
IMPLEMENTING A COMPUTER PLAYER FOR
CARCASSONNE

Cathleen Heyden

Master Thesis DKE 09-15

Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science of Artificial Intelligence
at the Department of Knowledge Engineering

of the Maastricht University

Thesis committee:
Dr. ir. J.W.H.M. Uiterwijk

Dr. M.H.M. Winands
M.P.D. Schadd, M.Sc.
J.A.M. Nijssen, M.Sc.

Maastricht University
Faculty of Humanities and Sciences

Department of Knowledge Engineering
Master Artificial Intelligence

June 28, 2009

Preface

Thank you for reading my master thesis. The thesis was written at the De-
partment of Knowledge Engineering at the Maastricht University. The subject
is the implementation of an Artificial Intelligence for the modern board game
Carcassonne.

I would like to express my gratitude to several people. First of all, I would
like to thank my supervisor, Dr. ir. Jos Uiterwijk, for his support during the
last months, for reading and commenting my thesis and for his suggestions.
His lectures during the course Intelligent Search Techniques were very helpful.
I also want to thank Dr. Mark Winands, Jahn-Takeshi Saito, M.Sc., and
Maarten Schadd, M.Sc., for their lectures during that course. I have learnt a
lot, thanks for that.

Finally, I would like to thank my family and friends who supported me
during the last months. I give my special thank to my fellow student Robert
Briesemeister and my boyfriend Peter Schlosshauer for playing countless games
of Carcassonne during the last months.

Cathleen Heyden
Aachen, June 2009

ii

Cathleen Heyden Implementing a computer player for Carcassonne

Abstract

Classic board games are an important subject in the field of Artificial Intelli-
gence (AI) and a lot of research is done there. Nowadays modern board games
get more and more interest from researchers. Most of the games support to
play with more than two players. In addition they are often non deterministic,
which means that they contain an element of chance, and/or have imperfect
information.

This thesis describes the analysis of the game of Carcassonne and the im-
plementation of the game engine and an AI player using different algorithms.
Carcassonne is a modern board game for 2 to 5 players with perfect infor-
mation, which means, that the entire state of the game is fully observable to
each of the players. It is a non-deterministic game because during the game
the players draw tiles randomly. These chance events are not uniformly dis-
tributed because several tiles have different frequencies. This thesis regards
only the 2-player variant of Carcassonne.

This work includes a calculation of the state-space complexity and the
game-tree complexity. After that two search algorithms are investigated. The
first algorithm is Monte-Carlo search and an improved version of it – Monte-
Carlo Tree Search with Upper Confidence bounds applied to Trees. The
second algorithm is Expectimax search, which is based on Minimax search.
Additionally the improved algorithms Star1, Star2 and Star2.5 will be inves-
tigated.

The results show that Star2.5 search with a probing factor of 5 performs
best. This player is able to win against advanced human players.

iv

Cathleen Heyden Implementing a computer player for Carcassonne

Contents

Preface i

Abstract iii

Contents vi

List of Figures vii

List of Algorithm Listings ix

List of Tables xi

1 Introduction 1
1.1 Research Domain . 1
1.2 Problem Statement and Research Questions 2
1.3 Thesis Outline . 3

2 Carcassonne 5
2.1 Gameplay . 5
2.2 Scoring . 7

2.2.1 Cloister . 7
2.2.2 Road . 7
2.2.3 City . 7
2.2.4 Field . 7

2.3 Strategies . 8

3 Complexity Analysis 11
3.1 State-Space Complexity . 11
3.2 Game-Tree Complexity . 13
3.3 Comparison to Other Games . 15

4 Monte Carlo 17
4.1 Research Done so Far . 17
4.2 Implementation . 17
4.3 Improvement: Monte-Carlo Tree Search 18

4.3.1 Selection . 19

CONTENTS vi

4.3.2 Expansion . 20
4.3.3 Simulation . 20
4.3.4 Backpropagation . 20

5 Expectimax 21
5.1 Background . 21

5.1.1 Minimax . 21
5.1.2 Alpha-Beta . 22

5.2 Research Done so Far . 23
5.3 Implementation . 23
5.4 Improvements: *-Minimax Search 25

5.4.1 Star1 . 25
5.4.2 Star2 . 27
5.4.3 Star2.5 . 29
5.4.4 Iterative Deepening . 30

6 Experiments and Results 31
6.1 Experimental Setup . 31
6.2 Monte Carlo . 31

6.2.1 Basic Monte Carlo . 32
6.2.2 Monte-Carlo Tree Search 34

6.3 Expectimax . 36
6.3.1 Move Ordering . 36
6.3.2 Evaluation Function . 37
6.3.3 Expectimax vs. *-Minimax 38
6.3.4 Star2.5 . 39
6.3.5 Iterative Deepening . 39

6.4 Monte Carlo vs. Expectimax . 40
6.5 Experiments against Human Players 42

7 Conclusions and Future Research 43
7.1 Answering the Research Questions 43
7.2 Answering the Problem Statement 44
7.3 Future Research . 45

Bibliography 47

Appendix A Tiles in Carcassonne 49

Appendix B Game States 51

Cathleen Heyden Implementing a computer player for Carcassonne

List of Figures

2.1 Starting Position . 6
2.2 Putting a Meeple on a Tile . 6
2.3 Connecting Features . 6

3.1 Branching Factor . 14
3.2 Frequencies of Branching Factors 15
3.3 Complexities of Different Games 15

4.1 Outline of Monte-Carlo Tree Search 19

5.1 Minimax Tree . 22
5.2 Alpha-Beta Tree . 23
5.3 Regular Expectimax Tree . 24
5.4 Example of Star1 . 25
5.5 Successful Star2 Pruning. 28

6.1 Monte Carlo: Average Feature Scores 33
6.2 Monte Carlo: Average Meeples 33
6.3 Monte-Carlo Tree Search: Average Feature Scores 35
6.4 Monte-Carlo Tree Search: Average Meeples 35
6.5 Comparison Expectimax, Star1, Star2: Number of Nodes 38
6.6 Comparison Expectimax, Star1, Star2: Used Time 39
6.7 MCTS vs. Star2.5: Average Feature Scores 41
6.8 MCTS vs. Star2.5: Average Meeples 41

1 Overview of the Tiles in Carcassonne 49
2 Game States . 51

LIST OF FIGURES viii

Cathleen Heyden Implementing a computer player for Carcassonne

List of Algorithm Listings

5.1 Expectimax Algorithm . 24
5.2 Negamax Algorithm . 25
5.3 Star1 Algorithm . 27
5.4 Star2 Algorithm . 29
5.5 Probing Procedure of Sequential Star2.5 30

LIST OF ALGORITHM LISTINGS x

Cathleen Heyden Implementing a computer player for Carcassonne

List of Tables

3.1 Number of Polyominoes from n=46 up to n=72 12

6.1 Monte Carlo with Different Evaluations 32
6.2 UCT with Various Values for C 34
6.3 Monte-Carlo Tree Search with Different Evaluations 35
6.4 *-Minimax with Different Move Orders 37
6.5 Evaluation Function . 38
6.6 Star2.5 with Different Probing Factors 39
6.7 Iterative Deepening . 40
6.8 MCTS vs. Star2.5 . 41

LIST OF TABLES xii

Cathleen Heyden Implementing a computer player for Carcassonne

Chapter 1

Introduction

This chapter starts to give a general introduction to research in modern board
games (section 1.1). Section 1.2 defines the problem statement and research
questions. Finally, an outline of this thesis is described in section 1.3.

1.1 Research Domain

Modern board games are interesting to the field of artificial intelligence (AI).
This kind of games forms a transition between classic board games and video
games. In the past there is a lot of research done in classic board games. Most
of the games are deterministic, have perfect information and are applicable for
2 players.

In games with perfect information the entire state of the game is fully
observable to each of the players (e.g., Backgammon).

Deterministic games guarantee that the outcomes only depend on the
player’s actions. In contrast, non-deterministic games contain an element of
chance through shuffling a deck of cards or rolling the dice. Deterministic
games like Chess or Checkers have been studied in great depth and with great
success. For that reason non-deterministic games get more and more interest
from researchers. Most of the modern board games support to play with more
than two players. In addition they are often non deterministic and/or have
imperfect information.

This thesis researches different AI techniques for a non-deterministic mod-
ern board game with perfect information. There is some research already done
on the game “Backgammon” [11], which is a non-deterministic and perfect-
information game. In this game the chance events are constant. There are
also games with changing chances for events during playing. So it would be
interesting to research such a game. In this sense “Carcassonne” is a good
choice.

Carcassonne is a popular tile-laying board game. Two to five players can
participate in one game (with expansion six). It is a non-deterministic game
because the players draw tiles randomly during the game. These chance events
are not uniformly distributed because several tiles have different frequencies.

1.2. PROBLEM STATEMENT AND RESEARCH QUESTIONS 2

After drawing a tile the chance to get the same tile again decreases. In addi-
tion, the game has perfect information since the state of the game is always
completely visible to each player.

1.2 Problem Statement and Research Ques-

tions

The goal of this thesis is to develop a computer player which is able to play the
game Carcassonne as good as possible. This research only regards the 2-player
variant of Carcassonne. The problem statement of the thesis is:

Can a computer player be built to play the game of Carcassonne as good
as possible?

Therefore it is necessary to answer several research questions. The first ques-
tion is:

1. What is the complexity of Carcassonne?

To answer this research question the state-space complexity and the game-
tree complexity need to be computed.

2. Can Monte-Carlo search be used for implementation?

Monte Carlo is a promising technique to implement a computer player. It
is easy to implement and reached good results in previous researched games.

3. Can Expectimax be used for implementation?

This approach already works quite well for many non-deterministic board
games. So the technique will be applied also for Carcassonne.

4. In which way can the approaches be improved?

There are different improvements for each technique. Several of them will
be investigated.

5. Which technique reaches the best result?

In order to compare the techniques tests have to be performed. Therefore
two-player games will be simulated. The two players will use different meth-
ods. The player with more points wins the game and who wins most games
can be seen as the better one.

