bij
vooruitgang in andere onderzoeksgebieden.

Het proefschrift bestaat uit zes hoofdstukken. In hoofdstuk 1 worden
de mogelijke produkten van onderzoek naar denkspelen beschreven. Er
wordt een probleemstelling geformuleerd, evenals drie onderzoeksvragen. In
hoofdstuk 2 wordt pn-search gede�nieerd. Aan de hand van experimenten
op awari wordt aangetoond dat pn-search een bepaald type zoekruimte
aanzienlijk e�cienter onderzoekt dan alternatieve zoekalgoritmen. In hoofd-
stuk 3 wordt db-search gede�nieerd, een zoekalgoritme dat de zoekruimte
die door traditionele zoektechnieken wordt onderzocht aanzienlijk verkleint.
Er wordt aangetoond dat onder nauwkeurig gede�nieerde omstandigheden
de door db-search verkleinde zoekruimte volledig is, wat wil zeggen dat zij
alle oplossingen van de oorspronkelijke ruimte bevat. Aan de hand van een
voorbeeld wordt de potentie van db-search ge��llustreerd. In hoofdstuk 4
wordt gedemonstreerd hoe pn-search en db-search qubic hebben opgelost,
terwijl in hoofdstuk 5 het oplossen van go-moku met pn-search en db-search
wordt beschreven. In hoofdstuk 6 worden alle Olympische Denkspelen onder
de loep genomen, resulterend in, onder andere, een voorspelling van de
speelsterkte van de beste computerprogramma's in het jaar 2000 en van de
toekomst van denkspelen in onze samenleving.
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convergence, 155{157
conversion, 39, 157
CPU time, 50, 150
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database, 148
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db-search, 10, 67, 97, 122
DCG, 39
defender four, 104
delete set, 65
depend on, 78
dependency stage, 85, 104, 105
depth-�rst search, 14, 15, 29, 66,

67, 74, 91
diplomacy, 6
directional search, 15
disproof number, 19, 21
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double threat, 98, 127
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F

�ve, 125
�xed termination, 158
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G�odel code, 49
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game-theoretic value, 43
game-tree complexity, 158, 160
game-tree search, 60
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General Problem Solver, 2
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go-moku, 6, 9, 10, 33, 38{40, 43,

60, 90, 92, 93, 95{97, 121{
126, 128{133, 135, 137,
141, 143, 144, 147{153,
155, 157, 158, 161, 164,
165, 167, 171, 174, 179,
180, 182, 187, 188

goal square, 137
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imperfect information, 156

implicit threat, 147
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intuition, 3

iterative deepening, 15
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key class, 75

key operator, 75, 106

knowledge representation, 13

L

learning, 3

level, 85

life, 5

line of �ve, 133
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meta-move, 102, 104, 132
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open defender three, 104, 106
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problem solving, 13
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production system, 65, 81
proof number, 19, 20
proof set, 19
pure strategy, 156

Q

qubic, 6, 9, 10, 39, 40, 43, 60, 90,
92, 93, 95{97, 99, 101{104,
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S
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search, 13, 65
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solution, 73
solution depth, 160
solution search tree, 160
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state
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state space, 66, 71
state-space complexity, 9, 158, 159
straight four, 125
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threat category, 136
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threat-space search, 97, 122
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disproved, 18
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model, 17
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proved, 18
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