
Analysis and Implementation
of the Game OnTop

Robert Briesemeister

Master Thesis DKE 09-25

Thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science of Artificial Intelligence
at the Department of Knowledge Engineering

of the Maastricht University

Thesis committee:
Dr. ir. J.W.H.M. Uiterwijk

Dr. M.H.M. Winands
Dr. F. Thuijsman

M.P.D. Schadd, M.Sc.

Maastricht University
Faculty of Humanities and Sciences

Department of Knowledge Engineering
Master Artificial Intelligence

November 2009

Preface

This thesis is the result of my last project for the study of Artificial Intelligence.
It was performed at the Department of Knowledge Engineering at Maastricht
University. The goal was to analyse the game OnTop and to create a challenging
computer player. To achieve this goal the search techniques Expectimax and
Monte-Carlo were investigated in detail.

I wish to thank several people for supporting me actively and passively
during the time of the thesis work. First of all, I would like thank my supervisor
Dr. ir. Jos Uiterwijk for his patience during the last months. Especially I would
like to say thank you for reading and providing feedback on my thesis and for
the productive discussions on new approaches. Furthermore, his lectures on
Intelligent Search Technique gave a good introduction and background for this
thesis. I also would like to thank Dr. Mark Winands, who was also involved in
the course mentioned above, for his explanations of Monte- Carlo Search and
all related improvements.

Last but not least, I would like to thank my family and my friends for
their continuous support and motivation during the whole studies. A special
thank is given to my friend Susanne Kretschmer for her additional reading and
commenting on my thesis and Cathleen Heyden and Frank Fleischhack who
volunteered to be the human opponents to play against the computer player in
the game OnTop.

Robert Briesemeister
Aachen, November 2009

ii

Robert Briesemeister Analysis and implementation of the game OnTop

Abstract

In the field of artificial intelligence (AI) solving games and creating challenging
computer implementations is of high significance. Probably the most famous AI,
Deep Blue, was developed for chess and beat world-class players like Kasparov.

This thesis focuses on the analysis and implementation of AI for the modern
board game OnTop. OnTop contains perfect information and chance events
and is categorised as a non-deterministic game. Chance events occur when
drawing a random tile. Due to the fact that the individual tile types have
different numbers, the chance events are not uniformly distributed. OnTop can
be played with up to 4 players. This thesis focuses on the 2-player variation.

The thesis starts with an introduction to the game OnTop and follows with
the game-tree and state-space complexity. After that the two search techniques
Expectimax and Monte-Carlo search are described in detail. In addition, some
improvements and enhancements are presented for both techniques. With re-
spect to Expectimax these are Star1, Star2 and Star2.5 of the *-Minimax algo-
rithm family. Concerning Monte-Carlo Search we have investigated Monte-Carlo
Tree Search with Upper Confidence bounds applied to Trees and some improved
techniques such as parallelisation.

The results show that for the *-Minimax algorithms Star2 performs best.
Star2 is able to reduce the number of searched nodes for a certain search depth
up to 93% compared to Expectimax. The experiments also revealed that move
ordering influences the number of nodes serached. Moreover, it was not possi-
ble for Star2.5 to perform better than Star2. For Monte Carlo the investigated
improvement Monte-Carlo Tree Search (MCTS) reaches the best results. The
strength of MCTS was furthermore improved by root parallelisation. The par-
allelisation approach increased the number of simulated games at least up to
55%. The games between Star2 and MCTS show that MCTS performs much
better. This experiment additionally shows that having the upper hand in the
beginning of the game is no guarantee of winning the game in the end. So
MCTS wins 80% of the simulated games.

iv

Robert Briesemeister Analysis and implementation of the game OnTop

Contents

Preface i

Abstract iii

Contents v

List of Figures vii

List of Tables ix

List of Algorithm Listings xi

1 Introduction 1
1.1 Domain of Stochastic Games . 1
1.2 Problem Statement and Research Questions 2
1.3 Thesis Outline . 3

2 The Game OnTop 5
2.1 Gameplay . 5
2.2 Scoring and Stone Reduction . 7
2.3 Strategies . 9

3 Complexity Analysis of OnTop 11
3.1 Game-Tree Complexity . 11
3.2 State-Space Complexity . 14
3.3 Comparison with Other Games 15

4 Search Techniques for Games of Chance 17
4.1 Expectimax . 17

4.1.1 Introduction . 17
4.1.2 Related Research . 18
4.1.3 Implementation . 18
4.1.4 *-Minimax Algorithms . 21

4.1.4.1 Introduction . 21
4.1.4.2 Star1 . 22
4.1.4.3 Star2 . 24
4.1.4.4 Star2.5 . 25

4.2 Monte Carlo . 26
4.2.1 Related Research . 26

vi CONTENTS

4.2.2 Implementation . 27
4.2.3 Monte-Carlo Tree Search (MCTS) 28
4.2.4 Enhancements . 30

4.2.4.1 Final Move Selection 30
4.2.4.2 Progressive Bias with History Heuristic 30
4.2.4.3 Dynamic Simulation Cut 31

4.2.5 Parallelisation Approach 31
4.2.5.1 Monte-Carlo Search 31
4.2.5.2 Monte-Carlo Tree Search 32

5 Experiments and Results 35
5.1 Settings . 35
5.2 Expectimax . 35

5.2.1 Evaluation Function . 36
5.2.2 Move Ordering . 36
5.2.3 Node Investigations . 37
5.2.4 Bounds Configuration for *-Minimax 41
5.2.5 Optimal Probing Factor for Star2.5 41
5.2.6 And The Winner Is? . 42

5.3 Monte Carlo and MCTS . 43
5.3.1 Evaluation . 43
5.3.2 UCT Selection . 44
5.3.3 Modifications . 45
5.3.4 Parallelisation . 46
5.3.5 And The Winner Is? . 48

5.4 Expectimax vs. Monte Carlo . 48
5.5 Computer Player against Human Opponents 49

6 Conclusions and Future Research 51
6.1 Answering the Research Questions 51
6.2 Answering the Problem Statement 52
6.3 Future Research . 52

Bibliograpy 55

Appendix A 59

Robert Briesemeister Analysis and implementation of the game OnTop

List of Figures

2.1 Overview of the tiles in OnTop. The numbers indicate how many
tiles of this type can appear during the game. 5

2.2 Starting position and game components. 6

2.3 Allowed (green border) and not allowed (red border) tile laying. . 6

2.4 Terminal position of type (1) when all tiles are used. 7

2.5 A possible terminal position of type (1) when six tiles were not
used. 8

2.6 A possible terminal position of type (2). 8

3.1 Waste of space. 12

3.2 Tile alignments. 12

3.3 Game length of 1400 played games. 13

3.4 Branching factor per turn. 13

3.5 Number of chance events per turn. 14

3.6 An overview of game complexities for several games. 16

4.1 Minimax search tree. 18

4.2 Tree structures. 19

4.3 An Expectimax search tree. 20

4.4 Alpha-beta tree. 21

4.5 A cut-off with Star1 search. 22

4.6 Scheme of Monte-Carlo Tree Search. 28

4.7 Simulation cut for MCTS. 32

4.8 (a) Leaf parallelisation (b) Root parallelisation (c) Tree paralleli-
sation with global mutex and (d) with local mutexes. 33

5.1 Move-ordering example. 37

5.2 Number of investigated nodes for several board configurations
with a search depth of 1. 39

5.3 Number of investigated nodes for several board configurations
with a search depth of 2. 39

5.4 Number of investigated nodes for several board configurations
with a search depth of 3. 40

5.5 The advantage of parallelisation for Monte-Carlo Search. 47

5.6 The advantage of leaf parallelisation for Monte-Carlo Tree Search. 47

5.7 The advantage of root parallelisation for Monte-Carlo Tree Search. 48

5.8 Score progress for won and lost games of MCTS against Star2. . 49

viii LIST OF FIGURES

A.1 Game states . 59

Robert Briesemeister Analysis and implementation of the game OnTop

List of Tables

1.1 Game categories. 1

2.1 Some scoring possibilities. 9

3.1 Number of board configurations per ply. 15

5.1 Information about board configurations. 35
5.2 Winning rate for different weighting configurations for the used

evaluation features. 36
5.3 Reduction of nodes investigated with move ordering with a search

depth of 2. 38
5.4 Reduction of nodes investigated with move ordering with a search

depth of 3. 38
5.5 Minimal, maximal and average gain of nodes investigated with

Star1 and Star2 for different search depths. 40
5.6 Time gain of Star1 and Star2 compared to Expectimax with a

search depth of 2. 40
5.7 Influence of assumed average tile scores for *-Minimax bounds. . 41
5.8 Node reduction with Star2.5 for different probing factors with a

search depth of 1. 42
5.9 Node reduction with Star2.5 for different probing factors with a

search depth of 2. 42
5.10 Node reduction with Star2.5 for different probing factors with a

search depth of 3. 43
5.11 The influence of absolute and relative scoring for the winning rate. 44
5.12 Reached terminal positions with absolute and relative scoring. . . 44
5.13 Winning rate of MCTS agains MC with different C and threshold

vakues for MCTS . 45
5.14 Winning rate with pseudo-random moves during the simulation

step. 45
5.15 Winning rate with a progressive-bias strategy. 46
5.16 Winning rate for applied dynamic simulation cut with different

average tile scores. 46
5.17 The winning rate distribution of the best player configurations. . 48
5.18 Winning rate of MCTS and Star2 against human players. 49

x LIST OF TABLES

Robert Briesemeister Analysis and implementation of the game OnTop

List of Algorithm Listings

4.1 Expectimax Algorithm. 20
4.2 Negamax Algorithm. 20
4.3 Star1 search. 24
4.4 Star2 search. 25
4.5 Probing in Star2.5. 26
4.6 Monte-Carlo Search . 27

xii LIST OF ALGORITHM LISTINGS

Robert Briesemeister Analysis and implementation of the game OnTop

Chapter 1

Introduction

This chapter provides a general introduction to stochastic board games (section
1.1). In section 1.2 the problem statement and the related research questions
are listed. Finally, in section 1.3 an outline of this thesis is given.

1.1 Domain of Stochastic Games

The influence of artificial intelligence (AI) is visible in many domains of daily
life. The content of this thesis focuses on the domain of games and more specif-
ically on stochastic board games. Games are a good abstraction of domains in
which agents follow different goals. In OnTop, which forms the focus of this
thesis, every player’s goal is to win a game and consequently the player wants
the opponent to lose.

There are also several ways to categorise games. Table 1.1 shows different types
of games and some examples.

perfect imperfect

deterministic chess, Go stratego
non-deterministic backgammon, OnTop, Carcassone poker

Table 1.1: Game categories.

Most research done so far focused on deterministic games with perfect in-
formation. In such games every player can see at every time all the information
about the game. In this way the player has a fully observable state. The first
implementation of a computer player was also done for this type of game. In
1950 Claude Shannon[34] and Alan Turing [8] designed the first chess program.
The artificial intelligence created for this program was the basis for the strongest
chess computer machine called Deep Blue [24]. Two other famous research
games in this domain are Checkers [33] and Go [20, 28].

Deterministic games with imperfect information are characterised by a non-
observable game state and no elements of chance. For example in the game
Stratego the player has no knowledge about the units’ position of the opponent
until an attack is done.

2 CHAPTER 1. INTRODUCTION

An example of non-deterministic games with imperfect information is Poker.
In Poker the players have no knowledge about the cards of their opponents.
Furthermore, the result of a Poker game depends on chance events which occur
when extra cards like community cards are added to the game. The Poker game
has been also the subject of several research studies [4, 18].

The game OnTop is an example of a non-deterministic game with perfect
information. Games in this domain contain an element of chance; examples
include throwing a dice or drawing a random card. Some research has already
been done in this domain, for example on the games Backgammon [21] and
Carcassonne [23].