Cathleen Heyden Implementing a computer player for Carcassonne

3 CHAPTER 1. INTRODUCTION

1.3 Thesis Outline

The outline of this thesis is as follows:

• Chapter 1 contains a general introduction to research in modern board
games. Additionally, this chapter describes the problem statement and
the research questions.

• Chapter 2 introduces the modern board game Carcassonne. The rules of
the game and some strategies are briefly described.

• Chapter 3 presents the analysis of the complexity of Carcassonne. There-
fore the state-space complexity and the game-tree complexity are com-
puted. Moreover, the complexity will be compared to other board games.

• Chapter 4 deals with the implementation of an AI using the Monte-Carlo
method. Furthermore, the improved algorithm Monte-Carlo Tree Search
is described.

• Chapter 5 presents another technique to implement a computer player
– Expectimax. Additionally, the *-Minimax algorithms are given, they
improved Expectimax.

• Both methods and there improvements are compared. Chapter 6 reports
on the results of the experiments.

• The thesis finishes in chapter 7 with the conclusions. The research ques-
tions are answered and the problem statement is evaluated. Besides, this
chapter describes suggestions for future research.

Implementing a computer player for Carcassonne Cathleen Heyden

1.3. THESIS OUTLINE 4

Cathleen Heyden Implementing a computer player for Carcassonne

Chapter 2

Carcassonne

In this chapter some general information about the game, the rules and some
strategies are described.

Carcassonne is a modern tile-laying board game. The game was invented
by Klaus-Jürgen Wrede and published in 2000 by Hans im Glück in German
and Rio Grande Games in English. It received the “Spiel des Jahres” award
in 2001. The game is named after the medieval fortified town of Carcassonne
in southern France, famed for its city walls.

2.1 Gameplay

Carcassonne consists of 72 tiles1 and many figures. Each tile illustrates a
section of a landscape. This landscape consists of different features – roads,
fields, cities and cloisters. The players earn points by occupying these features
with their figures.

The game has spawned many expansions. They contain new tiles, addi-
tional figures and features. This thesis considers only the basic game.

At the beginning each player get 7 figures of one color, called meeples or
followers. The basic game contains only “normal” meeples. Therefore the
thesis always uses “meeple” instead of “follower” or “figure”. The game starts
with a single tile face up (see figure 2.1). The remaining 71 tiles are covered
up.

Each turn consists of two parts. First, the player draws a tile and places
it to the existing terrain so that it matches neighbouring features: roads must
connect to roads, fields to fields, and cities to cities.

The second step is optional. The player can put a meeple on the just-
placed tile. The meeple must be placed in a feature which is not yet occupied
by another meeple (see figure 2.2). Despite this it is possible to get multiple
meeples in one feature: figure 2.3 shows how to connect two occupied feature
parts into a single feature by adding another tile.

1An overview of the possible tiles can be found in appendix A.

2.1. GAMEPLAY 6

Figure 2.1: Starting tile (always the same) and meeples.

Figure 2.2: The road and the large field are already occupied so there are only two possibil-
ities to put the meeple: the small field and the city.

Figure 2.3: Each city part is already occupied, the new tile connects them.

Cathleen Heyden Implementing a computer player for Carcassonne

7 CHAPTER 2. CARCASSONNE

A completed feature scores points for the player with most meeples in it.
The game is over when the last tile has been placed (of course the player can
put a meeple on it). At that time also all incomplete features score points
for the players with most meeples in them. The player with the highest score
wins.

2.2 Scoring

If a feature is closed it will be scored. After scoring all of the meeples in this
feature are returned to their owner. They can be re-used in the following turns.
At the end of the game all incomplete features are also scored.

The following subsections describe the scoring for each feature.

2.2.1 Cloister

A cloister is completed when it is surrounded by eight tiles. The meeple on the
cloister earns 9 points for its owning player – one point for each neighbouring
tile and the cloister itself.

If a cloister is not completed at the end of the game, it awards points based
on the number of existing neighboring tiles and additionally one point for the
cloister itself.

2.2.2 Road

A road is completed when there is no unfinished edge from which to expand.
Completed roads and incomplete roads score identically: The players with
most meeples on a road get one point per tile that contains a part of this road.

2.2.3 City

A city is also completed when there is no unfinished edge from which to expand.
Completed cities score two points per tile and additionally two points for each
pennant.

At the end of the game incomplete cities score one point for each tile and
also one point per pennant.

2.2.4 Field

Fields are only scored at the end of the game. The players with the most
meeples on the field earn three points for each completed city bordering the
field.

Implementing a computer player for Carcassonne Cathleen Heyden

2.3. STRATEGIES 8

2.3 Strategies

In general there are some simple strategies to use in each turn [3]:

• try to get cheap points every turn by instantly closing a small feature
(city or road which consists of 2 tiles)

• build existing cities, roads, and cloisters toward completion

• try to get the best field positions for end game scoring

• try to connect to a bigger city, road or field and take it over by having
more meeples in it than the opponent

• place a tile to block a city, cloister or road of the opponent

A combination of these points forms a good strategy. An experienced player
first looks at his current on-board positions and decides, whether the drawn
tile may be useful to close a feature, to expand a feature, to create a new
feature or to block others from getting into his features. If he cannot expand,
cannot close and cannot create, then the player may use this tile to block other
players.

But which feature has the biggest advantage? To answer this question each
feature is determined for advantages and disadvantages.

Feature Advantage Disadvantage
Cloister guarantees 5-9 points on av-

erage without doing much
work

possible to get meeple stuck,
if an opponent blocks one of
the 8 neighboured positions

Field gives many points (in many
games there is just one cen-
tral field, and whoever con-
trols it can win the game)

meeple is placed until the
end of the game, because all
fields are only scored when
the game is over

Road easier to complete than
cities because maximum 2
open ends

in contrast to cities lower
score

City gets additional points with
pennants

sometimes difficult to close,
opponent can easily connect

According to these advantages and disadvantages a ranking of the features
can be defined. It is not an official ranking but a personal opinion.

Roads are the weakest; although they are easy to build they score only one
point for each tile.

Cloisters are more effective. They also score only one point per tile but in
most cases 4-5 tiles are already adjacent to the cloister at the moment when it
is put to the landscape. The cloister terrain can be finished while working on
other features. But the main disadvantage is that the meeple can get stuck.

Cathleen Heyden Implementing a computer player for Carcassonne

9 CHAPTER 2. CARCASSONNE

Cities are the next ones, because they earn 2 points for each tile and for
each pennant.

Fields are the most effective features. They get 3 points for each bordering
city and can become very large. Because the meeple on a field stays there until
the game’s end it is important not to set too many meeples on fields and not
too early. It is quite difficult to choose the right moment.

Implementing a computer player for Carcassonne Cathleen Heyden

2.3. STRATEGIES 10

Cathleen Heyden Implementing a computer player for Carcassonne

Chapter 3

Complexity Analysis

This chapter examines the complexity of Carcassonne. The complexity con-
sists of two different factors: the state-space complexity and the game-tree
complexity [1].

In section 3.1 the state-space complexity is computed. The game-tree com-
plexity is determined in section 3.2. In the last section, 3.3, the computed
complexities are compared to known complexities of other games.

3.1 State-Space Complexity

The state-space complexity is the total number of different board configura-
tions which are possible in the game. To calculate an exact number is often
very difficult, so a lower bound can be calculated instead. In Carcassonne
the calculation is also very complicated. In principle, there are three steps
to calculate the state-space complexity for Carcassonne. Firstly, the number
of shapes is determined, which can be formed with up to 72 tiles. Then the
placement of the tiles within the shapes will be regarded, but without meeples.
Lastly, the opportunity to put a meeple on one of the features of each tile is
regarded.

The first part is to determine how many shapes are possible for each number
of tiles in the game. For example there is only one shape for 2 tiles (both next
to each other), 2 possibilities for 3 tiles (a corner or a line) and so on. These
shapes are called polyominoes or n-ominoes. Basically, there are two types
of polyominoes: fixed and free polyominoes. While a mirrored or a rotated
shape is one and the same free polyomino, it is multiple counted for fixed
polyominoes. For Carcassonne the number of free polyominoes need to be
calculated, because a mirrored or rotated map leads to the same game state.
A free polyomino with no rotation or reflection corresponds to 8 distinct fixed
polyominoes. Therefore, the number of fixed polyominoes is approximately
8 times the number of free polyominoes. The higher the n the lower the
probability to have symmetries and the more exponentially accurate is this
approximation [19].

3.1. STATE-SPACE COMPLEXITY 12

n free polyominoes fixed polyominoes
46 8.6 · 1024 68557762666345165410168738
47 3.4 · 1025 272680844424943840614538634
48 1.4 · 1026 1085035285182087705685323738
49 5.4 · 1026 4319331509344565487555270660
50 2.2 · 1027 17201460881287871798942420736
51 8.6 · 1027 68530413174845561618160604928
52 3.4 · 1028 273126660016519143293320026256
53 1.4 · 1029 1088933685559350300820095990030
54 5.4 · 1029 4342997469623933155942753899000
55 2.2 · 1030 17326987021737904384935434351490
56 8.6 · 1030 69150714562532896936574425480218
57 3.5 · 1031 2.8 · 1032

58 1.4 · 1032 1.1 · 1033

59 5.6 · 1032 4.5 · 1033

60 2.2 · 1033 1.8 · 1034

61 8.9 · 1033 7.1 · 1034

62 3.6 · 1034 2.8 · 1035

63 1.4 · 1035 1.1 · 1036

64 5.7 · 1035 4.6 · 1036

65 2.3 · 1036 1.8 · 1037

66 9.1 · 1036 7.3 · 1037

67 3.6 · 1037 2.9 · 1038

68 1.5 · 1038 1.2 · 1039

69 5.8 · 1038 4.7 · 1039

70 2.3 · 1039 1.9 · 1040

71 9.4 · 1039 7.5 · 1040

72 3.8 · 1040 3.0 · 1041

Table 3.1: Number of polyominoes with 46 up to 72 squares. The bold values are accurate
numbers taken from [15].

The problem is that there is no formula to enumerate polyominoes of a given
size. Free polyominoes have been enumerated accurately up to n = 45 [23] and
fixed polyominoes up to n = 56 [15]. If n is greater, only an approximation
exists to calculate fixed polyominoes. The number of fixed polyominoes An

can be calculated:

An ≈
c · λn

n

where c = 0.3169 and λ = 4.0626 [5, 14]. These values are only estimators.
To get an estimator of free polyominoes the result need to be divided by 8.
Table 3.1 shows the number of polyominoes which can be built with up to 72
squares. In other words, the table shows the number of different shapes which
can be built with up to 72 tiles from Carcassonne.

Cathleen Heyden Implementing a computer player for Carcassonne

13 CHAPTER 3. COMPLEXITY ANALYSIS

The numbers of fixed polyominoes up to n = 72 sum up to 5 · 1040. This
value is a highly underestimated lower bound of the state-space complexity.
Due to the facts that games with such high state-space complexity are unsolv-
able and the calculation of the next steps (placement of tiles and meeples) are
very complicated, this result is sufficient.

3.2 Game-Tree Complexity

The game-tree complexity is the number of different games which can be
played. It indicates the total number of terminal nodes in the game tree.
Often it is impossible to calculate the game-tree complexity exactly, but an
estimate can be made. Therefore two values have to be known: the branching
factor and the game length. The branching factor indicates from how many
different possible moves a player can choose on average. Moves can differs by

(1) the position of the tile on the map

(2) the rotation of the tile

(3) whether a meeple is put to the tile and in which feature

The game length describes the average number of plies until the game is
over. A ply consists of one move which is taken by one of the players.

The game-tree complexity can be computed by raising the average branch-
ing factor (possible moves) b to the power of the average game length d (depth
of the tree) multiplied with the average branching factor of the chance nodes
c to the power of the game length d:

C = bd × cd

The length of the game is always the same, because there are 71 tiles1

which have to be drawn. Each player draws only one tile per move, so the
length of the game is 71.

To determine the branching factors averages are taken. There are two
branching factors needed: the chance events (number of different tiles which
can be drawn) and the possible moves for a drawn tile. For the branching
factor of chance events an average can be taken. There are 24 different tiles
and totalling 71 tiles. That means on average after 3 plies the number of
different tiles decreases by 1. So the average branching factor of chance events
is:

cd =
24∏
i=2

i3

The second branching factor, the average number of possible moves, can be
determined by storing the number of possible moves for each ply while playing

Implementing a computer player for Carcassonne Cathleen Heyden

3.2. GAME-TREE COMPLEXITY 14

Figure 3.1: The average number of possible moves for several plies. Therefore 200 games
with two *-Minimax players (depth=3) were simulated.

several games. Figure 3.1 shows the average branching factor of several plies
after simulating 200 games (*-Minimax player with depth 3).

The average branching factor of the first ply is 22. Until ply 14 the average
branching factor increases, because the map grows and every player is able to
put a meeple on the tile. But there is a peak on ply 14 (b = 63). This is
because every player gets 7 meeples at the beginning. If both players put a
meeple in each turn and get no meeple back, there would be no more meeple
in ply 15 (8th move of player 1) and ply 16 (8th move of player 2). So the
player can only decide where and how to place the tile on the map, but can
not put a meeple. That is why the branching factor decreases until b = 39.
In the last phase the branching factor grows again. There are two possible
reasons. In general closer to the end of the game the number of possible moves
increases, if the player can put a meeple, because of the growing map. The
second reason is, that more and more meeples go back to their players because
features are closed. So the chance of having no meeple decreases. For that
reason the average branching factors of the last plies are greater than 100.

Figure 3.2 shows the frequencies of different branching factors. There is a
peak on the branching factor on 32. The minimum branching factor is 1 and
the maximum was 865 during the 200 simulations. But figure 3.2 shows that
branching factors which are greater than 150 occur very rarely.

Finally, the average branching factor is 55 and the game-tree complexity
can be computed:

C = 5571 ×
24∏
i=2

i3 ≈ 3.7 · 10123 × 2.4 · 1071 ≈ 8.8 · 10194

1Totally there are 72 tiles but one tile is the starting tile.

Cathleen Heyden Implementing a computer player for Carcassonne

15 CHAPTER 3. COMPLEXITY ANALYSIS

Figure 3.2: Frequencies of branching factors in 200 games played by two *-Minimax players
(depth=3).

3.3 Comparison to Other Games

Finally, it is interesting to compare the calculated complexities to the com-
plexities of other games. For example, the state-space complexity of Chess is
1046 and the game-tree complexity is 10123. Go has a state-space complexity of
10172 and a game-tree complexity of 10360. Figure 3.3 presents the complexities
of different games.

Figure 3.3: The complexities of different games.

The figure shows that the game-tree complexity of Carcassonne is smaller
than the game-tree complexity of Shogi, but greater than that one of Chinese

Implementing a computer player for Carcassonne Cathleen Heyden

3.3. COMPARISON TO OTHER GAMES 16

Chess and Backgammon. Since the game-tree complexity is very high a full-
depth search in Carcassonne is impossible. The state-space complexity of
Carcassonne is at least 1040. The real value will be much higher, because there
are a lot of multiplicators missing. So the assumption is that the state-space
complexity is at least equal to that of Arimaa. Due to the large state-space
complexity Carcassonne is not solvable.

Cathleen Heyden Implementing a computer player for Carcassonne

Chapter 4

Monte Carlo

An approach to implement a computer player for Carcassonne is Monte-Carlo
search. The reason for choosing Monte Carlo is that the basic algorithm does
not need any strategic knowledge. The only requirement is knowledge of the
rules and the actual state of the game.

This chapter presents the use of this algorithm. First, section 4.1 describes
research on the Monte-Carlo technique in other games. Section 4.2 describes
the basic algorithm and its implementation for Carcassonne. Section 4.3 gives
an improved algorithm.

4.1 Research Done so Far

The Monte-Carlo technique has been studied by Brügmann during the devel-
opment of an AI-player for the game of Go [6]. Furthermore, it is applied
in many other deterministic classic board games, such as Ataxx [10], Othello
[18] or Amazons [17]. The implemented computer players play quite well on
amateur or intermediate level.

However, it is quite hard to improve the performance of a Monte-Carlo
player to a high level. One possible improvement is to reduce the number
of possible moves by applying domain knowledge [10, 18]. The Go program
MoGo uses another improvement, the Monte-Carlo Tree Search [25]. By
using this Monte-Carlo technique the Go-AI reached a strong player level and
became one of the strongest AIs for Go.

Carcassonne differs in two aspects from the researched games. Carcassonne
is a multi-player game and it is non deterministic. However, in the following
sections we limit ourselves to the 2-player variant of Carcassonne.

4.2 Implementation

The basic algorithm of Monte Carlo works quite simple. The current state
is the starting position for the Monte-Carlo algorithm. At first, all possible
moves at this position are determined. At least there is always one possible

4.3. IMPROVEMENT: MONTE-CARLO TREE SEARCH 18

move, because if a tile cannot be put to the map a new tile is drawn and the
other tile returns to the pool of tiles. If there is exactly one possible move,
then this one is the best one. In the case that there are more moves possible
the Monte-Carlo technique decides which one is the best. For each possible
move the algorithm first plays this move and finishes the game by selecting
the following moves for all players randomly.

How many games for each possible move are simulated depends on the
number of possible moves and the maximum time before the algorithm has
to make a decision. So the maximum time is divided among the number of
possible moves. This indicates how long the algorithm can simulate games for
each possible move.

After running a simulation the algorithm evaluates the simulated game.
There are two possibilities to score a move: first, the score is 1 if the Monte-
Carlo player won the game, 0 for a draw and −1 if the Monte-Carlo player
lost. This technique does not take into account whether a game was won by a
clear margin or not. The second approach takes this margin into account. So
the score is computed by subtracting the opponent score SOpp from the score
of the Monte-Carlo player SMC (see section 2.2 for scoring):

S = SMC − SOpp

So, if S is positive the Monte-Carlo player won the game, else the oppo-
nent player did. If the Monte-Carlo player plays the game with more than one
opponent, there are also two methods for the score. Either the score is deter-
mined by the difference between the best other player and the Monte-Carlo
player or by the difference between the total score of all opponents and the
Monte-Carlo player. The different opportunities for evaluating the moves are
compared in section 6.2.1.

Finally, for each possible move the average result of all simulations for this
move is computed. Monte Carlo decides to play the move with the highest
average score.

4.3 Improvement: Monte-Carlo Tree Search

Monte-Carlo Tree Search (MCTS) extends the basic Monte-Carlo algorithm.
The basic Monte-Carlo algorithm selects a move randomly to finish a simula-
tion. The disadvantage is that unlikely chance events (in Carcassonne drawing
a tile) are played with the same probability as more likely chance events. Also
bad moves (putting a tile and maybe a meeple to the map) are played about as
often as good moves. MCTS is a best-first search algorithm, so the algorithm
is able to play better moves more often than bad ones.

In MCTS a game tree is constructed that stores statistics about map po-
sitions, which are represented by the nodes. The stored statistics can be used
for improving the search, e.g., selecting the most promising move. In general
a node consists of at least two variables: the number of visits and the number

Cathleen Heyden Implementing a computer player for Carcassonne

19 CHAPTER 4. MONTE CARLO

of won games. MCTS starts with a tree containing only the root node. For
Carcassonne there are two different nodes needed. Move nodes are used if the
player must choose a move. Tile nodes correspond to situations in which a tile
has to be drawn.

Figure 4.1: Outline of Monte-Carlo Tree Search [7].

Monte-Carlo Tree Search consists of four steps, repeated as long as there is
time left. Figure 4.1 illustrates these phases. The first step selects a sequence
of nodes from the root until a leaf node L of the tree is reached. The second
phase expands the tree by storing one or more children of L in the tree. The
third step simulates the game until it is finished. Finally, the result of this
simulated game is propagated back to the root of the tree. When the time is
over, the move played by the program is the child of the root with the highest
win rate. The following subsections give a more detailed description of the
four steps.