Due to the great success of research in deterministic games, future research
on non-deterministic games is likely to grow in importance.

The most commonly used implementation approaches which can be applied
to non-deterministic games are Monte-Carlo Search and Expectimax. An al-
ternative technique is reinforcement learning [15]. The Monte-Carlo Search is
based on several randomly played games for a possible move. Ultimately, the
winning rate of the simulated games for a move depends on the players’ choice.
Alternatively, the Expectimax approach evaluates a game state in the future
and derives from this evaluation the best move. Both techniques will be applied
to OnTop in this thesis.

1.2 Problem Statement and Research Questions

The motivation for artificial intelligence is to create a program which can au-
tonomously solve a given problem. In this case the general problem is to play a
game as good as possible. The more specific problem statement for this thesis
is the following:

Can we build an effective and efficient computer player for OnTop?

To find an answer to this statement several research questions arise. The thesis
will attempt to answer the following five research questions.

1. What is the complexity of the game OnTop?

To answer this question the state-space complexity and the game-tree com-
plexity need to be computed.

2. Can Expectimax be used for the implementation of OnTop?

This approach is a well-known technique for stochastic games. It was also
applied to Carcassonne [23]. For this reason it will be applied to OnTop, too.

3. Can Monte-Carlo search be used for the implementation of OnTop?

Monte Carlo is a newer approach for implementing a computer player. It has an
easy theoretic background which simplifies the implementation. In the research
done so far it led to good results. [14, 25, 40]

Robert Briesemeister Analysis and implementation of the game OnTop

1.3. THESIS OUTLINE 3

4. How can the investigated techniques be improved?

Depending on the results from the research with regards to the most effective
implementation, this thesis will attempt to provide suggestions for improve-
ments and enhancements.

5. Which improved technique of Monte-Carlo and Expectimax is most effec-
tive?

To get an overview of the quality and the strength of both implementations,
they are used to play against each other. The effectiveness and efficiency can
be derived from the winning rate of an implementation. Other facts like the
reached points per game or used time per turn can also also be a factor in an-
swering this question.

1.3 Thesis Outline

The outline of this thesis is as follows:

• Chapter 1 contains a general introduction to probabilistic games and ap-
plicable techniques. Furthermore, this chapter gives an overview of the
problem statement and the research questions.

• Chapter 2 gives an explanation of the modern board game OnTop. Addi-
tionally the reader is introduced to the rules and the game play of OnTop.
Finally, two strategies are described briefly.

• Chapter 3 deals with a complete complexity analysis of OnTop. For this
purpose the state-space complexity and the game-tree complexity are in-
vestigated. Moreover, the results of this investigation are compared to
other board games.

• Chapter 4 describes two possible approaches for the implementation of
a computer player for a game of chance, i.e., Expectimax and Monte-
Carlo Search. Furthermore, some improvements for these techniques are
presented.

• Chapter 5 reports the experimental results of the two implemented ap-
proaches. This chapter also compares the effectiveness of the two ap-
proaches against each other.

• Chapter 6 gives the conclusions of this thesis. This chapter evaluates
the research questions and answers the problem statement. Moreover,
suggestions for future research are given.

Analysis and implementation of the game OnTop Robert Briesemeister

4 CHAPTER 1. INTRODUCTION

Robert Briesemeister Analysis and implementation of the game OnTop

Chapter 2

The Game OnTop

OnTop is a tile-laying game with a stochastic feature. It is in an abstract way
comparable with the game of Carcassonne.

The game has been published by KOSMOS in 2006 and was invented by
Günther Burkhardt. The name of the game is derived from the scoring position
of a player during a match. The game can be played by two to four players.
Furthermore, the possibility of a team play exists. In this case two players will
play together and sum up their points. For this thesis the two-player version is
considered.

2.1 Gameplay

The game contains 34 diamond-shaped tiles in five variations, 21 point stones
for every player and a fixed playing field. The different tile types and their
numbers are shown in figure 2.1.

Figure 2.1: Overview of the tiles in OnTop. The numbers indicate how many
tiles of this type can appear during the game.

At the beginning of a game two triangle-shaped tiles are placed on fixed
positions on the playing field as shown in Figure 2.2. During the game such
triangle tiles will also be placed on unplayable positions. The corners of these
triangle shaped tiles are not taken into account for evaluation. In every round
each player draws a tile and places it on the playing field. A tile can only be
placed on an edge of an existing tile (see Figure 2.3). The players can get points
for closed circles or for circle parts which are blocked by the playing field. If
such a state is reached the circle is evaluated. Only the player with the largest

6 CHAPTER 2. THE GAME ONTOP

share of the circle gets points. The scoring of a circle is described in the next
section.

Figure 2.2: Starting position and game components.

Figure 2.3: Allowed (green border) and not allowed (red border) tile laying.

During the evaluation of a circle a player which is involved in the evalua-
tion can place one point stone, of which he has 20 pieces, on the circle. The
point stone on top of a the player-stone-stack of an evaluated circle indicates
the winner of the circle. One additionally point stone is always at the border
to indicate the number of points obtained so far. The colours which are not
assigned to a player are taken in account, too. Since four different colours are

Robert Briesemeister Analysis and implementation of the game OnTop

2.2. SCORING AND STONE REDUCTION 7

involved in the game also if only two players play the game, we differ between
active and passive players. Active players participate in the game and will earn
points whereas passive players are only involved when putting down point stones
to evaluate a closed circle.

The game has two main terminal states. The first one is reached if there is
no further possibility to place a tile, due to all positions on the game field being
blocked. In this case the active player with the most points wins. The second
terminal position is reached if one of the players has distributed all his point
stones on the playing field. If the player who distributed all his stones first is
an active player he wins “prematurely”. If a passive player distributed all his
point stones the active player with the most points wins.

2.2 Scoring and Stone Reduction

To terminate a game a player must either (1) use the last possible tile space or
(2) use up all his point stones. Both states can be enforced by closed circles.
However, not every time a circle is closed the player will be given points or
distribute point stones. Two different possibilities for a terminal position of
type (1) are shown in figures 2.4 and 2.5. For a better view in both figures
the actually distributed point stones are removed. An example for a terminal
position of type (2) is shown in figure 2.6.

Figure 2.4: Terminal position of type (1) when all tiles are used.

Due to the shape of a tile, a tile contains two corners which can influence a
circle evaluation by 2

6 and two corners which can influence a circle evaluation
by 1

6 . A circle only gives points to a player if their own colour has occupied the
majority of the circle. The number of points for a closed circle is calculated as
the number of colours relating to the second most occupied part of the circle
plus one for the dominating colour of the circle. The colour which occupies
the third most part of a circle is not taken into account for the scoring. If a
circle contains a black corner, this corner is not involved to the circle evaluation,
because black is not related to an active or passive player. The player on top
with the most occupied part of the circle can earn four points at most for a
closed circle on the normal playing field. There is one exception relating to the

Analysis and implementation of the game OnTop Robert Briesemeister

8 CHAPTER 2. THE GAME ONTOP

Figure 2.5: A possible terminal position of type (1) when six tiles were not used.

Figure 2.6: A possible terminal position of type (2).

left border of the playing field. This border is gold coloured and doubles the
points of a closed circle. Hence, it is possible to earn at most six points at this
border.

All players that are taken into account for the scoring will also place one of
its point stone on the closed circle. The colour which wins the circle is placed
on top of the point-stone-stack. A few circle configurations are listed in table
2.1. This table shows that a player can at most earn 6 points for a circle.

If a game is finished because all positions on the game field are blocked, a
terminal position is reached and the winner has to be determined. At this state
the points earned PEARNED during the game are subtracted from the remaining
point stones RSTONES . The final score of a player is thus determined as follows:

PlayerRESULT = PEARNED −RSTONES

Robert Briesemeister Analysis and implementation of the game OnTop

2.3. STRATEGIES 9

color combination gold border points picture

2 x blue, white, yellow true 6

2 x yellow, blue, black true 4

2 x red, white, blue, yellow,black false 4

2 x yellow, white, blue, 2 x black false 3

3 x white, red, blue, black false 3

2 x yellow true 2

3 x yellow, 2 x white, black false 2

6 x yellow false 1

red, white true 0

3 x red, 3 x blue false 0

2 x red, 2 x yellow, 2 x blue false 0

Table 2.1: Some scoring possibilities.

2.3 Strategies

With the knowledge of the two types of terminal positions, two strategies to
win the game can be derived.

The first strategy is to win by points. To win by points the player must
earn as many points as possible and try to decrease the potential points of the
opponents. In this case you must manipulate the circles in which the opponents
are interested in such a way that the opponents get no advantage. An advantage
for your opponent could be to earn more points than you or to lose point stones.
Therefore the player should try to manipulate the circle in such a way that the
scoring of the circle is zero or that the opponent is not taken into account for
the scoring evaluation of the circle.

The second strategy to win the game is to be the first who gets rid of all
point stones. This means a player wins prematurely without any attention to
the score. Therefore it is necessary to pay as much focus as possible on available
scoring evaluations. For this strategy, the player must only pay attention to the
risk that other players may win the game prematurely before he gets a chance
to do so himself.

Analysis and implementation of the game OnTop Robert Briesemeister

10 CHAPTER 2. THE GAME ONTOP

Robert Briesemeister Analysis and implementation of the game OnTop

Chapter 3

Complexity Analysis of
OnTop

This chapter examines the complexity of OnTop in order to give the reader an
insight into the difficulty of the game. In general, the complexity of a game is
determined by two different features: the state-space complexity and the game-
tree complexity [1]. The calculated complexity can be used to compare this
game to other games.

In section 3.1 the game-tree complexity is calculated. Section 3.2 deter-
mines the state-space complexity of OnTop. Concluding in section 3.3 is the
comparison of the complexity of OnTop to other games.

3.1 Game-Tree Complexity

The game-tree complexity is determined by the number of different games which
can be played. This number is reflected in the number of leaf nodes of the game
tree. To determine the size of the game tree two values are necessary: the
branching factor and the game length. The branching factor is the number of
possible moves per turn from which a player can chose and the game length
indicates the number of turns which are needed to reach a terminal position
of the game. The precision for the value of the game-tree complexity greatly
depends on the settings of a game. In many cases it is impossible to calculate an
exact value, which means that it will only be possible to calculate an estimate
of the game-tree complexity.

The length of the game depends on the shape of the game field combined
with the shape of the game tiles and the position the game tiles have on the
game field. Since the game field exists of 72 triangles and a game tile consists
of two triangles it is possible that a tile position can block spaces on the game
field and reduce the number of useful triangle positions by one, two or three.
An example of this case is shown in figure 3.1. To demonstrate the waste of
space only a part of the game field is demonstrated. The left picture shows
a full utilisation of space and the right picture shows waste of space. In this
special case two triangles can not be used to place a tile. For this reason it is
for example possible that a game finishes already after 27 turns (see figure 2.5.

12 CHAPTER 3. COMPLEXITY ANALYSIS OF ONTOP

However, this case is only achievable if the game does not end prematurely. If
the game ends prematurely it could also be possible that the game ends even
quicker.

Figure 3.1: Waste of space.

The branching factor of the game depends on the number of available edges
of placed tiles and indicates the number of possible moves. The number of
moves for a certain state of the game field is related to the alignment of the
actual tile. There are six different alignments for a tile as shown in figure 3.2.
At the beginning of the game two triangles are placed on the game field. A
tile can be placed on an edge of such a triangle in four different alignments.
Therefore we can derive that the branching factor at the beginning is always
24.

Figure 3.2: Tile alignments.

In addition the number of chance events must be included in the computation
of the game-tree complexity. This value is the number of different tiles which
can be drawn. There are five different tiles. However, the distribution over all
tiles is not the same (see figure 2.1).