4.3.1 Selection

This phase selects one of the children of a given node. If the children are tile
nodes, the next child is chosen randomly, but the more tiles of a tile type are
in the remaining pack the greater the chance to choose the child of this tile
type. If the children are move nodes the selection strategy must decide to
explore more nodes or to exploit the most promising node so far. The strategy
controls the balance between exploitation and exploration. On the one hand,
the task often consists of selecting the move that leads to the best result so
far (exploitation). On the other hand, the less promising moves must still be
tried, due to the uncertainty of the evaluation (exploration). This problem of
balancing of exploitation and exploration is similar to the Multi-Armed Bandit
problem [8].

One possible strategy to choose the next child is Upper Confidence bounds
applied to Trees (UCT) [16]. This strategy chooses the move i which maximizes

Implementing a computer player for Carcassonne Cathleen Heyden

4.3. IMPROVEMENT: MONTE-CARLO TREE SEARCH 20

the following formula:
wi

vi

+ C ×
√

ln vp

vi

where wi

vi
is the win rate of node i. wi is the number of wins after visiting this

node and vi the number of visits of this node. vp is the number of visits of
the parent node. C is a constant value, which has to be tuned experimentally.
If C is small the algorithm exploits the result earlier and if C is higher more
children will be explored. Section 6.2.2 shows the results of different values for
C and decides on the best value.

If some children of a node were not visited yet, a UCT value cannot be
calculated. In that case one of these children is chosen and stored in the tree
(see 4.3.2 Expansion).

4.3.2 Expansion

This step decides whether nodes will be added to the tree. The simplest rule
is to add one node per simulated game [9]. The expanded node corresponds
to the first position encountered that was not stored yet. This rule is used for
the implementation of a MCTS player for Carcassonne.

4.3.3 Simulation

This step starts when a position is entered which is not part of the tree
yet. The strategy on this step selects moves in self-play until the end of the
game. The moves can be chosen plain randomly or also pseudo-randomly. The
Carcassonne-MCTS player chooses a move plain randomly and a tile is chosen
with regard to the number of remaining tiles of this type. So a tile which exists
more often has a greater chance to be drawn.

The value of the result can be determined in the same way as for basic
Monte Carlo. Either a win is scored with 1 and a loss with −1 or the difference
of the score of the players can be used. Section 6.2.2 shows which method
reaches the better result.

4.3.4 Backpropagation

This step propagates back the result of the simulated game to the nodes which
are visited during playing. Each node stores the number of visits and the sum
of the results of all played games where this node participated. An average
result of a node can be calculated by dividing this sum by the number of visits
of this node.

Cathleen Heyden Implementing a computer player for Carcassonne

Chapter 5

Expectimax

Another algorithm to implement a computer player for Carcassonne is Expec-
timax search. This technique is based on the Minimax [20] search algorithm
which can be used for deterministic games. Expectimax expands Minimax so
that it can be applied to games with chance.

This chapter describes the usage of this algorithm. Firstly, section 5.1
explains the background mechanisms – Minimax and Alpha-Beta. Section 5.2
describes research results of using Expectimax search and its enhancements in
other games. Section 5.3 presents the basic algorithm and its implementation
for Carcassonne. Section 5.4 gives several enhanced algorithms.

5.1 Background

It is advisable to understand the following techniques before reading the sec-
tions about Expectimax.

5.1.1 Minimax

Minimax is used to compute a value of a game state in a two-player determin-
istic game. This algorithm generates all possible game states after playing a
certain number of plies. This means Minimax is a full-width tree search. In
most games it is not possible to search the complete tree, that is why often
there is a fixed depth. The leaf nodes are scored by an evaluation function.
The player to move chooses the move with the maximum value and the op-
ponent player will perform that move which minimizes the score for the max
player. That means this algorithm always plays optimally.

Figure 5.1 shows a sample minimax tree with a 3-ply search. The root node
is a max node and represents the current game state. The edges leading to
the successors represent the execution of the possible moves and lead to new
game states. Then the opponent player, the min player, has to move. This
process goes on until a leaf node is reached. After scoring the leaf nodes the
max player chooses the move where the child has the highest value and the
min player chooses the move with the lowest value. In that way the best node

5.1. BACKGROUND 22

on the root node can be determined. In the figure the first move which has
the value 4 is considered to be the best one.

Figure 5.1: A minimax tree.

The Minimax algorithm is computationally expensive in most games be-
cause the complexity depends on the branching factor. For a fixed search depth
d the complexity of the algorithm is O(bd).

5.1.2 Alpha-Beta

Searching every node is computationally very expensive and not always neces-
sary. Alpha-beta is a pruning technique which cuts some branches off. There-
fore, it defines a search window for every node. If the value of this node falls
outside of this window the remaining successors need not be searched and
cut-offs occur.

Figure 5.2 shows the same tree as figure 5.1, now using alpha-beta search.
When the third leaf node (value = 8) is searched its parent knows it has a
value of at least 8, because it is a max node. The parent of this max node
which has a value of 4 until now will not choose a value which is greater than 4
because it is a min node. For that reason the other successor of the node with
the value greater or equal 8 does not need to be searched. The same holds for
the second child of the root node. Because it is a min node and the value of
the first of its successors is 2, the value of this node is less or equal 2. The root
node has already value 4 so it will not choose a value less than 4 because it
is a max node. Therefore, there is a cut-off on the second branch of the node
with the value less or equal 2 because its value does not matter.

Cathleen Heyden Implementing a computer player for Carcassonne

23 CHAPTER 5. EXPECTIMAX

Figure 5.2: An alpha-beta tree.

5.2 Research Done so Far

A typical deterministic board game is Backgammon. There has been done
much research on this game. A promising search technique is Expectimax and
its enhancement *-Minimax. Hauk, Buro and Schaeffer investigated Expecti-
max, Star1 and Star2 [11]. They figured out that Star2 with a search depth
of 5 works most efficiently. One proposal for future research is to apply this
technique for Carcassonne. They mentioned that a search depth of 5 or 6 could
result in expert play of that game.

Furthermore, there exists another research which refers to Carcassonne as
a possible future research [24]. This thesis researches the game of Dice. In
contrast to Carcassonne and Backgammon the chance events in this game are
uniformly distributed.

5.3 Implementation

Expectimax [13] behaves exactly like Minimax. In this thesis only regular
Expectimax trees are taken into account. That means there is a chance event
in each ply. The chance event in Carcassonne is to draw a new tile which
must be placed to the existing landscape. The search tree adds chance nodes
between the min and max nodes. Each of these chance nodes has a probability
to be chosen. In Carcassonne the chances are non-uniform distributed. The
probabilities of all successors of a min or max node sum up to one. The
Expectimax value of a chance node is determined by the sum of the minimax
value of its successors multiplied by their probability. So for a state s the
Expectimax value is calculated with the following formula:

Expectimax(s) =
∑

i

P (childi) · U(childi)

Implementing a computer player for Carcassonne Cathleen Heyden

5.3. IMPLEMENTATION 24

childi describes the ith successor of s, P () is the probability that this successor
is chosen and U() is the minimax value of this successor.

Figure 5.3 shows a regular Expectimax tree. The value of the upper chance
node can be calculated as follows: 0.25× 0.8 + 0.75× 2 = 1.7.

Figure 5.3: A regular Expectimax tree.

Because the complexity depends on the branching factor the computational
time for Expectimax in Carcassonne is very high. Similarly to Minimax the
complexity of the algorithm is: O(bdcd−1), where c is the branching factor of
the chance nodes. So only a depth of 2 or 3 is realistic for Carcassonne because
of the high branching factor. Each depth step means one ply. Searching to
depth 1 only considers the moves which are possible from the root node. That
means the player only sees the result after playing this move.

To avoid duplicated code, because always a maximizing and a minimizing
function is needed, there is another algorithm which is based on Minimax.
This is called Negamax search and it always maximizes the values. For that
reason the Negamax search is used as the basic algorithm of Expectimax.

float expectimax (int depth){

if (gameIsFinished() || depth==0) return getValue();

score = 0;

for (Tile newTile : getDifferentTiles()){

setNextTileInGame(newTile);

value = negamax(depth);

undoSetNextTile();

score += value * numberOfTiles(newTile)/numberOfRemainingTiles();

}

return score;

}

Listing 5.1: Expectimax Algorithm

Listing 5.1 shows the pseudocode of the Expectimax algorithm. Because
chance nodes do not count for depth, the depth is not decreased when calling
the negamax procedure, which can be found in listing 5.2. Negamax has only
max nodes, so the values of min nodes must be negated. For that reason the

Cathleen Heyden Implementing a computer player for Carcassonne

25 CHAPTER 5. EXPECTIMAX

original Negamax algorithm calls itself but with a negative sign. In cooperation
with Expectimax it must call the negated expectimax algorithm instead of
itself.

float negamax (int depth){

score = -Infinity;

for (Move move : getPossibleMoves()){

executeMove(move);

value = -expectimax(depth-1);

undoMove();

score = max(value, score);

}

return score;

}

Listing 5.2: Negamax Algorithm

5.4 Improvements: *-Minimax Search

Also for non-deterministic games there are several pruning techniques. Bruce
Ballard [4] introduces *-Minimax algorithms which are based on the Alpha-
Beta technique. In this research Star1, Star2 and Star2.5 are investigated.

5.4.1 Star1

Star1 is a pruning technique for chance nodes by using the search windows of
the min and max nodes. A cut-off occurs, if the weighted sum of all children
of a chance node falls outside the αβ window. If a successor has no value so
far the theoretical lower value L (successor is max node) or the theoretical
upper value U (min node) must be used. These values are the minimum and
maximum of the evaluation function.

Figure 5.4: Example of Star1.