Robert Briesemeister Analysis and implementation of the game OnTop

3.1. GAME-TREE COMPLEXITY 13

The information about the branching factor, the game length and the num-
ber of possible chance events can be used to build the following equation to com-
pute the game-tree complexity for games which include an element of chance
[30].

CGT = (branching factor)game length × (chance events)game length (3.1)

For OnTop it is impossible to calculate an exact value as neither the branch-
ing factor nor the game length can be determined exactly.

For this reason an average value for all three values must be determined
in order to calculate an estimate of the game-tree complexity. These average
values are derived out of stored values from 1400 games.

Figure 3.3 shows the number of plies needed to finish a game. The average
value for the game length derived from all game length values is 31.36.

Figure 3.3: Game length of 1400 played games.

The results of the stored values related to the branching factor are demon-
strated in figure 3.4. This figure shows a graph for the maximal, minimal and
average branching factor stored for a certain ply out of all games. In all three
graphs the branching factors increase up to 7 plies. After this point the branch-
ing factors decrease with the exception of the maximum-values graph which has
its peak at 12 and 15 plies. The reason for the rise of the branching factors
is that the space for tile positions increases each time a tile is placed until the
game field borders get near to the placed tiles. After that the number of plies
decreases. From the average graph we derived the value 23.77 for the overall
average branching factor.

Figure 3.4: Branching factor per turn.

The last relevant value is the number of chance events which decreases dur-
ing the game. Figure 3.5 shows three graphs related to the number of chance

Analysis and implementation of the game OnTop Robert Briesemeister

14 CHAPTER 3. COMPLEXITY ANALYSIS OF ONTOP

events during a game. These graphs are based on several games. Derived from
this figure we use 4.16 for the average number of chance events. This value is
computed as the average value of the values of the average graph.

Figure 3.5: Number of chance events per turn.

Concluding, the game-tree complexity can be computed as follows:

CGT = 23.7731.36 × 4.1631.36 ≈ 3.7 · 1062 (3.2)

3.2 State-Space Complexity

The state-space complexity estimates the number of all legal game positions
which can occur during a game. As it is not feasible to calculate an exact value
of the complexity, an approximation of an upper bound is used.

At the beginning of a game two triangle-shaped tiles are placed on the game
field. Each triangle has three edges where the next tile can be placed. Fur-
thermore, each tile can be placed in four different alignments to the edge of the
triangle and all five tile types are available. For this reason it is possible to
calculate the exact number of a possible board configuration when one tile is
placed:

2(triangles) × 3(edges)︸ ︷︷ ︸
placement possibilities

× 5︸︷︷︸
tile types

× 4︸︷︷︸
alignments

= 120 (3.3)

From equation 3.3 we can derive that we need a value for the placement possibil-
ities, the number of available tile types and a number for the possible number
of alignments for a tile. For all possible numbers of involved tiles the board
configuration must be calculated and summed.

For simplicity the value 4 is used for the alignment. This will also include
illegal placements.

At the beginning of a game the number of free edges increases, because every
time a tile is placed on an edge the possibilities to place a new tile increases
by two. This is because the edge where the tile is placed changes their status
to blocked but the new tile has three more open edges. After 7 plies the num-
ber of free edges decreases every ply. This is because the space is limited by
the game field borders and every time a triangle is placed the board space be-
comes narrower. We use the average branching factor as value for the placement
possibilities.

The last factor which influences the calculation is the number of different
available tile types at every state of the game. Therefore the same value like in
equation 3.2 for the number of chance events is used.

Robert Briesemeister Analysis and implementation of the game OnTop

3.3. COMPARISON WITH OTHER GAMES 15

ply configurations ply configurations ply configurations

1 395.68 12 1.47 · 1031 23 5.48 · 1059

2 1.57 · 1005 13 5.83 · 1033 24 2.17 · 1062

3 6.20 · 1007 14 2.30 · 1036 25 8.58 · 1064

4 2.45 · 1010 15 9.12 · 1038 26 3.40 · 1067

5 9.70 · 1012 16 3.61 · 1041 27 1.34 · 1070

6 3.84 · 1015 17 1.42 · 1044 28 5.32 · 1072

7 1.52 · 1018 18 5.65 · 1046 29 2.10 · 1075

8 6.00 · 1020 19 2.24 · 1049 30 8.32 · 1077

9 2.38 · 1023 20 8.85 · 1051 31 3.30 · 1080

10 9.40 · 1025 21 3.50 · 1054 32 1.30 · 1083

11 3.72 · 1028 22 1.39 · 1057 33 5.16 · 1085

34 2.04 · 1088

2.046 · 1088

Table 3.1: Number of board configurations per ply.

With these approximated values we can compute the number of different
board configurations dependent on the number of played tiles, where n is the
number of plies.

Cn
SS = (23.77 × 4.16 × 4)n (3.4)

The results of equation 3.4 are listed in table 3.1. The result for the game-
state complexity is the sum of all board configurations:

CSS =

n∑
i=1

Ci
SS (3.5)

The estimated value of 2.045 · 1088 is an overestimated upper bound, because
it also includes illegal positions. However, the number of illegal positions is
expected to be only a small fraction of this.

3.3 Comparison with Other Games

This last section of chapter 3 gives an overview of the classification of OnTop
compared to other games. Figure 3.6 shows several other game complexities.
OnTop is one of two games where the game-tree complexity is lower than the
state-space complexity. This fact is partly related to the overestimation of the
state-space complexity and the fact that the calculation of the game-tree com-
plexity uses an average value for the length of a game. The calculated average
value of 31.36 reduces the maximum possible game length by 2.64. Therefore
the game-tree complexity does not contain the game-tree configurations for the
search depths of 33 and 34. However, the computed state-space complexity does
contain the board configurations for the cases that 33 or 34 tiles are placed on
the game field, which results in a higher state-space complexity.

Based on figure 3.6 OnTop is comparable in complexity with the game of
Go-Moku (15x15). Due to the high game-tree complexity, the valuation of a full

Analysis and implementation of the game OnTop Robert Briesemeister

16 CHAPTER 3. COMPLEXITY ANALYSIS OF ONTOP

game tree search is not possible. Moreover, the state-space complexity makes
OnTop not solvable.

Figure 3.6: An overview of game complexities for several games.

Robert Briesemeister Analysis and implementation of the game OnTop

Chapter 4

Search Techniques for
Games of Chance

Due to the fact that the research related to non-deterministic board games is
not as advanced as the research for deterministic games, there are also fewer
approaches for implementation.

This chapter presents two search techniques which are implemented for On-
Top. Section 4.1 describes the Expectimax search and section 4.2 describes the
Monte-Carlo Search. In detail these sections provide information about related
research, its implementation and possible improvements.

Both approaches will be applied to the 2-player variation of OnTop.

4.1 Expectimax

The Expectimax search is a modification of the Minimax algorithm. It expands
the search tree with chance nodes which are added after every min and max
node of the game tree.

4.1.1 Introduction

Expectimax search is a full-width tree search like Minimax search [22]. The
difference between both search types is that Minimax only considers move nodes
whereas Expectimax also considers chance nodes. A move node is related to a
deterministic action done by a player and a chance node represents a chance
event which occurs during the game (see section 4.1.3). The result of a Minimax
search is based on the evaluation of the leaf nodes of the search tree. A leaf node
of a search tree is reached when a certain search-depth limitation is reached.
However, it is also possible that a search tree is not deeply investigated at a
certain moment when a tree node represents a terminal position of the game
before the maximal search depth is reached. During the search the decision
process to choose the best node is changed after every layer. The player who
initiated the search is the player to move (corresponding with the root node of
the search tree). He will choose the move node with the best value. For this
reason, the nodes related to the root player’s choice are called max nodes. In
the next layer the search considers the opponent’s move. The opponent will

18 CHAPTER 4. SEARCH TECHNIQUES FOR GAMES OF CHANCE

choose the move which minimizes the move value of the root player. For this
reason the nodes which are related to the opponent’s choice are called min nodes.
After these two steps a search depth of two is reached. This procedure will be
repeated until the maximum search depth is reached. The search complexity of
a Minimax tree is O(bd) where b is the number of branches of a node and d is
the number of layers of the search tree. When d equals 0 only the root node is
taken into account. An example of a Minimax search tree for a search depth of
3 is shown in figure 4.1.

Figure 4.1: Minimax search tree.

4.1.2 Related Research

The implementation for stochastic games is an area which is less investigated.
However, quite some research has been done for the board game Backgammon.
For this game Expectimax and two algorithms of the *-Minimax family were
applied [21], i.e., Star1 and Star2. These algorithms were proposed by Bruce
Ballard in 1983 [3]. The research results for Backgammon indicate that the
*-Minimax algorithms outperform Expectimax. The best results were docu-
mented for Star2. Ballard furthermore mentions that performance is not always
improved by deeper search [3]. Hauk, Buro and Schaeffer describe a possible
improvement by the use of the Star2.5 algorithm family [22].

Moreover, Star1, Star2 and StarETC were applied to the game of dice. As
for Backgammon, the game of dice also indicates that Star2 outperforms Ex-
pectimax and Star1. It was also possible for StarETC to improve upon Star2
[38].

Recently, Star1, Star2 and Star2.5 were applied to the board game Carcas-
sonne, which was also mentioned for future work in the research of the game
of dice. In the case of Carcassonne, Star2.5 proved to be the most efficient
implementation as it outperformed the other *-Minimax algorithms, as well as
the Monte-Carlo and Monte-Carlo Tree Search implementation [23].

4.1.3 Implementation

A search tree for Expectimax consists of maximum and minimum nodes like a
Minimax search tree. In order to investigate non-deterministic games effectively,
the Expectimax search tree needs to contain additional chance nodes. These
chance nodes can in principle occur at any time in a game. For this reason it

Robert Briesemeister Analysis and implementation of the game OnTop

4.1. EXPECTIMAX 19

is possible that a tree layer does not only consist of min, max or chance nodes,
but of a combination of sll three types of nodes. However, the following research
does not investigate this type of chance tree. For OnTop a chance node always
follows a non-terminal min or max node. Ballard refers to this type of trees
as regular trees. A comparison of both tree structures is shown in figure 4.2.
The addition of chance nodes also changes the complexity computation. The
search complexity of Expectimax trees is computed by O(bdcd), where b is the
number of branches for min and max nodes, c is the number of branches for
chance nodes and d is the search depth.

Figure 4.2: Tree structures.

In OnTop a chance event occurs when a player draws a tile. The probabilities
for the existing tiles are not uniformly distributed. To compute the value of a
chance node we use the sum of the product of the probability P(s) that a certain
state s will be reached times the utility U(s) that this state is reached. This
results in the following formula for an expected value of a chance node s node:

Expectimax(s node) =
∑
i

P (childi) × U(childi) (4.1)

Figure 4.3 shows an example of an Expectimax tree. This tree contains
two max layers and one min layer and is comparable to a 3-ply Minimax tree.
However, with the addition of the chance events the width of the tree grows
drastically. For this research, a search until depth n indicates that the stochastic
game tree contains n chance layers where n-1 chance events occur. Figure 4.3
pictures a search until depth 3. The right branch of the root is not detailed
for the figure. An edge from a min or max node to a chance node describes a
possible move which can be done with the actual tile. An edge from a chance
node to a min or max node describes the possibility that a certain tile is drawn.
For this reason an evaluation takes place at the chance layer before the chance
event occurs.

The value of the left chance node in the first chance layer is computed as
2
6 × (1) + 4

6 × (−2) = −1. For the calculation of the value for a chance node
equation 4.1 is used. Figure 4.3 furthermore demonstrates that it is not possible

Analysis and implementation of the game OnTop Robert Briesemeister

20 CHAPTER 4. SEARCH TECHNIQUES FOR GAMES OF CHANCE

to derive the path to the best leaf node after the first chance node is reached.
For this reason it is not possible to use a principal variation search to improve
the search result. It is only possible to select the best move for the actual player.