Figure 5.4 illustrates the proceeding of the Star1 algorithm at a chance node
with 3 successors. The values of the evaluation function are between L = −100
and U = 100. The αβ window of the upper chance node is [−10, 25]. That
means, if the value of this node lies between these bounds an exact value must

Implementing a computer player for Carcassonne Cathleen Heyden

5.4. IMPROVEMENTS: *-MINIMAX SEARCH 26

be calculated and if the value falls outside this window an upper or lower
bound is sufficient. The first two successors are already determined. The last
successor gets the lower bound −100 as a value, because it is a max node. So
an estimator for the root node can be calculated: 0.6× 40 + 0.25× 64 + 0.15×
(−100) = 25. That means the value of the chance node is at least 25. This
example shows that it is important to order the chance events so that the most
probable events come first.

If the ith successor of a chance node is reached, the first i − 1 successors
are already searched and have a value. An upper bound for the chance node
can be calculated by setting the theoretical upper bound U to all remaining
successors. Similarly, to calculate a lower bound the remaining successors must
be set to the theoretical lower bound L. A cut-off occurs, if it can be proven,
that the Expectimax value falls outside the search window. If there are equal
chances the following formulas are used:

(V1 + . . .+ Vi−1) + Vi + U × (N − i)

N
≤ alpha

(V1 + . . .+ Vi−1) + Vi + L× (N − i)

N
≥ beta

where N is the total number of successors and Vi is the value of the ith suc-
cessor. The rearranged formulas give an alpha value Ai and a beta value Bi

for the ith successor:

Ai = N × alpha− (Vi + . . .+ Vi−1)− U × (N − i)

Bi = N × beta− (Vi + . . .+ Vi−1)− L× (N − i)

For Carcassonne the formulas must be modified because the chances are
not equal as long as the number of the tiles for a type is different from another
tile type. Therefore the probabilities of the successors need to be taken into
account:

(P1 × V1 + . . .+ Pi−1 × Vi−1) + Pi × Vi + U × (1− P1 − . . .− Pi) ≤ alpha

(P1 × V1 + . . .+ Pi−1 × Vi−1) + Pi × Vi + L× (1− P1 − . . .− Pi) ≥ beta

where Pi is the probability that a tile of type i is drawn.
The alpha and beta bound of the ith successor can also be calculated:

Ai =
alpha− (P1 × V1 + . . .+ Pi−1 × Vi−1)− U × (1− P1 − . . .− Pi)

Pi

Bi =
beta− (P1 × V1 + . . .+ Pi−1 × Vi−1)− L× (1− P1 − . . .− Pi)

Pi

Cathleen Heyden Implementing a computer player for Carcassonne

27 CHAPTER 5. EXPECTIMAX

The algorithm can update several parts of the formula separately so com-
putational time can be saved. The value part (P1 × V1 + . . .+ Pi−1 × Vi−1) is
initialized by X1 = 0 and updated by Xi+1 = Xi+Pi×Vi. The probability part
(1−P1− . . .−Pi) can be initialized with Y0 = 1 and updated by Yi = Yi−1−Pi.
That is why the implemented formulas for Ai and Bi are:

Ai =
alpha−Xi − U × Yi

Pi

Bi =
beta−Xi − L× Yi

Pi

These formulas are applied in the pseudocode of the Star1 algorithm which
is presented in listing 5.3. The same negamax from listing 5.2 is used, but
instead of calling expectimax procedure star1 must be called. Additionally,
negamax prunes if a value falls outside the αβ window.

float star1(float alpha, float beta, int depth){

if (gameIsFinished() || depth==0) return getValue();

cur_x = 0;

cur_y = 1;

for (Tile newTile : getDifferentTiles()){

probability = numberOfTiles(newTile)/numberOfRemainingTiles();

cur_y -= probability;

cur_alpha = (alpha-cur_x-U*cur_y)/probability;

cur_beta = (beta-cur_x-L*cur_y)/probability;

ax = max(L, cur_alpha);

bx = max(U, cur_beta);

setNextTileInGame(newTile);

value = negamax(ax, bx, depth);

undoSetNextTile();

if (value >=cur_beta) return beta;

if (value <= cur_alpha) return alpha;

cur_x += probability * value;

}

return cur_x;

}

Listing 5.3: Star1 Algorithm

Star1 returns the same result as Expectimax, but uses fewer node expan-
sions to obtain the result. In the worst case, no cut-off occurs, which means
that the number of nodes which have to be searched is the same as in Expecti-
max. A reason of this weak pruning is that this algorithm is very pessimistic.
It assumes that all unseen nodes have a worst-case value. For that reason most
of the children must be searched, because if many children have a worst-case
value the value is highly correlated.

5.4.2 Star2

This algorithm is an extension of Star1 and can be applied only on regular
Expectimax trees. The advantage is that the algorithm knows what kind of
node will follow. If the Negamax algorithm is used a chance node will always
be followed by max nodes and vice versa. Star2 begins with a probing phase,

Implementing a computer player for Carcassonne Cathleen Heyden

5.4. IMPROVEMENTS: *-MINIMAX SEARCH 28

which is a speculative phase. Instead of searching each child of each successor,
that phase checks only one child of each possible successor. The value of that
child becomes a lower bound of this successor. In that way each successor
of the node gets a lower bound. These lower bounds can be used to prove
that the value of the node falls outside the αβ window. Therefore all unseen
children get this bound instead of L. If the value falls outside the window all
these unseen successors can be skipped. If the probing phase does not exceed
beta, all of the successors must be searched, but the search window can be
narrowed by using the more accurate lower bounds. For the search phase the
Star1 algorithm is used.

Figure 5.5: Successful Star2 Pruning.

Figure 5.5 shows an example of a successful Star2 pruning. The theoretical
lower bound is −100 and the theoretical upper bound is 100. The αβ window
of the upper chance node is [−10, 10]. In the first phase of the algorithm the
first possible chance outcome is probed. The value of the first lower chance
node is −20. Thus, the value of the parent min node is at least −20. Now
the theoretical upper bound for the upper chance node can be calculated as
follows: −20×0.8 + 100×0.2 = 4. A cut is not possible yet, because the value
is inside the αβ window [−10, 10]. The theoretical window of the upper chance
node is now [−100, 4]. After searching the first child of the second successor,
this window is updated to [−100,−14]. This falls outside the αβ window. For
that reason the remaining children can be pruned.

Move ordering strongly influences the benefit of Star2. The best result
can be reached if the outcomes of the first children are large enough so that
the Expectimax value exceeds beta. That means the most promising move
should be investigated first. Also in the case that this fails, this algorithm has
another advantage. The determined lower bounds can be used in the Star1
search instead of using the theoretical lower bound L, so the search window is

Cathleen Heyden Implementing a computer player for Carcassonne

29 CHAPTER 5. EXPECTIMAX

smaller.
The calculation of Ai in the probing phase is not necessary, because Nega-

max is used and it has only to be proven, that the weighted sum of the lower
bound of the successors exceeds beta. So only a current beta Bi needs to be
calculated. For that calculation the formula of Star1 can be used. In the search
phase the calculation of Ai can also be used but for Bi the formula must be
modified:

Bi =
beta−Xi −Wi

Pi

where Wi = Wi+1 + . . . + WN is the sum of the probing values for nodes that
are not searched until now. Wi is used because it is a better estimator for the
lower bound of this node than L.

Listing 5.4 illustrates the pseudocode of the Star2 probing phase. The
function nProbe is similarly to the negamax function of the Star1 algorithm.
But instead of searching each child, only the first child is investigated. For
that reason the result is only a lower bound. The search phase is the same as
in the Star1 algorithm, but for the calculation of cur_beta instead of U*cur_y
the value of cur_w must be used.

float star2(float alpha, float beta, int depth){

if (gameIsFinished() || depth==0) return getValue();

//probing phase

cur_x = 0;

cur_y = 1;

cur_w = 0;

cur_alpha = (alpha-U*(1-firstPossibleTile().probability))/firstPossibleTile().probability;

ax = max(L, cur_alpha);

for (Tile newTile : getDifferentTiles()){

probability = numberOfTiles(newTile)/numberOfRemainingTiles();

cur_y -= probability;

cur_beta = (beta-L*cur_y-cur_x)/probability;

bx = max(U, cur_beta);

setNextTileInGame(newTile);

value = nProbe(ax, bx, depth);

undoSetNextTile();

cur_w += value;

if (value >= cur_beta) return beta;

cur_x += probability * value;

}

//star1 search phase

...

}

Listing 5.4: Star2 Algorithm

5.4.3 Star2.5

Star2 searches only one child of each successor in the probing phase. Ballard
also explains in his paper a method to search more than one child. The number
of searched children in the probing phase is called the probing factor. The
probing factor of the Star2 algorithm is 1. Star1 can be seen as having a
probing factor of 0, because there is no probing phase.

Implementing a computer player for Carcassonne Cathleen Heyden

5.4. IMPROVEMENTS: *-MINIMAX SEARCH 30

However, it is also possible to set this probing factor to another value. In
Star2.5 this factor is greater or equal 2. Ballard describes two methods to
search more than one child [4]. The first method performs a search of one
additional child in the probing phase if a cut-off has not occurred during the
previous probing phase. So the first probing phase searches the first child, then
a second child is considered and so on, until the number of children reaches the
probing factor or a cut-off occurs. Ballard calls this form ‘cyclic Star2.5’. The
second method, he mentioned, has just one probing phase for each node. That
means the method gets a probing factor that indicates the number of children
which have to be searched in the probing phase. This form is called ‘sequential
Star2.5’. Ballard observed that sequential Star2.5 requires considerably less
overhead than cyclic Star2.5, that is why it is used for Carcassonne.

The algorithm of sequential Star2.5 is the same as for Star2, but the method
nprobe in the probing phase is different. In Star2 this method only searches one
child. Now it gets a probing factor and searches for that number of children. If
no cut-off occurs, it returns the highest value. Listing 5.5 shows the pseudocode
of the nprobe procedure of the sequential Star2.5.

float nProbe(float alpha, float beta, int depth, int probingFactor){

for (int i=0; i<probingFactor && i < possibleMoves.size(); i++){

Move move = possibleMoves.get(i);

executeMove(move);

float value = -star2(-beta, -alpha, depth-1);

undoMove();

if (value >= beta) return beta;

if (value > alpha) alpha = value;

}

return alpha;

}

Listing 5.5: Probing Procedure of Sequential Star2.5

5.4.4 Iterative Deepening

Iterative deepening is a technique which does not search the tree for a fixed
depth. It starts with searching depth 1, then a search of depth 2 is performed
and so on as long as time is left. The move which is considered as the best one
of the previous iteration can be searched first in the current iteration, because
it is reasonable that this is also a good move for that iteration. Searching a
promising move at the beginning causes in more cut-offs.