Figure 4.3: An Expectimax search tree.

The pseudocode for Expectimax is given in listing 4.1. It contains the query
of a board evaluation, the execution of a chance event and the calculation of a
value for a move node.

1 double expectimax(int depth) {
2 score = 0;
3 if (isTerminalPosition () || depth == 0) {
4 return evaluation ();
5 }
6 for (i = 0; i < numberOfTileTypesInDeck (); i++) {
7 setNextPlayer (); // set next player to move
8 setNewActualTileOfType(i); //do chance event
9 value = negamax(depth);

10 resetActualTileOfType(i); // undo chance event
11 setPreviousPlayer (); // set actual player to move
12 score += tileProbability(i) * value;
13 }
14 return score;
15 }

Listing 4.1: Expectimax Algorithm.

The implemented algorithm does not use the minimax notation. For sim-
plicity a Negamax algorithm is applied. Using Negamax the algorithm does not
differ between min and max nodes. This algorithm always maximises the val-
ues. Each time a value of a chance node is back-propagated the algebraic sign
is switched (see listing 4.2). Therefore the evaluation of a leaf is done from the
point of view from the player to move at the leaf node.

1 double negamax(int depth) {
2 score = -INFINITY;
3 for (i = 0; i < numberOfPosMoves; i++) {
4 makeMove(possibleMoves(i)); // place actual tile
5 placeSingleBlackTriangles (); // fill unplayable positions
6 evaluateClosedCircles ();
7 value = -expectimax(depth - 1);
8 removeLastCircleEvaluation ();
9 removeSingleBlackTriangles ();

Robert Briesemeister Analysis and implementation of the game OnTop

4.1. EXPECTIMAX 21

10 undoMove(posMoves.get(i)); // remove placed tile
11 score = max(value ,score);
12 }
13 return score;
14 }

Listing 4.2: Negamax Algorithm.

4.1.4 *-Minimax Algorithms

The *-Minimax algorithms improve the Expectimax search. They were also
introduced by Bruce Ballard [2, 3]. These algorithms apply several pruning
techniques to the search tree. They try to reduce the number of searched nodes
of a game tree. We introduced pruning for Minimax trees in section 4.1.4.1. Sec-
tion 4.1.4.2, 4.1.4.3 and 4.1.4.4 describe the applicability of pruning techniques
to Expectimax.

4.1.4.1 Introduction

The pruning technique for Expectimax is based on a pruning algorithm for
Minimax trees. For Minimax trees it is possible to use Alpha-Beta search which
can cut off several branches of a tree which need no further investigation. Alpha-
Beta search uses a search window which is updated every time a node value is
back-propagated. If the value of a child node falls outside a search window, the
remaining child nodes need not be investigated and cut-offs occur. A search
window is described by a lower and an upper bound.

An example is pictured in figure 4.4. This example uses the same game tree
as figure 4.1. It demonstrates that the pruning technique decreases the number
of examined nodes of a game tree, while the best move and the path to the best
leaf node is still the same. The greatest cut-off occurs at the second branch of
the second child of the root node. There the child node knows that he would
only choose another branch if one of his successor nodes have a value less than
or equal to −2. However, the child node furthermore knows that the root node
will only choose a node with a value higher than or equal to 3. For this reason
the child node can finish its search because he will only choose a value less than
or equal to −2 which is never greater than or equal to 3.

The number of cut-offs which can occur during Alpha-Beta search depends
on move ordering. A good move ordering ensures that the best nodes are ex-
amined first and more cot-offs will occur.

Figure 4.4: Alpha-beta tree.

Analysis and implementation of the game OnTop Robert Briesemeister

22 CHAPTER 4. SEARCH TECHNIQUES FOR GAMES OF CHANCE

4.1.4.2 Star1

The first pruning technique for Expectimax is Star1. This technique uses an αβ
window like Alpha-Beta search but it is only possible to have cut-offs at chance
nodes. The α and β values for the search window are computed with reference
to a maximum possible evaluation value U and a minimum possible evaluation
value L. During the tree search the values for the search window are updated
with the values of the explored nodes.

Figure 4.5: A cut-off with Star1 search.

Figure 4.5 shows a cut-off example with Star1. In this example the lower
evaluation bound L is −80 and the upper evaluation bound U is 70. Further-
more, the αβ window for the shown chance node is [−20, 8]. Star1 has already
examined the first two child nodes of the chance node and the algorithm com-
putes an estimated value for the chance node. If this value is between the search
window the computation of an exact value for the chance node would be resumed
with the investigation of the next child node of the chance node. If the estimated
value is not between the search window a cut-off occurs. The calculation for an
estimated value for the chance node contains of two steps. Firstly, the value for
the visited nodes is calculated by multiplying the node value with the probabil-
ity and then summed across all visited nodes. Secondly, the same is done for the
non-visited nodes and added to the value derived from the first step. But these
node values which do not exist are replaced by the upper or lower bound. In this
case we use the lower bound. The estimated chance value is then calculated as
follows: 0.5×70+0.125×40+0.125×(−80)+0.125×(−80)+0.125×(−80) = 10.
The result is higher than the upper bound β of 8 for the chance node. This
shows that we assume that the remaining nodes will be evaluated with the min-
imum evaluation score, the node value would not lie in the search window and
we can end the search for this chance node.

In general we must prove for a cut-off that the expected value for a chance
node will not be between the given search window of α and β. To calculate an
upper bound for a chance node after visiting i child nodes we use the already
calculated values of the i − 1 nodes and set the values for the remaining child
nodes to the minimum evaluation value L. For the calculation of a lower bound
we use the maximum evaluation value U for the remaining nodes. If we assume

Robert Briesemeister Analysis and implementation of the game OnTop

4.1. EXPECTIMAX 23

a uniform chance node distribution, the following equations could be used:

1

N
((V1 + ...+ Vi−1)︸ ︷︷ ︸

V alues seen

+ Vi︸︷︷︸
Current value

+ U × (N − i)︸ ︷︷ ︸
V alues to come

) ≤ alpha (4.2)

1

N
((V1 + ...+ Vi−1)︸ ︷︷ ︸

V alues seen

+ Vi︸︷︷︸
Current value

+ L× (N − i)︸ ︷︷ ︸
V alues to come

) ≥ beta (4.3)

For a deeper investigation of the ith child node it is possible to calculate a
new alpha value Ai by rearranging equation 4.2 and a new beta value Bi by
rearranging equation 4.3:

Ai = N × alpha− (V1 + ...+ Vi−1) − U × (N − i) (4.4)

Bi = N × beta− (V1 + ...+ Vi−1) − L× (N − i) (4.5)

The result of (V1+...+Vi−1) is the exact value for the i−1 examined child nodes
and U × (N − i) and L× (N − i) represents the best/worst case assumption for
the values of the remaining nodes. However, these formulas can not be applied
to OnTop, because OnTop has a non-uniform distribution of the chance events.

For OnTop the probability Pi of each node must be included explicitly [3, 22].
In the equations 4.2 and 4.3 the uniform distribution was indicated by dividing
by N which is the total number of child nodes. However, the addition of the
single probabilities leads to:

(P1 × V1 + ...+ Pi−1 × Vi−1) + Pi × Vi + U × (1 − P1 − ...− Pi) ≤ alpha (4.6)

(P1 × V1 + ...+ Pi−1 × Vi−1) + Pi × Vi + L× (1 − P1 − ...− Pi) ≥ beta (4.7)

These equations can be rearranged to compute a new alpha and a new beta
value for a deeper investigation of a child node:

Ai =
alpha− (P1 × V1 + ...+ Pi−1 × Vi−1) − U × (1 − P1 − ...− Pi)

Pi
(4.8)

Bi =
beta− (P1 × V1 + ...+ Pi−1 × Vi−1) − L× (1 − P1 − ...− Pi)

Pi
(4.9)

For a more efficient computation in a procedural implementation it is possible
to update certain parts of the equations 4.6 and 4.7 after each investigated child
node. If the search enters a chance node, no child node is investigated and (P1×
V1 + ...+Pi−1 × Vi−1) can be initialized by predecessor score1 = 0. After each
investigated child node this value can be updated by predecessor scorei+1 =
predecessor scorei + Pi × Vi. On the other side we assume that succ prob =
(1 − P1 − ... − Pi). The initial value is succ prob0 = 1 and the update of
succ prob is done by succ probi = succ probi−1 − Pi. With reference to these
two assumptions the equations 4.8 and 4.9 can be rewritten as:

Ai =
(alpha− predecessor scorei − U × succ probi)

Pi
(4.10)

Bi =
(beta− predecessor scorei − L× succ probi)

Pi
(4.11)

Analysis and implementation of the game OnTop Robert Briesemeister

24 CHAPTER 4. SEARCH TECHNIQUES FOR GAMES OF CHANCE

Listing 4.3 shows the implementation of Star1 in which we use the derived
formulas. The proof for the compliance of the αβ search window is done in the
used Negamax implementation which will work in the same way as Expectimax
except to the window proof.

1 double star1(double alpha , double beta , int depth) {
2 score = 0;
3 if (isTerminalPosition () || depth == 0) {
4 return evaluation ();
5 }
6 predecessor_scores = 0;
7 succ_prob = 1;
8 for (i = 0; i < numberOfTileTypesInDeckSortedByPobability (); i++) {
9 probability = tileProbability(i);

10 succ_prob -= probability;
11 cur_alpha = (alpha -U_BOUND*succ_prob -predecessor_scores)/ probability;
12 cur_beta = (beta -L_BOUND*succ_prob -predecessor_scores)/ probability;
13 ax = max(L_BOUND ,cur_alpha);
14 bx = max(U_BOUND ,cur_beta);
15 setNextPlayer (); // set next player to move
16 setNewActualTileOfType(i); //do chance event
17 score = negamax(ax, bx, depth);
18 resetActualTileOfType(i); // undo chance event
19 setPreviousPlayer (); // set actual player to move
20 if (score >= cur_beta) return beta;
21 if (score <= cur_alpha) return alpha;
22 predecessor_scores += probability*score;
23 }
24 return predecessor_scores;
25 }

Listing 4.3: Star1 search.

Star1 reduces the number of investigated nodes for a chance node but as it
always thinks that the worst case occurs, it provides a lower pruning efficiency.
Furthermore, Star1 has no knowledge about the type of the following nodes and
is therefore pessimistic and agnostic.

4.1.4.3 Star2

The described Star1 algorithm makes no assumption about the type of following
tree nodes and can be applied to any search tree with chance events. Star2 is an
extension to Star1 which considers that a regular game tree is investigated (see
figure 4.2). With the used Negamax algorithm the tree layers differ between max
and chance nodes. With this knowledge the number of investigated nodes can
be reduced by more efficient cut-offs. The advantage of Star2 is a preliminary
probing phase.

During the probing phase a single successor of each child node is searched.
If we determine during this speculative play that the probing value fails the β
value, a further search of all child nodes is not necessary. If the probing value
does not fail the β value, we would continue with the search phase of Star1 but
we would narrow the αβ window with the help of the probing values.

With a good move ordering it is furthermore possible to influence the quality
of the probing phase. A good move ordering is achieved by choosing the best
move first. By choosing the best move the probability of exceeding the search
window during the probing phase is maximised. For chance nodes the best
opportunity is to arrange them by their probability.

The implementation of the probing phase is presented in listing 4.4. The
method probing works similar to a Negamax implementation except that it
only searches one child.

Robert Briesemeister Analysis and implementation of the game OnTop

4.1. EXPECTIMAX 25

1 double star2(double alpha , double beta , int depth){
2 score = 0;
3 if (isTerminalPosition () || depth == 0) {
4 return evaluation ();
5 }
6 predecessor_scores = 0;
7 succ_prob = 1;
8 cur_w =0;
9 cur_alpha = (alpha -U_BOUND *(1- tileProbability (0)))/ tileProbability (0);

10 ax = max(L_BOUND ,cur_alpha);
11 for (int i = 0; i < numberOfTileTypesInDeckSortedByPobability (); i++) {
12 probability = tileProbability(i);
13 succ_prob -= probability;
14 cur_beta = (beta -L_BOUND*succ_prob -predecessor_scores)/ probability;
15 bx = min(U_BOUND ,cur_beta);
16 setNextPlayer (); // set next player to move
17 setNewActualTileOfType(i); //do chance event
18 score = probing(depth , ax, bx);
19 resetActualTileOfType(i); // undo chance event
20 setPreviousPlayer ();
21 if (score >= cur_beta) {
22 return beta;
23 }
24 w[i] = probability*score;
25 predecessor_scores += probability*score;
26 }
27 cur_w = predecessor_scores;
28 // Star1 search phase
29 predecessor_scores =0;
30 succ_pob =1;
31
32
33 }

Listing 4.4: Star2 search.

The search phase of Star2 is quite similar to Star1 except for the computation
of Bi. When the search phase of Star2 occurs the probing values do not cause a
cut-off but the results Wi can be used to narrow the search window. Therefore
equation 4.11 needs to be modified to:

Bi =
beta− predecessor scorei −Wi

Pi
(4.12)

where Wi = (Wi+1 + ... + WN) is the sum of the probed values for nodes
not investigated so far. Therefore line 12 of listing 4.3 must be changed to
cur beta = (beta−curw−predecessor scores)/probability and the line curw− =
probeScore(i) × probability(i) must be added before line 12. It is possible that
Star2 performs worse than Star1 when the probing phase gives no advantage
and the number of additionally searched nodes increases.

4.1.4.4 Star2.5

The Star2.5 algorithm excels by its improved probing phase. Star2.5 increases
the number of searched nodes during the probing phase and searches at least 2
child nodes.

Ballard introduced the Star2.5 as an additional modification to Star2 [3]. He
mentioned two variations. The first variation, called ’cyclic Star2.5’, searches
the first child of each node and proves whether the probing value exceeds β.
Then the second node is included into the search and so on. This procedure
ends when a cut-off occurs or a certain number of child nodes are included in
the search.

Analysis and implementation of the game OnTop Robert Briesemeister

26 CHAPTER 4. SEARCH TECHNIQUES FOR GAMES OF CHANCE

To reduce the number of probing phases Ballard explained a second method
called ’sequential Star2.5’. This method searches for each probing phase by a
given number of child nodes of a node. For both methods the maximum number
of child nodes searched is indicated as probing factor.

The implementation of this sequential approach is presented in listing 4.5.
The same implementation is used for Star2 except for the loop with the probing
factor.

1 double probing(int probingFactor , int depth , double alpha , double beta) {
2 sortMoves = moveOrdering(posMoves);
3 for (int i = 0; i<probingfactor && i < length; i++) {
4 makeMove(sortMoves.get(i)); // place actual tile
5 placeSingleBlackTriangles (); // fill unplayable positions
6 evaluateClosedCircles ();
7 score = -star2(-beta , -alpha , depth -1);
8 removeLastCircleEvaluation ();
9 removeSingleBlackTriangles ();

10 undoMove(sortMoves.get(i)); // remove placed tile
11 if (tmpScore >= beta) return beta
12 if (tmpScore > alpha) alpha = score;
13 }
14 return alpha;
15 }

Listing 4.5: Probing in Star2.5.

4.2 Monte Carlo

Another approach to implement a player for OnTop is the Monte-Carlo Search.
This approach is useful for a system with uncertainty. In artificial intelligence
this technique performs many simulations for a system. For this purpose the
average value of the number of observations is taken. An advantage of this
approach is that no strategic knowledge is needed. The only information needed
is how to play the game to perform simulations and scoring terminal positions.

4.2.1 Related Research

In the beginning Monte-Carlo-based techniques were used in physics and math-
ematics. The name “Monte-Carlo method” was originally related to the Polish
mathematician Stanislaw Ulam 1945. He worked together with John von Neu-
man on the Manhattan Project during the World War II [27]. His invention of
the Monte-Carlo method was connected to the game Solitaire [16].

However, it was only in the last few years that the relevance of Monte-
Carlo Search in games increased and the results became sufficient. The best
example is the implementation of a computer player called MAVEN [36] for the
imperfect-information game Scrabble. This player plays better than the best
human players [35]. Another game worth mentioning is Backgammon, for which
a challenging player implementation called TD-Gammon was created, which also
has the potential to beat top human players [37]. Monte-Carlo Search is also
applied to the game of Go [7]. However, due to Go’s large complexity a perfect
computer player for Go has not been built yet and no applied technique has yet
achieved to beat a top human player [29].

An improvement to Monte-Carlo Search is the is the Monte-Carlo Tree
Search (MCTS) which is a best-first search that “is guided by the results of

Robert Briesemeister Analysis and implementation of the game OnTop

4.2. MONTE CARLO 27

Monte Carlo simulations” [40] which is applied to the game of Go [14], too.
Other implementation examples are Clobber [19] and Amazons [25]. A further
enhancement of MCTS is UCT (Upper Confidence bound applied to Trees)
which tries to balance searches (exploitation versus exploration). UCT is a se-
lection technique to traverse a search tree. This approach has been applied to
Go [17]. UCT improved the strength of computer players of Go to a significant
degree. For Go 9 x 9 five of the six best programs use UCT [39].

4.2.2 Implementation

The implementation of the Monte-Carlo algorithm consists of three steps. These
are: (1) determine all possible moves; (2) produce random sample games and
evaluate each of them; (3) choose the move with the highest winning probability.

The starting point of each Monte-Carlo Search is the current state of the
game. For this state all legal possible moves are determined. For OnTop there
are at least two possible moves per turn because if a tile can be placed it is also
possible to place the same tile rotated by 180 degrees as another move. For the
next step the Monte-Carlo technique plays out random games for every possible
move. The number of random games for a move depends on the time the player
has to search for the best move, the number of possibilities and the progress of
the game. If we have a search time of 3000 milliseconds, 24 possible moves for
the current state and each game simulation needs 5 milliseconds, we could do 25
simulations per move. However, with each turn also the length of a simulation
decreases and thus the time for a simulation decreases, too.

The result of a simulated game is determined by an evaluation of the end
state of the simulation. The evaluation determines if the simulated game was
a win, loss or draw for the actual player. For this general evaluation the eval-
uation returns 1 for win, −1 for a loss and 0 for a draw. Furthermore, there
is the possibility to improve the information of the evaluation. Therefore the
evaluation includes and returns the margin of the simulated game. If the actual
player won the simulated game, the margin would be the difference between his
own points and the points of the second-best player. If the actual player did not
win the game the margin is calculated as the difference between the points of
the player who wins the game and his own points. The returned value for this
simulation is added to a score value for the simulated move. The pseudocode is
shown in listing 4.6.

1 Move MCSearch (){
2 node_i = 1;
3 while(timeLeft){
4 posMovesData[node_i] = play_game_simulation(node_i);
5 node_i += 1;
6 node_i = node_1 modulo posMoves_size ();
7 }
8 return select_Move_with_highest_winrate(posMovesData);
9 }

Listing 4.6: Monte-Carlo Search

If the Monte Carlo player runs out of search time, he chooses the move with
the highest winning rate BESTWR. The winning rate WR for a move i is
calculated for each move by dividing the score of the move MS by the number
of simulations for the move NS :

WRi = MSi

NSi

Analysis and implementation of the game OnTop Robert Briesemeister

28 CHAPTER 4. SEARCH TECHNIQUES FOR GAMES OF CHANCE

BESTWR = max
1≤i≤N

WRi

where N is the number of possible moves.

4.2.3 Monte-Carlo Tree Search (MCTS)

Monte-Carlo Tree Search (MCTS) is a best-first search algorithm which is based
on the Monte-Carlo Search. The normal Monte-Carlo Search simulates random
games for all possible moves from the root and scores the game on the basis of
the average outcome of the played simulations for a move.

MCTS plays random games, too. However, these random games are also
related to states after some plies. Therefore MCTS creates a game tree which
is expanded depending on the results of simulated games. For this reason,
the distribution of played games should be higher for moves with a higher win
probability.

In contrast to Monte-Carlo Search, MCTS take into consideration chance
events. Chance events with a higher probability will be searched first. The
constructed game tree contains two different types of nodes: chance nodes and
move nodes. Both node types store at least two values: the number of visits
and a score value which indicates the obtained score after all simulations are
done from the current node. Both values are used to walk through the game
tree to find the most promising leaf node outcome for a further simulation.

Figure 4.6: Scheme of Monte-Carlo Tree Search.

Monte-Carlo Tree Search consists of four steps, which are repeated as long
as there is time left. A short overview of the four steps is pictured in figure 4.6
(taken form [12]). (1) During the selection step the algorithm traverses recur-
sively through the game tree until a leaf node L is reached. (2) The expansion
step stores one (or more) child nodes C of L in the game tree. (3) The simulation
step simulates the game from the expanded node C until the end of the game
is reached. (4) Finally, the result of the simulated game is back-propagated
through the tree in the backpropagation step. When the time is up, the best
child node is chosen to play (see section 4.2.4.1). A more detailed description
of the four steps mentioned above is given in the following paragraphs.

Robert Briesemeister Analysis and implementation of the game OnTop

4.2. MONTE CARLO 29

Selection: The first step of MCTS is to select the best node to traverse the
tree to determine the best leaf node. Therefore it is important to differentiate
between chance nodes and move nodes. If the child nodes are chance nodes,
the selection of a chance node is done randomly. However, the non-uniform
distribution of chance events influences the probability to choose a certain tile.
If the child nodes are move nodes, a selection strategy is applied. The selection
strategy controls the balance between exploitation and exploration. On the one
hand, the task often consists of selecting the move that leads to the best results
so far (exploitation). On the other hand, also the less promising moves must
still be tried out, due to the uncertainty of the evaluation (exploration). This
problem is similar to the Multi-Armed Bandit problem [13].

The chosen selection strategy for this implementation is the Upper Confi-
dence bound applied to Trees (UCT) [26]. This strategy chooses the move i
which maximises the following formula:

wri + C ×
√
ln vp
vi

(4.13)

where wri is the winning rate of node i, vp is the number of visits of the parent
node of i and vi is the visit count of i. The winning rate for i is computed by
dividing the number of wins after visiting i divided by vi. C is a coefficient,
which has to been chosen experimentally. A high C is linked to a high degree of
exploration and an increased number of investigated game tree paths. A small
C increases the risk of potentially neglecting a good move, hence the degree of
exploitation is higher.

Another feature which is added to the selection strategy compares the num-
ber of visits to the threshold k, i.e., when the number of visits of the current
node is smaller than a threshold k the selection of a child node is done randomly.
This means that only after k visits of a node the UCT- selection is applied. If
UCT tries to compute equation 4.13 for a node which was not visited yet, the
maximal evaluation value is returned. For this reason it is possible that not all
nodes of a tree layer are investigated.

Expansion: During the expansion step it is decided which node is added to
the game tree. This decision depends on the selection step. The simplest rule,
proposed by [14], is to expand one node per simulation. The node expanded
corresponds to the first position which has not been stored yet.

Simulation: When a new move node is added to the game tree the simulation
step starts. Hence, the remaining moves to finish the game can be done on a
pure random basis or pseudo-randomly. The same applies to the draw of a tile.
If the moves are done pseudo-randomly it is possible to guide the simulation to
even better results. The game simulation returns an evaluation value for the
finished game. This value can either be a relative value for win, draw or loss like
−1, 0, 1 or an absolute value which indicates, for example, the point difference
between the players.