This enhancement is used for the computer player. Because if a fixed
depth would be used it is not clear how much time it will be used. So if an
Expectimax or a *-Minimax player participates in a game the time this player
has for the whole game can be predefined. To calculate the time for one move
is very simple, the remaining time for the whole game must be divided by
the remaining turns of this player. The remaining turns are the half of the
remaining tiles, because each player draws one tile per turn.

Cathleen Heyden Implementing a computer player for Carcassonne

Chapter 6

Experiments and Results

This chapter describes several tests which are performed for this research.
Section 6.1 describes the experimental setup. The following sections present
the results of different tests.

6.1 Experimental Setup

In each of these experiments two players compete. To determine the players
and their enhancements a graphical user interface was developed. The user
can choose how much time each player has for the whole game. Instead of
this time limit a Monte-Carlo player can also be limited by the number of
simulations and a *-Minimax player by a fixed depth. Furthermore, different
factors can be determined, e.g., the probing factor for Star2.5 or the C for the
calculation of the UCT-value.

The starting player changes every game. The results are written to a file.
There are not only stored the scores of the players. For every player is also
stored how many meeples are used in which feature and how many points each
feature scores with player’s participation on average. Additionally, the total
time for the game and the used time for each player is saved. For Monte-
Carlo players the number of simulations during the whole game is stored,
too. Furthermore, for *-Minimax players the total number of visited nodes is
written to the file.

A player is the winner of the game if it scores more points than its opponent.
A draw is possible if both players reach the same number of points.

6.2 Monte Carlo

This section shows the results of several Monte-Carlo AIs. Section 6.2.1 com-
pares two different evaluations for a simulated game in the basic Monte Carlo.
Besides, it illustrates the average points of the several Carcassonne features
earned by Monte Carlo. Section 6.2.2 describes the results of using MCTS.
Firstly, different values for C of the calculation of the UCT-value are tested

6.2. MONTE CARLO 32

and the best one is determined. Finally, the MCTS algorithm was compared
to basic Monte Carlo.

6.2.1 Basic Monte Carlo

This section describes experiments and results for the basic Monte-Carlo algo-
rithm.

Evaluation of Simulated Games

As described in section 4.2 there are two possibilities to evaluate the end
position of a simulated game. Whether the difference of the scores are taken
(MC) or the game is evaluated by 1 if the Monte-Carlo player won, 0 for a
draw and −1 for a defeat (MCo). To decide which method is more promising
100 games were simulated with these two players. Each player has 6 minutes
for the whole game. In 50 games MC began and in the other 50 games MCo
was the first player. Table 6.1 shows the results.

The MC player has a win rate of 100%, so it is quite obvious that the Monte-
Carlo player, which uses the difference of the players’ scores, plays far better.
For that reason this method is used if a Monte-Carlo player participated in a
further experiment.

MC starts MCo starts
MC MCo MC MCo

Minimum points 35 9 31 9
Maximum points 108 31 95 34
Average points 62.6 18.3 64.6 19.1
Wins 50 0 50 0

Table 6.1: Experimental results for basic Monte-Carlo algorithms with different evaluations.

Average Feature Scores and Meeple Allocation

The figures 6.1 and 6.2 clarify the MC’s advantage over MCo but also some
weak points. Figure 6.1 shows the average score for each of the four features,
if it was occupied by the given player. Since a cloister scores at most 9 points,
the aim is to score on average nearly 9 points. The MC player scores quite well
with 7.56 points on average, but maybe it could be improved. Also the city
points can be improved. In contrast, the points for a road which is occupied
by the MC player are quite well. Since each road part scores only 1 point, it is
not advisable to focus on roads. Finally, the fields are scored well – on average
nearly 9 points, that means there are 3 closed cities bordered to this field. Of
course, it could be improved, but in comparison with MCo or a random player
it is already a gain. The diagram shows also that the MCo player does not

Cathleen Heyden Implementing a computer player for Carcassonne

33 CHAPTER 6. EXPERIMENTS AND RESULTS

play much better than a plain random player. So this method seems to be
very bad.

Figure 6.1: The average reached points of different features, in which the player was involved.

Figure 6.2: The average number of meeples in different features.

Figure 6.2 shows the average number of meeples which are put to the spe-
cific features during the game. The MC player uses on average 9.81 meeples
during the game. This number is far too low. Every player starts with 7
meeples and after closing a cloister, road or city the player gets involved own
meeples back and can use them again. So it should be possible to use more
than 10 meeples during a whole 2-player game (at least 35 plies for the player!).
Especially the number of meeples for cloisters and cities must be increased, be-
cause in this way the player earns many points additionally. The MC player
uses on average nearly 3 meeples to occupy roads. This is quite well because
as described in the previous paragraph it is not advisable to concentrate on
occupation of roads since the poor reward. Also the fields are quite well oc-
cupied. Whilst a random player uses nearly 4 meeples for fields on average,
MC only puts less than 2 meeples on average to fields, which is enough. There

Implementing a computer player for Carcassonne Cathleen Heyden

6.2. MONTE CARLO 34

are two possibilities to use more meeples during the game. First, concentrate
on closing roads, cities and cloisters, where own meeples are involved. Second,
decrease the chance of playing a move without putting a meeple to the tile
although there are meeples in reserve.

6.2.2 Monte-Carlo Tree Search

This section describes experiments and results for the Monte-Carlo Tree Search
algorithm.

Upper Confidence bounds applied to Trees (UCT)

The formula for calculating the UCT value contains a constant factor C. Table
6.2 shows the results of different values of C. For each value 50 games were
simulated, where a MCTS player with UCT played against the Monte-Carlo
player. Each player started in 25 games. The results show that UCT works
best with C = 3. For that reason MCTS players in further experiments will
use C = 3.

MC starts MCTS starts
C win draw loss win draw loss win rate
0.5 13 0 12 15 0 10 0.56
1 13 1 11 15 0 10 0.56
2 14 1 10 16 0 9 0.60
3 18 0 7 19 0 6 0.74
4 17 0 8 18 0 7 0.70
6 12 0 13 18 0 7 0.60
8 16 0 9 17 1 7 0.66

Table 6.2: Experimental results for MCTS with UCT with various values for C versus basic
Monte Carlo.

Evaluation of Simulated Games

This experiment tests different evaluations of a simulated game. MCTSo takes
only into account if it wins or loses and MCTS uses the difference between the
scores of the players. Table 6.3 shows the results. These are similar to the
results of basic Monte Carlo. MCTS performs better, even if it is not so clear
as basic Monte Carlo. MCTS won 80% of the games. So the difference of the
players’ scores is also used if a Monte-Carlo Tree Search player participates in
further experiments.

Cathleen Heyden Implementing a computer player for Carcassonne

35 CHAPTER 6. EXPERIMENTS AND RESULTS

MCTS starts MCTSo starts
MCTS MCTSo MCTS MCTSo

Minimum points 50 16 39 17
Maximum points 111 75 122 82
Average points 77.8 48.8 79.8 54.3
Wins 41 8 39 11

Table 6.3: Experimental results for Monte-Carlo Tree Search algorithms with different eval-
uations.

Figure 6.3: The average reached points of different features, in which the player was involved.

Figure 6.4: The average number of meeples in different features.

Average Feature Scores and Meeple Allocation

Figures 6.3 and 6.4 show the same interrelations as figures 6.1 and 6.2, but
now the MCTS players are involved. To compare, the score of the Monte-Carlo
player from the previous figures is displayed, too. The total number of used
meeples is increased to 11.37. That means a MCTS player uses on average 1.5

Implementing a computer player for Carcassonne Cathleen Heyden

6.3. EXPECTIMAX 36

meeples more than a MC player. The average score of a cloister is increased to
8. The number of used meeples in cloisters increases also slowly. The average
score of cities decreased, but on the other hand MCTS uses nearly one more
meeple for cities. The average scores and used meeples for roads and fields
increase, too. It turns out that the MCTS player works more efficient than
the MC player.

6.3 Expectimax

To compare the Expectimax algorithm with the *-Minimax algorithms 50 game
states are defined. These game states are given in Appendix B. Each game
state represents a certain game position and the next tile, which the computer
player must put on the map, is predefined and so it will be always the same
tile. The predefined game states are very different. So there are starting,
midgame and endgame positions. Sometimes the player to move has a clear
margin, sometimes this player has no chance to win.

This section presents the results of Expectimax and *-Minimax AIs. There-
fore, first the best move ordering is determined (section 6.3.1), followed by tests
of the evaluation function (section 6.3.2). The best setups of the algorithms
where compared in section 6.3.3. Section 6.3.4 describes the results of Star2.5
algorithm. Additionally, section 6.3.5 presents experimental results of iterative
deepening.

6.3.1 Move Ordering

Move ordering strongly influences the outcome of Star1 and Star2. In contrast
move ordering has no influence on Expectimax, because it is a brute-force
algorithm, so it searches each node anyway. Therefore in this section only
Star1 and Star2 are examined.

In general there is only one possible feature to taken into account. This
checks if a meeple is set on the tile or not. Checking other features, e.g.,
getting a meeple back or closing a feature, is not effective, because it is very
time-consuming. Anyway, there are two possible orders:

• Order 1: First all moves, where a meeple is put to the tile, followed by
all moves, where a tile without a meeple is put to the map.

• Order 2: Similarly to the order of the features determined in section 2.3:

(1) meeple occupies a city

(2) meeple occupies a cloister

(3) meeple occupies a road

(4) no meeple on the tile

(5) meeple occupies a field

Cathleen Heyden Implementing a computer player for Carcassonne

37 CHAPTER 6. EXPERIMENTS AND RESULTS

Although the fields are the most efficient features, in this order they are
the last ones. That is, because most field are not profitable (less or no
cities). On the other hand it is not advisable to put too many meeples
on fields. So the focus should be on the other features.