Backpropagation: The last step back-propagates the result of a game simu-
lation through the game tree. Each node which is visited during the backprop-

Analysis and implementation of the game OnTop Robert Briesemeister

30 CHAPTER 4. SEARCH TECHNIQUES FOR GAMES OF CHANCE

agation updates its visit count and its value which indicates the winning score
after searching this node.

4.2.4 Enhancements

This section investigates possible enhancements of MCTS, with the aim to im-
prove the results and its efficiency.

4.2.4.1 Final Move Selection

Once the available time is elapsed the AI must choose the best possible move.
To achieve this, the information produced from the MCTS is used. There are
several ways to select the best move:

• (a) Max Child: select the move with the highest visit count

• (b) Robust child: select the move with the highest winning rate

• (c) Robust-max child: select the move which fulfills (a) and (b)

In [12, 40] a secure child node was mentioned, which is not investigated for
this research due to the limited time frame available. The implemented MCTS
first applies (c). If such a child node does not exist then (a) or (b) is chosen.
During the tests we figured out that selecting the move with the highest winning
rate (b) performs best when no robust-max child exists.

4.2.4.2 Progressive Bias with History Heuristic

In order to improve the selection strategy it is possible to use a progressive-
bias strategy. The progressive-bias strategy includes some degree of domain
knowledge of the actually used selection strategy. The first games selected by
MCTS are significantly influenced by the addition of the heuristic knowledge.
The intention is, that with a higher number of simulations the knowledge-based
selection strategy converges to a UCT selection strategy [12]. After adding a
heuristic value MCTS selects the node which maximises the following formula:

wri + C ×
√
ln vp
vi

+ f(vi) (4.14)

For OnTop f(vi) is calculated as Hi

vi+1 where Hi is a value representing the
heuristic knowledge [12]. The other variables of equation 4.14 are the same as
for equation 4.13.

The value of Hi depends on statistic values based on previously done sim-
ulations. Therefore, during the simulation phase information will be stored for
all placed tiles, including where they are placed and how often they were placed
on a certain position. When the simulation phase for a node ends, the result of
the simulation is added to all involved moves of the simulation. This heuristic
is comparable with the history heuristic [32]. The value which can be selected
from the stored values gives a relative indication about the winning probability
of a tile when it is placed on a certain position with a certain orientation. For
this purpose, the reached score is divided by the number of placements. This
winning probability is indicated by Hi. To store the relevant information, a

Robert Briesemeister Analysis and implementation of the game OnTop

4.2. MONTE CARLO 31

four-dimensional array is used. One dimension is used for the tile type, one for
the orientation and two for the occupied triangle positions on the game field.

The knowledge of this heuristic increases by the number of simulations car-
ried out. It is possible that at the beginning of a game the selection strategy
can hardly benefit from the heuristic value. However, if the values are stored
during the whole game, the benefit increases with every ply. A disadvantage of
this heuristic is that we have only a value for a single tile on the board but we
have no knowledge of the board configuration that lead to the value for a tile.
For this reason it is also possible that a good heuristic value for a tile can lead
to an unfavourable decision.

4.2.4.3 Dynamic Simulation Cut

During the simulation phase of MCTS a game is played randomly from a certain
state until a terminal position is reached. It is also possible that the game score
of one player indicates a unique winner n plies before the simulation ends. This
case occurs if the winner or loser of a game at a certain state is the same at each
possible terminal position. A similar approach is also mentioned by Bouzy as
“mercy rule” [5]. Therefore, it would be efficient to end the simulation and use
the saved time for further simulations. In order to achieve a real improvement,
the function has to test whether a player’s score indicates, with significant re-
liability, a unique winner before the simulation ends. This function should be
fast and simple.

For OnTop it is possible to compute the score difference of both players.
If this value is higher than the number of tiles n which can still be placed
(number of remaining moves to finish the game) times SA, the function could
end the simulation and return the score. SA is a coefficient indicating the
number of points a player can score with a placed tile. This value can be
amended experimentally. A specific example is shown in figure 4.7, where n = 4
and SA = 3. In this example, there are four moves before the simulation can
reach a terminal position and we investigate whether it is necessary to continue
the simulation. Player one has 30 points and player two has 10 points. For this
reason player one is the winner at this position. With an estimated average
score SA of 3 player two can at most get 22 points during the last 4 plies. This
estimated score is still lower than the actual score of player one and a cut-off
occurs.

4.2.5 Parallelisation Approach

The main quality criterion of the Monte-Carlo Search is the number of simu-
lations done in a specific time frame. To increase the number of simulations
it is possible to increase the time the player is allowed to search for the best
move. However, this approach destroys at a certain moment the illusion of a
human-like behaviour. A more promising approach is parallelisation.

4.2.5.1 Monte-Carlo Search

For the Monte-Carlo Search the parallelisation approach uses several threads
to compute the result of several simulations at the same time. In the best

Analysis and implementation of the game OnTop Robert Briesemeister

32 CHAPTER 4. SEARCH TECHNIQUES FOR GAMES OF CHANCE

Figure 4.7: Simulation cut for MCTS.

scenario the number of simulations with parallelisation is the number of simu-
lations without parallelisation times the number of threads. The effect on the
implementation is that a thread does not choose any next possible move but
the next possible move which is not blocked by another thread. If each thread
needs every time the same amount of time for a simulation, the next possible
move it would choose for a simulation is the actual move index mindex increased
by the number of threads thsize modulo the number of possible moves msize:

next move index = (mindex + thsize) mod msize

4.2.5.2 Monte-Carlo Tree Search

There are several parallelisation techniques which can improve the efficiency of
MCTS [10, 11, 9]: leaf parallelisation, root parallelisation, and tree paralleli-
sation. The difference between these three techniques concerns the part of the
search tree which is parallelised. Figure 4.8 (taken from [11]) pictures the three
techniques.

Leaf Parallelisation: One of the easiest ways to parallelise MCTS is leaf
parallelisation. This technique starts the parallelisation process with the simu-
lation phase of MCTS. At the beginning the main algorithm traverses down the
search tree until a leaf node is reached and one or more child nodes are added to
the tree. During the next step n independent simulations are started from the
leaf node, where n is the number of threads used for the simulations. Only after
all threads finished their simulations, the main thread starts to back-propagate
a computed average result of the simulation threads. This technique was intro-
duced by Cazenave and Jouandeau [9]. The advantage of the leaf parallelisation
is the easy implementation process. However, there are also disadvantages;

Robert Briesemeister Analysis and implementation of the game OnTop

4.2. MONTE CARLO 33

Figure 4.8: (a) Leaf parallelisation (b) Root parallelisation (c) Tree parallelisa-
tion with global mutex and (d) with local mutexes.

for instance the required time of a thread to finish a simulation is highly un-
predictable. The main algorithm must wait until the last thread finishes his
simulation, even if n− 1 threads are ready and only one thread is still running
[11]. This means that the advantage of dynamic simulation cuts may be lost
(see section 4.2.4.3). Another disadvantage is that each thread operates inde-
pendently and does not share information. For example, if more than n

2 threads
have already finished their simulation and their results lead to a loss, it would
be highly probable that the results of the remaining threads will also lead to a
loss. In such a case it would be preferable to terminate the remaining threads
before they finish their simulations in order to use the time more efficiently [11].

Root Parallelisation: The second parallelisation technique, which was also
proposed by Cazenave under the name “single-run” parallelisation is root par-
allelisation. For this technique each thread manages one MCTS tree in parallel
and the threads do not share information with each other. When no further sim-
ulation time is left the results of the child nodes of the root node of each MCTS
tree are merged together and the best move is selected based on the results of
all MCTS trees [11, 9]. The implementation effort is a little bit higher than
for the leaf-parallelisation technique. One disadvantage is, that more memory
space is required, which might increase by a factor of n (n= number of threads),
because each thread stores an independent game tree in memory.

Tree Parallelisation: Chaslot, Winands and van den Herik introduced a
third technique called tree parallelisation [11]. For this technique, all threads
use a shared game tree and each thread is able to exchange information of the
tree. To prevent that a thread th1 will exchange information which will then
be used by thread th2, the threads can lock certain parts of the search tree
from time to time with mutexes. In order to improve the performance Chaslot,
Winands and van den Herik propose the methods “mutex location” and “virtual
loss”.

Analysis and implementation of the game OnTop Robert Briesemeister

34 CHAPTER 4. SEARCH TECHNIQUES FOR GAMES OF CHANCE

Robert Briesemeister Analysis and implementation of the game OnTop

Chapter 5

Experiments and Results

In order to be able to recommend the best search technique for OnTop, the
following sections give an overview of the tests carried out and the results ob-
tained. Section 5.2 describes tests related to the implemented Expectimax and
*-Minimax algorithms. Section 5.3 presents the test results of Monte-Carlo and
Monte-Carlo Tree Search. Concluding, the best player configurations of sec-
tion 5.2 and 5.3 are tested against each other in section 5.4. Finally, section
5.5 compares the level of play of the best AI player with that of some human
players.

5.1 Settings

This chapter describes some configuration possibilities for an Expectimax and
Monte-Carlo player. For this purpose, 10 board configurations are defined in
order to be able to compare the results of Expectimax, Star1, Star2, Star2.5,
Monte-Carlo and Monte-Carlo Tree Search.1 The following table 5.1 shows
some additional information about these configurations. The table contains the
number of possible moves a player can make in the position and the progress of
the game. All results, which are related to these board configurations, assume it
is the blue players’s move. The configuration set consists of opening, midgame
and endgame positions.

1 2 3 4 5 6 7 8 9 10

pos. move 24 38 42 32 18 46 52 24 34 10
game turn 1 8 9 16 25 7 8 24 18 29

Table 5.1: Information about board configurations.

5.2 Expectimax

Section 5.2.2 shows the influence of a move ordering on the number of investi-
gated moves. The construction of the evaluation function used and the weight-

1All 10 board configurations are listed in Appendix A.

36 CHAPTER 5. EXPERIMENTS AND RESULTS

ings of certain features are described in section 5.2.1. A comparison of inves-
tigated nodes between Expectimax, Star1 and Star2 is listed in section 5.2.3
followed by an estimation for the best lower and upper bound configurations
for all *-Minimax algorithms. The last test is done for the best probing factor
for Star2.5. Concluding, the best configuration derived from the results of this
section is presented in section 5.2.6.

5.2.1 Evaluation Function

The value of a certain state of a game is computed by an evaluation function
which contains several features fi to evaluate a state. The influence of the dif-
ferent features to the value of a state differs. Therefore, the value of a feature
is weighted by wi. Finally, the value of a state is computed by the sum of all
weighted features of a state. Table 5.2 shows different weighting configurations
for the different features. As features the point difference, the stone difference
and a point potential value are used. When the player knows that he wins or
loses, this fact is scored additionally. The point potential is a value which indi-
cates the probability that the player scores points in the future. The potential
value is the sum of the percentages of its own colour on the open circles divided
by the number of open circles where the players colour is involved in.

For testing, five different Star2 configurations played against an Expectimax
player. They played 200 simulations for each combination where each player
had three seconds to choose the best move. It is striking that all configura-
tions in general try to finish the game by the highest score value. This is also
evidenced by the low percentage for a premature win. The last configuration
is the only one where the focus was set to the stone difference which should
lead to more premature wins. This is also observed, as evidenced by the higher
rate of premature wins. However, this has also deteriorated the probability of
winning. Due to this fact the Star2 player played worse than the Expectimax
player. The best probability of winning was reached with configuration 4 which
does not include a potential score.

configuration
features fi 1 2 3 4 5

point difference 3 6 1 5 1
stone difference 1 3 0.25 2 3
score potential 1 1 0.05 0 2

win score 100 100 100 100 100

win rate 59% 70% 64% 75% 48%
win prematurely 17% 14.2% 13.3% 18.6% 25%

Table 5.2: Winning rate for different weighting configurations for the used eval-
uation features.

5.2.2 Move Ordering

A possibility to save search time would be to search the best move first. Even
though it is not possible to know the best move before the search starts, it is

Robert Briesemeister Analysis and implementation of the game OnTop

5.2. EXPECTIMAX 37

possible to increase the probability of the best move being searched first. For
this purpose, the move ordering is applied to the possible moves. The move
ordering evaluates the probability to get points by choosing a certain move.
Therefore, we look to all open circles which are influenced by a move. If after
playing a tile the related circles have a high share of the actual player’s colour,
the probability to get points after the move or after further moves would be
higher than the other way around. An example for two possible moves is given
in figure 5.1. Both pictures show a possible move (green bordered) for player
white and the currently percentage of its colour parts of the open circles influence
by this move. Move ordering can only be applied to Star1, Star2 and Star2.5
where cut-offs can occur.

Figure 5.1: Move-ordering example.

The results on move ordering are given in tables 5.3 and 5.4. The tables
contain the percentage reduction of searched nodes without move ordering mo
and with move ordering mo. The column ’gainmo’ lists the percentage reduction
of searched nodes with move ordering in contrast to the searched nodes without
move ordering. The value is calculated as follows:

gainmo = mo−mo
100−mo

All results are related to the board configuration set.
Table 5.3 shows the results for a search depth of two. The highest average

gain is reached for Star2. However, the results also demonstrate that it is
possible that the number of nodes searched is increased with move ordering.
This happens for configuration 1 for Star2 and configuration 10 for Star1.

For table 5.4 the search depth is set to 3. The results show for Star2 that with
increased search depth, the average node reduction can be further increased from
39.98 to 60.89. However, this behaviour does not occur for Star1. Additionally,
the percentage reduction for the configured boards 8, 9 and 10 deteriorated
compared to the search depth of 2.

5.2.3 Node Investigations

In order to determine the advantage of pruning in stochastic game trees, Ex-
pectimax, Star1 and Star2 are applied to the test board configurations. For
this test the number of investigated nodes and the search time is stored. The

Analysis and implementation of the game OnTop Robert Briesemeister

38 CHAPTER 5. EXPERIMENTS AND RESULTS

board Exp vs. Star1 Exp vs. Star2
states mo mo gainmo mo mo gainmo

1 48.14 49.36 2.36 85.81 84.24 -11.07
2 71.03 82.25 38.72 82.77 97.23 83.94
3 71.89 82.87 39.05 84.85 97.5 83.48
4 66.34 70.41 12.07 91.14 93.73 29.18
5 80.09 92.61 62.87 83.14 93.36 60.62
6 71.39 77.38 20.94 89.86 95.84 58.97
7 67.81 71.39 11.14 87.97 92.26 35.61
8 86.71 90.28 26.87 89.15 94.33 47.77
9 87.37 90.10 29.53 93.43 93.98 8.34
10 37.39 37.33 -0.09 49.17 50.66 2.49

24.35 39.98

Table 5.3: Reduction of nodes investigated with move ordering with a search
depth of 2.

board Exp vs. Star1 Exp vs. Star2
states mo mo gainmo mo mo gainmo

1 62.77 67.17 11.81 90.31 95.87 57.39
2 77.59 86.03 37.64 93.07 99.52 93.06
3 79.09 85.08 28.68 94.18 99.41 89.85
4 74.16 77.41 12.56 97.50 99.02 60.71
5 82.51 88.63 34.99 92.44 97.58 68.02
6 79.23 83.18 19.04 97.01 99.37 79.07
7 77.47 80.46 13.27 97.52 98.96 57.93
8 75.28 76.12 3.4 92.11 95.84 47.24
9 84.6 86.58 12.84 95.76 97.97 52.23
10 31.91 32.08 0.24 48.84 50.55 3.35

17.45 60.89

Table 5.4: Reduction of nodes investigated with move ordering with a search
depth of 3.

number of investigated nodes is the same for every search technique applied to
a board configuration, but the used time depends on the utilisation of the CPU
used. For this reason, the search time is only mentioned in specific cases.

Figures 5.2, 5.3 and 5.4 below compare the results of all three search tech-
niques, where figure 5.2 presents the results for search depth 1, figure 5.3 for
search depth 2 and figure 5.4 for search depth 3. A search depth n includes
n chance events. Furthermore, table 5.5 presents the maximum, minimum and
average gain for the investigated nodes of Star1 and Star2 compared to Expec-
timax.

Figure 5.2 shows that the *-Minimax algorithms decrease the number of
investigated nodes even for a small depth. As expected Star2 shows the best
performance and reaches an average search gain of 78.57%. However, with
regards to the board configurations two and three, Star1 outperforms Star2,

Robert Briesemeister Analysis and implementation of the game OnTop

5.2. EXPECTIMAX 39

which probably is due to the additional nodes that are searched during the
probing phase.

Figure 5.2: Number of investigated nodes for several board configurations with
a search depth of 1.

With a search depth of 2 it is no longer possible for Star1 to outperform Star2
(see figure 5.3).The comparison of the search depth shows that Star2 shows an
average gain of 10% whereas Star1 only shows a gain of 8%.

Figure 5.3: Number of investigated nodes for several board configurations with
a search depth of 2.

For search depth 3 the average gain is furthermore improved by 5% for Star1
and Star2. The maximal search gain is reached with Star2 for configuration 2
with a gain of 99.48%. This is a reduction from 264,576,932 nodes to 1,366,584
nodes. Furthermore, Expectimax, Star1 and Star2 choose every time the same
move for a certain board configuration with a certain search depth. An inter-
esting fact is that the performance of Star1 is more similar to Star2 as it is to
Expectimax. This was also the case in [3, 23].

At the beginning of this subsection we mentioned that the search time cannot
be regarded as a significant evaluation feature for the performance of the search
techniques. Nevertheless some results of the used search time are presented in
table 5.6. These results are taken from a search with depth 2 for three different
board configurations.

Analysis and implementation of the game OnTop Robert Briesemeister

40 CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.4: Number of investigated nodes for several board configurations with
a search depth of 3.

depth = 1 depth = 2 depth = 3︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
Star1 Star2 Star1 Star2 Star1 Star2

gain

 MIN 18.27% 37.98% 32.74% 50.66% 29.37% 50.55%
AVG 60.23% 78.57% 68.71% 88.98% 73.39% 93.37%
MAX 94.07% 93.92% 87.39% 97.46% 85.71% 99.48%

Table 5.5: Minimal, maximal and average gain of nodes investigated with Star1
and Star2 for different search depths.

position = 10 position = 4 position = 7︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
nodes time gain nodes time gain nodes time gain

Star1 1216 31 50% 268092 4406 54.37% 1106999 14265 52.4%
Star2 892 31 50% 48490 1062 89% 254663 4609 84.62%

Table 5.6: Time gain of Star1 and Star2 compared to Expectimax with a search
depth of 2.

In most cases, the reduction in time for a search was more than 50%. This
fact is also highlighted in table 5.6. The gain values for the time reduction
are related to an Expectimax search. The node values are only listed for a
better classification of the position. Furthermore, the time was measured in
milliseconds. Nevertheless for a search depth of 1 it also occurs that Star1 and
Star2 have shown no time reduction.

Concluding, the *-Minimax algorithms outperform Expectimax significantly
in search time and with regards to the number of investigated nodes. The results
of Star2 were the best. With deeper search and on midgame positions the best
performances were reached from Star1 and Star2. For a human-like behaviour
it should be possible for Star2 to search at least a depth of 2 in each position.
However, a deeper search is probably also possible for most positions.

Robert Briesemeister Analysis and implementation of the game OnTop

5.2. EXPECTIMAX 41

5.2.4 Bounds Configuration for *-Minimax

The number of cut-offs which occur during the search depend on the given search
window. The bounds of the search window should be the minimal and maximal
possible evaluation value of a state. For the implementation the initial bounds
are calculated before every search. The bounds depend on the search depth and
an average value APT which indicates the points per placed tile. The bounds
are calculated as follows:

L BOUND = (own score− opponent score) + (own stones−
opponent stones) −APT × searchDepth

U BOUND = (own score− opponent score) + (own stones−
opponent stones) +APT × searchDepth

With a smaller APT value the number of searched nodes during the search
decreases. This is the result of the narrowed search window which leads to faster
cut-offs. This can save time for a possible deeper search. However, the results of
table 5.7 show that a small APT value decreases the winning rate. The results
for an APT value of 2, 3, 4 and 5 are nearly the same. Also the number of
searched nodes has hardly any influence.

APT value
time (ms) 1 2 3 4 5

3000 56.9% 64.5% 66% 65.5% 63%
5000 60.6% 67.5% 69% 71% 65%

Table 5.7: Influence of assumed average tile scores for *-Minimax bounds.

5.2.5 Optimal Probing Factor for Star2.5

To improve Star2 it is possible to investigate more child nodes during the probing
phase which should increase the probability to reach a cut-off during the probing
phase or an earlier cut-off during the search phase. The number of child nodes
searched during the probing phase is called probing factor (pf). The tables 5.8,
5.9 and 5.10 show the results for the 10 test positions with different probing
factors for the search depths one, two and three. In each table the column Star2
shows the number of visited nodes with Star2. The columns for the probing
factors show the gain of investigated nodes. For the purpose of this investigation
a positive value indicates a search reduction.

Table 5.8 shows the results for a search depth of 1. For a probing factor
of 4 it is possible to reduce the number of investigated nodes for the board
configurations 5, 6, 7 and 9. The other tested probing factors only cause a node
reduction for two board configurations.

For a search depth of 2 it was possible to reduce the number of investigated
nodes for the board configurations 1, 5 and 7 with a probing factor of 2 (see
table 5.9). However, for this probing factor the number of visited nodes for the
configurations 2, 3 and 4 increases by more than 15% compared to the highest
reduction of 18% for configuration 1.

Analysis and implementation of the game OnTop Robert Briesemeister

42 CHAPTER 5. EXPERIMENTS AND RESULTS

Star2 pf = 2 pf = 3 pf = 4 pf = 5

1 495 -22 -101 -191 -281
2 461 -6 -10 -15 -20
3 597 -6 -12 -17 -22
4 729 -12 -38 -98 -113
5 238 31 20 9 -2
6 1620 -124 -202 145 136
7 4825 840 935 774 661
8 411 -9 -53 -104 -155
9 849 -5 -43 1 -31
10 129 -11 -29 -52 -56

total 676 467 452 117

Table 5.8: Node reduction with Star2.5 for different probing factors with a
search depth of 1.

Star2 pf = 2 pf = 3 pf = 4 pf = 5

1 87051 16356 14466 17943 29815
2 40234 -6907 -15827 -20511 -27094
3 46334 -11094 -20143 -23689 -28263
4 48490 -7859 -10801 -18261 -25645
5 3637 238 -72 -416 -782
6 106943 -2976 -23823 -23435 -26908
7 254663 34518 35424 32207 7563
8 10399 -762 -2786 -4183 -6374
9 36506 -892 -4535 -7098 -13547
10 892 -298 -636 -900 -852

total 20324 -28733 -48343 -92087

Table 5.9: Node reduction with Star2.5 for different probing factors with a
search depth of 2.

Table 5.10 shows the results for a search depth of 3, which can also be reached
with Star2 for certain positions in acceptable circumstances. However, it was
only possible to reach a search reduction of 0.8% for configuration 7 which has
the highest number of investigated nodes with Star2. This position is searched
by Star2 in 4600 ms (see table 5.6). For this reason the node reduction was only
efficient if the allowed search time is higher 4600 ms.