Table 6.4 shows the results of these move orders. The results are the
averages over the 50 predefined game states. Order 2 reduced the most number
of nodes, especially for Star2 there is a great benefit.

Star1 Star2
nodes gain time (ms) gain nodes gain time (ms) gain

No order 68,128.9 - 1,509 - 32,107.7 - 859 -
Order 1 67,698.5 0.6 1,512 -0.2 35,199.2 -9.6 963 -12.1
Order 2 67,388.9 1.1 1,487 1.4 25,465.1 20.7 717 16.5

Table 6.4: Comparison of different move orders applied to Star1 and Star2, depth 2.

6.3.2 Evaluation Function

To evaluate a certain position different features can be regarded. Obviously
the number of points scored until now can be used. If only that feature is taken
into account, the scores of fields or incomplete features are not included. So,
this feature is not able to distinguish between a meeple occupied an incomplete
feature and there is no meeple. Therefore the second feature assumes that the
game is over and it is scored again. The difference of this score gets a lower
weight than the true actual score, but it is an indication which features are
occupied yet. Because roads are scored with 1 per tile no matter if the road
is closed or not, the evaluation function cannot determine this. Often it is
advisable to get a meeple back. Therefore, the difference of the number of
meeples of the players is also regarded.

During testing the computer player often set a meeple on a field, although
there was no completed bordered city. An explanation is that the algorithm
during searching the tree completed some cities. So the computer player as-
sumes that there will be cities in the future. That is not advisable, because the
opponent is going to avoid to complete a city on an opponent’s field. There-
fore, it is better to put a meeple only on fields if there are at least three cities
already completed. That leads to the following features:

• Feature 1: Number of points scored until now

• Feature 2: Number of points assuming the game is over (score also fields
and incomplete features)

• Feature 3: Difference of meeples

• Feature 4: Field should not be occupied if it contains less than 3 cities

Implementing a computer player for Carcassonne Cathleen Heyden

6.3. EXPECTIMAX 38

Table 6.5 shows the first intuitive and the final weights of the features.
Different tests are performed where players with different weights compete
each other. The weights of the player who won most games are seen as the
better configuration. The results show that most intuitive weights are the best,
but the weight of the meeple difference was modified to 10 and the weight of
the fields with less cities to -40. Additionally, incomplete cities should get more
than 1 point per tile, else the algorithm is not able to differentiate between
incomplete roads and incomplete cities (both are scored with 1 per tile as long
as they are incomplete). Tests show that 1.25 per tile is a good value for
incomplete cities.

Feature Intuitive Weight Final Weight
Score difference 100 100
Meeple difference 1 10
Score difference of incomplete features 10 10

- Score of incomplete cities - 1.25
Fields with less than 3 cities -50 -40

Table 6.5: Weights of the features of the evaluation function.

6.3.3 Expectimax vs. *-Minimax

The section about the move ordering leads to the impression that Star2 out-
performs Star1. Figure 6.5 and figure 6.6 verify this prediction. Star1 behaves
nearly exactly like Expectimax. There are only few advantages. Star2 is a
great improvement of the previous algorithms. The y-axis has a logarithm
scale so the gain of Star2 on some game position is very high, e.g., the gain in
searching nodes of using Star2 in the game position 2 is 97.4%.

Figure 6.5: Comparison of the number of nodes of Expectimax, Star1 and Star2 (depth 2)
on 50 predefined game states.

Cathleen Heyden Implementing a computer player for Carcassonne

39 CHAPTER 6. EXPERIMENTS AND RESULTS

Figure 6.6: Comparison of the time of Expectimax, Star1 and Star2 (depth 2) on 50 prede-
fined game states.

6.3.4 Star2.5

Instead of searching only one child in the probing phase of Star2, Star2.5
searches additional children. The number of searched children is called the
probing factor. Table 6.6 shows the results of different probing factors. The
search was performed to depth 2.

probing factor nodes gain time (ms) gain
1 (Star2) 24,463.1 - 706.9 -
2 24,701.4 -1.0 714.0 -1.0
3 24,057.6 1.7 701.3 0.8
4 23,584.4 3.6 694.4 1.8
5 23,221.6 5.1 678.8 4.0
6 23,481.7 4.0 684.2 3.2
7 23,591.8 3.6 692.8 2.0

Table 6.6: Experimental results for Star2.5 with different probing factors. The table shows
the average of 50 predefined game states, searching depth 2.

The results show, that Star2.5 only leads to a small gain. The highest
gain is reached with probing factor 5. For that reason this configuration is
considered as the best one of the *-Minimax algorithms.

6.3.5 Iterative Deepening

Iterative deepening increases the search depth incrementally as long as time
is left. In contrast to a fixed search depth, often more time is used and more
nodes are searched. But because the best move of the previous iteration is
investigated first in the current iteration, iterative deepening sometimes is
able to outperform a search with a fixed depth. Tests showed that, especially
in the first half of the game, many moves reach a depth of 3 with iterative
deepening (20 seconds per move). In contrast, with a fixed depth of 3 the

Implementing a computer player for Carcassonne Cathleen Heyden

6.4. MONTE CARLO VS. EXPECTIMAX 40

average needed time for the predefined game states is 113 seconds. Totally, in
20 out of the 50 predefined game states the time of searching depth 3 can be
improved by using iterative deepening, so that they can be investigated within
20 seconds. Table 6.7 shows the best effort of iterative deepening, which was
reached in game state 31. This is a position of the beginning phase.

nodes gain time (ms) gain
Fixed depth of 3 3,236,169 - 76,239 -
Iterative deepening until depth 3 195,865 93.9 5,107 93.3

Table 6.7: Experimental results of game state 31, fixed depth of 3 vs. iterative deepening
until depth 3.

6.4 Monte Carlo vs. Expectimax

In this section the best Monte-Carlo algorithm played against the best one of
Expectimax/*-Minimax. The Monte-Carlo Tree Search algorithm with UCT
and C = 3 is the best Monte-Carlo player. Star2.5 with probing factor 5 is the
most promising of the *-Minimax algorithms. So these two players compete
against each other. Each player has 6 minutes for the whole game.

First tests show that the Monte-Carlo player wins many games by a clear
margin. The reason is that the upper and lower bounds in the calculation of
Star2 are fixed. So the initially setup is L = −2000 and U = 2000. The basis
of the evaluation function takes the difference of the players’ scores times 100.
So if the opponent has a 25-points lead over the Star2.5 player, the score is
already −2500. Most of the tiles are not able to reduce the lead so that the
evaluation score is greater than the lower bound −2000. For these tiles the
move does not matter, the algorithm will always choose the first one, because
all moves seem to be bad. It seems like the player resigns. An improvement
of the Star player is to use dynamical lower and upper bounds. Therefore at
the beginning of the algorithm the difference between the players’ scores is
determined. Normally a tile will not lead to more than 20 points, so 2000 are
added to the calculated difference. This value will be the upper bound for the
Star2 algorithm and the negated value the lower bound.

Table 6.8 shows the results of 100 games between the MCTS player and
Star2.5 with dynamical bounds. It turns out that Star2.5 performs better than
MCTS. An evidence is provided in figures 6.7 and 6.8, showing the distributions
of the scores and meeples. The base of the success of Star2.5 is the used number
of meeples, which increases strongly. Despite of decreasing the average points
of all features, this algorithm outperforms MCTS. In general it seems, that
the strategy of Star2.5 is to build small features and get the meeples back
quickly. The advantage of MCTS is to put meeples on fields early. When
Star2.5 decides to put a meeple on a field it is already occupied. That is why

Cathleen Heyden Implementing a computer player for Carcassonne

41 CHAPTER 6. EXPERIMENTS AND RESULTS

Star2.5 only put on average 0.37 meeples on fields. On the other hand MCTS
misses meeples for other features, and so the possibilities to score decrease.

MCTS starts Star2.5 starts
MCTS Star2.5 MCTS Star2.5

Minimum points 46 50 49 56
Maximum points 103 118 104 119
Average points 74.2 82.0 77.6 87.1
Wins 15 33 12 37

Table 6.8: Experimental results of 100 simulated games played by MCTS with C = 3 and
Star2.5 with probing factor 5 and dynamical bounds.

Figure 6.7: The average reached points of different features, in which the player was involved.

Figure 6.8: The average number of meeples in different features.

Implementing a computer player for Carcassonne Cathleen Heyden

6.5. EXPERIMENTS AGAINST HUMAN PLAYERS 42

6.5 Experiments against Human Players

This section describes the results of both algorithms, the Monte-Carlo Tree
Search and Star2.5, playing against human players. Firstly, the Star2.5 player
played against advanced human players (Cathleen Heyden, Robert Briesemeis-
ter). Totally, there were 10 games played, whereof the Star2.5 player won 6
games. Additionally these players played 3 games against MCTS, and won all
of them. Besides, the MCTS player played 5 games against an intermediate
beginner (Peter Schlosshauer), whereof it won 2 games.

These results show that the Star2.5 player is able to win against advanced
human players. Furthermore, the MCTS player is at least able to win against
an intermediate beginner.

Cathleen Heyden Implementing a computer player for Carcassonne

Chapter 7

Conclusions and Future
Research

This chapter gives conclusions of the research and possibilities for future re-
search. In section 7.1 and 7.2 the research questions and the problem statement
are answered. In section 7.3 possibilities for future research are given.

7.1 Answering the Research Questions

In section 1.2 the following research questions were stated:

1. What is the complexity of Carcassonne?

In chapter 3 the complexities of Carcassonne are calculated. The game-tree
complexity is O(10194) and the state-space complexity is at least O(1040). The
state-space complexity is a highly underestimated lower bound, because it only
regards the number of different shapes with up to 72 tiles. Also the game-tree
complexity is an estimator, because the branching factor of the game-tree com-
plexity was determined by taking the average of the branching factors of 200
simulated games.

2. Can Monte-Carlo search be used for implementation?

The first algorithm which was investigated during this research is Monte-Carlo
search. Monte Carlo does not need any strategic knowledge. It reached good
results if for the evaluation of a simulated game the difference of the scores of
the players is stored instead of only 1 point for a won game.

3. Can Expectimax be used for implementation?

Another approach, which was investigated, is Expectimax. Expectimax is
a full-width search. Because of the high branching factor of Carcassonne only

7.2. ANSWERING THE PROBLEM STATEMENT 44

a depth of 2 was reached. The quality of the algorithm depends strongly on
the evaluation function. So if it uses a good evaluation function it leads to
good results.

4. In which way can the approaches be improved?

Both algorithm can be improved. Monte-Carlo Tree Search is an improved
Monte-Carlo algorithm. Instead of simulating random games in the first plies
the move with the highest UCT-value (Upper Confidence bounds applied to
Trees) is chosen. So, often the most promising move is executed. To evaluate
a simulated game the difference between the players’ scores is used.

Expectimax can be improved, so that it is no longer a full-width search.
The improved algorithms are Star1 and Star2. Star1 is a pruning algorithm
like Alpha-beta search, but applied to trees with chance. Star2 contains an
additional phase which determines a lower bound for each node by search-
ing only the first child. To get a more accurate lower bound, more than one
child can be searched. In that case the Star2 algorithm becomes to Star2.5.
Additionally, the lower and upper bounds of the Star algorithms can be deter-
mined dynamically. If iterative deepening is applied a search depth of 3 can
be reached.

5. Which technique reaches the best result?

The results of section 6.4 shows that Star2.5 with probing factor 5 performs
best, because it won 70% of the simulated games against MCTS. The lower
and upper bounds were determined dynamically. Nevertheless, Monte-Carlo
Tree Search has also it advantages and therefore it should not be neglected.

7.2 Answering the Problem Statement

After answering the research questions, the problem statement can be an-
swered:

Can a computer player be built to play the game of Carcassonne as good
as possible?

Yes, a computer player for Carcassonne, which performs quite well, can be
built. The best result was reached with Star2.5 search with probing factor 5
and dynamical bounds. Monte-Carlo Tree Search reached also good results,
but it has disadvantages over Star2.5. Both algorithm are able to win against
an intermediate beginner. The Star2.5 player is even able to win against ad-
vanced human players.

Cathleen Heyden Implementing a computer player for Carcassonne

45 CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH

7.3 Future Research

This is the first research for the game of Carcassonne. Therefore, there are
many directions for future research.

Firstly, the state-space complexity can be calculated more accurately, be-
cause the calculated value is a highly underestimated lower bound. Further-
more, the investigated algorithms can be enhanced. At the moment the Star
player uses a basic evaluation function. So it can be fine-tuned more. Another
idea is to investigate the effort of ChanceProbCut [21]. Also MCTS can be
enhanced. Strategic knowledge is an opportunity to improve the algorithm.
To avoid that the player always focuses on fields, more intelligent moves dur-
ing the simulation phase of MCTS need to be chosen. It would be interesting
whether this enhanced MCTS player can win against the Star2.5 player.

Additionally, one or more of the expansions can be taken into account.
Nowadays, only few people play the basic Carcassonne; most players add sev-
eral expansions. With each expansion new figures, tiles and rules are added.
So the complexity of the game increases strongly.

Another future research direction will be to investigate algorithms for the
multi-player variant, because Carcassonne can be played with up to 6 players.
Therefore the implemented MCTS algorithm could be used, but the *-Minimax
variants should be extended for the multi-player variant.

Implementing a computer player for Carcassonne Cathleen Heyden

7.3. FUTURE RESEARCH 46

Cathleen Heyden Implementing a computer player for Carcassonne

Bibliography

[1] L. V. Allis. Searching for Solutions in Games and Artificial Intelligence,
Ph.D. Thesis, University of Limburg, Maastricht, 1994.

[2] S. Appelcline: Anatomy of a Game. Carcassonne, Part One: The Orig-
inal Game. Online: http://boredgamegeeks.blogspot.com/2006/03/

anatomy-of-game-carcassonne-part-one.html

[3] S. Appelcline. Review of Carcassonne. Online:
http://www.rpg.net/reviews/archive/9/9737.phtml

[4] B.W. Ballard. The *-Minimax Search Procedure for Trees Containing
Chance Nodes. Artificial Intelligence, 21:327-350, 1983.

[5] G. Barequet, M. Moffie, A.Ribó, and G. Rote. Counting polyominoes on
twisted cylinders. In S. Felsner, editor, European Conference on Combi-
natorics, Graph Theory and Applications (EuroComb ’05), volume AE
of Discrete Mathematics and Theoretical Computer Science Proceedings,
pages 369-374, 2005.

[6] B. Brügmann. Monte Carlo Go. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12:182-193, 1993.

[7] G. Chaslot, S. Bakkes, I. Szita, and P. Spronck. Monte-carlo tree search:
A new framework for game ai. In Michael Mateas and Chris Darken,
editors, Proceedings of the Fourth Artificial Intelligence and Interactive
Digital Entertainment Conference, pages 216-217. AAAI Press, Menlo
Park, CA., 2008.

[8] R. Coquelin and R. Munos. Bandit Algorithm for Tree Search. Technical
Report 6141, INRIA, 2007.

[9] R. Coulom. Efficient selectivity and backup operators in Monte-Carlo
tree search. In H.J. van den Herik, P. Ciancarini, and H.H.L.M. Donkers,
editors, Proceedings of the 5th International Conference on Computer
and Games, volume 4630 of Lecture Notes in Computer Science (LNCS),
pages 72-83. Springer-Verlag, Heidelberg, Germany, 2007.

[10] E. Cuppen. Using Monte Carlo Techniques in the Game Ataxx. B.Sc.
Thesis, Maastricht University, 2007.

BIBLIOGRAPHY 48

[11] T. Hauk, M. Buro, and J. Schaeffer. *-Minimax Performance in
Backgammon. Computers and Games, 2004.

[12] T. Hauk, M. Buro, and J. Schaeffer. Rediscovering *-Minimax Search.
Computers and Games, 2004.

[13] T. Hauk. Search in Trees with Chance Nodes. M.Sc. Thesis, University
of Alberta, 2004.

[14] I. Jensen and A.J. Guttmann. Statistics of lattice animals (polyominoes)
and polygons. Journal of Physics A: Mathematical and General, 33:L257-
L263, 2000.

[15] I. Jensen. Fixed Polyominoes. Table of n, a(n) for n = 1..56. Online:
http://www.research.att.com/~njas/sequences/b001168.txt

[16] L. Kocsis and C. Szepesvári. Bandit Based Monte-Carlo Planning. In
J. Fürnkranz, T. Scheffer, and M. Spiliopoulou, editors, Machine Learn-
ing: ECML 2006, volume 4212 of Lecture Notes in Artificial Intelligence,
pages 282-293, 2006.

[17] R. J. Lorentz. Amazons Discover Monte-Carlo. In H. J. van den Herik,
Xinhe X., Zongmin M., and M. H. M. Winands, editors, CG 08: Pro-
ceedings of the 6th international conference on Computers and Games,
pages 1324. Springer-Verlag, Heidelberg, Germany, 2008.

[18] J.A.M. Nijssen. Playing Othello Using Monte Carlo. B.Sc. Thesis, Maas-
tricht University, 2007.

[19] D.H. Redelmeier. Counting Polyominoes: Yet Another Attack. Discrete
Mathematics, 36:191-203, 1981.

[20] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall Inc., Englewood Cliffs, New Jersey, 1995.

[21] M. Schadd, M. Winands, and J. Uiterwijk. ChanceProbCut: Forward
Pruning in Chance Nodes. Maastricht University, 2009.

[22] Sensei’s library: UCT. Online: http://senseis.xmp.net/?UCT

[23] Toshihiro Shirakawa. Free Polyominoes. Table of n, a(n) for n=0 ..45.
Online:
http://www.research.att.com/~njas/sequences/b000105.txt

[24] J. Veness. Expectimax Enhancements for Stochastic Game Players. B.Sc.
Thesis, University of New South Wales, 2006.

[25] N. Wedd. Detais of program: Mogo, 2007. Online:
http://www.lri.fr/~gelly/MoGo.htm

Cathleen Heyden Implementing a computer player for Carcassonne

Appendix A
Tiles in Carcassonne

Figure 1: Overview of the tiles in Carcassonne. The numbers indicate how many tiles of
this type appear during the game.

50

Cathleen Heyden Implementing a computer player for Carcassonne

Appendix B
Game States

Figure 2: The subfigures below indicates the 50 predefined game states.

Game state 1 Game state 2

Game state 3.
Game state 4.

52

Game state 5. Game state 6.

Game state 7. Game state 8.

Game state 9.

Game state 10.

Game state 11. Game state 12.

Cathleen Heyden Implementing a computer player for Carcassonne

53 APPENDIX B. GAME STATES

Game state 13. Game state 14.

Game state 15.

Game state 16.

Game state 17. Game state 18.

Implementing a computer player for Carcassonne Cathleen Heyden

54

Game state 19. Game state 20.

Game state 21.

Game state 22.

Game state 23. Game state 24.

Cathleen Heyden Implementing a computer player for Carcassonne

55 APPENDIX B. GAME STATES

Game state 25.
Game state 26.

Game state 27.
Game state 28.

Game state 29.

Game state 30.

Game state 31. Game state 32.

Implementing a computer player for Carcassonne Cathleen Heyden

56

Game state 33.

Game state 34.

Game state 35.
Game state 36.

Game state 37. Game state 38.

Cathleen Heyden Implementing a computer player for Carcassonne

57 APPENDIX B. GAME STATES

Game state 39.
Game state 40.

Game state 41. Game state 42.

Game state 43. Game state 44.

Implementing a computer player for Carcassonne Cathleen Heyden

58

Game state 45. Game state 46.

Game state 47.
Game state 48.

Game state 49. Game state 50.

Cathleen Heyden Implementing a computer player for Carcassonne