Concluding, Star2.5 does not give an efficient improvement to Star2. With
peeper search depth the number of additionally searched nodes with Star2.5
increases significantly and it is not possible to save time. But if a probing factor
should be chosen, the value 2 is the best choice.

5.2.6 And The Winner Is?

Finally, we investigated that Star2 performs best and Star2.5 does not improve
the performance. For the evaluation function configuration 4 is used. With a

Robert Briesemeister Analysis and implementation of the game OnTop

5.3. MONTE CARLO AND MCTS 43

Star2 pf = 2 pf = 3 pf = 4 pf = 5

1 3695994 -71543 -253170 -554303 -1006383
2 1366584 -582898 -1173697 -1619286 -2338154
3 2250696 -804694 -1612099 -2219613 -3152343
4 1080500 -276811 -597127 -1006476 -1361580
5 54087 -13457 -27792 -46050 -68521
6 3472337 -733414 -1860638 -2042892 -3162608
7 7936733 67910 -1488914 -2466523 -3128425
8 360387 -151806 -283755 -370721 -568822
9 1069885 -296099 -557258 -895593 -1339332
10 894 -305 -658 -934 -886

total -2720031 -7855108 -11222391 -19279397

Table 5.10: Node reduction with Star2.5 for different probing factors with a
search depth of 3.

dynamic lower and upper bounds calculation the player tries to adapt as best
as he can to the current situation.

5.3 Monte Carlo and MCTS

This section shows the results of the tests that have been carried out in order
to achieve the best configuration with regard to MC and MCTS. Section 5.3.1
represents the results for two different evaluation possibilities for a simulated
game. The results of different UCT settings are listed in section 5.3.2. Section
5.3.3 describes the tests and results for the enhancements explained in section
4.2.4. Section 5.3.4 illustrates the advantage of parallelisation with regards to
achieving an increased number of simulations for a given time. Concluding, the
best player configuration is presented in section 5.3.5.

5.3.1 Evaluation

In order to choose the best move Monte-Carlo Search and Monte-Carlo Tree
Search evaluate randomly played simulations for possible moves. The evaluation
is done when the simulation ends and a terminal position is reached. The
two evaluation possibilities were explained in detail in section 4.2.2. A relative
evaluation takes place when only an indication for a win (1), draw (0) or a loss
(−1) is returned. For an absolute evaluation the differece in score of the players
is compared. To decide which evaluation approach is the better one 200 games
with four different playing times were simulated. The playing time indicates
how much time a player has to select the best move. These tests were made for
Monte-Carlo Search and for Monte-Carlo Tree Search separately. The results
are shown in table 5.11.

MCr and MCTSr use the relative evaluation and MCa and MCTSa use the
absolute evaluation. The results show that with increasing playing time per
turn the winning rate increases for the player who uses the relative evaluation.
Only for Monte-Carlo Search and a playing time of 1000 ms was it possible for

Analysis and implementation of the game OnTop Robert Briesemeister

44 CHAPTER 5. EXPERIMENTS AND RESULTS

the player with the absolute evaluation to win. Due to this unique result, a
relative evaluation is used for further experiments.

time MCr MCa MCTSr MCTSa

1000 44% 56% 56% 44%
3000 53% 47% 69% 31%
5000 56% 44% 71% 29%
7000 65% 35% 75% 25%

54.5% 45.5% 67.75% 32.25%

Table 5.11: The influence of absolute and relative scoring for the winning rate.

Table 5.12 shows how often which type of terminal position was reached
with the different evaluation approaches. Terminal position of type (1) (t1) is
reached when a player wins by points and terminal position of type (2) (t2)
is reached when the game ends prematurely. For MC and MCTS the player
with the relative evaluation reached on average the terminal position of type
(1) twice as often as the player with the absolute evaluation.

MCr MCa MCTSr MCTSa
time t1 t2 t1 t2 t1 t2 t1 t2

1000 69 19 99 13 94 18 80 8
3000 72 27 86 15 117 22 58 3
5000 86 27 77 10 129 13 56 2
7000 97 34 60 9 123 28 42 7

75.2% 24.8% 87.3% 12.7% 85.1% 14.9% 92.2% 7.8%

Table 5.12: Reached terminal positions with absolute and relative scoring.

5.3.2 UCT Selection

The UCT formula contains a constant factor C which balances the exploitation
and exploration of the selection strategy. The implemented algorithm uses the
square root of C for the calculation. Furthermore, a threshold value is added to
the selection strategy which indicates how often the selection strategy selects a
purely random move until the behaviour is changed to the selection by the UCT
formula. The winning rates of all possible combinations of C and the chosen
threshold are shown in table 5.13. The threshold values listed in table 5.13 are
relative to the percentage of child nodes taken, e.g., with a percentage of 0.5
and 34 child nodes, the threshold is 17. Due to this fact, the threshold value is
determined dynamically for each node. For each combination 100 games were
simulated and the MCTS player played against a Monte-Carlo player.

The results show that MCTS outperforms MC with some exceptions for a
large C. Furthermore we derive that with an increasing C the winning rate de-
creases. On average the best results were reached for a C of 0.5. The threshold
value does not significantly influence the winning rate for the best C. Never-
theless, the threshold value improves the winning rate for larger C values and
makes the winning rate more stable.

Robert Briesemeister Analysis and implementation of the game OnTop

5.3. MONTE CARLO AND MCTS 45

threshold
C 0 0.25 0.5 0.75 1

0.5 84% 77% 85% 81% 83%
1 88% 79% 79% 80% 85%
2 69% 78% 79% 79% 84%
3 63% 75% 74% 75% 75%
5 57% 77% 74% 70% 73%
7 38% 71% 67% 69% 75%
10 47% 60% 68% 66% 74%
15 36% 45% 60% 63% 70%

Table 5.13: Winning rate of MCTS agains MC with different C and threshold
vakues for MCTS

5.3.3 Modifications

These experiments test the enhancements described in section 4.2.3.

Heuristic

To improve the quality of a selected move of the UCT selection and during
the simulation phase, we test a history heuristic. During the simulation step
it is possible to choose the next move pseudo-randomly by the help of the
stored values of the history heuristic. Table 5.14 presents the results for this
technique. For this experiment 200 games between two MCTS players were
simulated, where one player used pseudo-randomly selected moves during the
simulation step and the other one used randomly selected moves. This exper-
iment was done for four different move times to see whether more search time
would improve the quality of the history-heuristic values and hence the winning
rate by increasing the quality of the pseudo-randomly selected moves. However,
the results of table 5.14 illustrate that the history heuristic does not improve
the performance of the MCTS player. Due to this fact, we continue to select
moves during the simulation step purely at random. A second option to take

milliseconds
1000 3000 5000 7000

win rate 40.5% 44% 44.5% 40%

Table 5.14: Winning rate with pseudo-random moves during the simulation
step.

advantage of the history heuristic is to use these values for the selection step as
a heuristic value (see section 4.2.4.2). For this purpose the three best configura-
tions of section 5.3.2 are chosen and tested with the adapted selection formula.
The results of these tests are listed in table 5.13.

Adding a heuristic value to the UCT selection does not increase the winning
rate of MCTS. Both tests show that the information of the history heuristic
gives no advantage but instead lowers the winning rate. For this reason, we

Analysis and implementation of the game OnTop Robert Briesemeister

46 CHAPTER 5. EXPERIMENTS AND RESULTS

time (ms) C=0 ,t=1 C=0.5 ,t=0.5 C=1 ,t=1

3000 50% 43% 40%

Table 5.15: Winning rate with a progressive-bias strategy.

ignore the addition of a heuristic value for further experiments.

Dynamic Simulation Cut

With the dynamic simulation cut we want to abbreviate the simulation step
and increase the number of simulations. The increased number of simulations
should furthermore improve the quality of the ultimately chosen move. The
results for this experiment are shown in table 5.16.

For each SA value 200 games were simulated to obtain a winning rate, where
a MCTS player with a dynamic simulation cut played against a MCTS player
without a dynamic simulation cut. The results confirm the assumption that
a simulation cut increases the number of simulations. Nevertheless, the results
also show that this technique does not improve the winning rate. A likely reason
for the lowered winning rate is that the premature cut lowers the certainty of
a real game end. Hence, the dynamic simulation cut is not the best choice
for OnTop to improve its winning rate and will not be applied to the final
configuration.

SA=1 SA=2 SA=3 SA=4

win rate 44.5% 47% 48.5% 47%
gain of number of simulations 18% 8% -1% -2,55%

Table 5.16: Winning rate for applied dynamic simulation cut with different
average tile scores.

5.3.4 Parallelisation

To test the advantage of parallelisation we investigated several simulations done
for the ten predefined board positions and compared these to the number of
simulations done of a non-parallelised player. For Monte-Carlo Search we tested
plain parallelisation and for Monte-Carlo Tree Search we implemented the leaf
and root parallelisation. In both cases we increased the number of simulations
for all test positions. These tests were run on an Intel dual core CPU with 2.33
GHz and 2 GB of RAM.

MC: Parallelisation

The initial idea for the parallelisation of Monte-Carlo Search and Monte-Carlo
Tree Search was to increase the number of simulations for a certain playing time.
Figure 5.5 pictures the number of investigated nodes of a parallelised Monte-
Carlo player for different numbers of used threads. The results do not confirm
the original assumption of a much higher number of investigated nodes. The

Robert Briesemeister Analysis and implementation of the game OnTop

5.3. MONTE CARLO AND MCTS 47

best results were reached for two and four threads which increased the number
of searched nodes up to 33%. However, for endgame positions, (board configu-
ration 5, 8 and 10) where a simulation only includes six to eight further plies,
the number of investigated nodes is decreased by parallelisation.

Figure 5.5: The advantage of parallelisation for Monte-Carlo Search.

MCTS: Leaf Parallelisation

The leaf parallelisation of MCTS takes place on a leaf node of the search tree,
where a number of threads were started and each thread performs a single sim-
ulation. The results for leaf parallelisation are illustrated in figure 5.6. The best
results were reached with 5 threads. However, 3 and 4 threads perform quite
well, too. After 5 threads the simulation gain decreases greatly compared to
the gain with 5 threads. However figure 5.6 does not show the results for test
position ten, because the results have strongly influenced the figure. With one
thread the gain was 0%, with two threads 99%, with three threads 190%, with
four threads 283%, with five threads 376% and with six threads 450%.

Figure 5.6: The advantage of leaf parallelisation for Monte-Carlo Tree Search.

MCTS: Root Parallelisation

For the root parallelisation each thread handles its own search tree in memory.
The results for this parallelisation technique are illustrated in figure 5.7. The
figure shows quite clearly that the best results were reached with two threads.
Therefore we have a gain of simulations between 57% and 74% and the gain is
stable for all configurations.

Analysis and implementation of the game OnTop Robert Briesemeister

48 CHAPTER 5. EXPERIMENTS AND RESULTS

Figure 5.7: The advantage of root parallelisation for Monte-Carlo Tree Search.

5.3.5 And The Winner Is?

The previous experiments had shown that MCST outperforms MC. We also
realised that the additional enhancements of MCTS do not improve MCTS.
The best improvement turned out to be the root parallelisation. Concluding,
the best configuration is a MCTS player with a UCT value of 1, a threshold value
of 0 and an applied root parallelisation with two threads. This configuration
uses purely at random selected moves during the simulation step and does not
use the dynamic simulation cut.

5.4 Expectimax vs. Monte Carlo

Finally, the best player configuration of section 5.2, which is described in sub-
section 5.2.6, played against the best player configuration of section 5.3 which
is described in subsection 5.3.5. For this experiment we simulated 1400 games
and each player had 5 seconds to select the best move. The 5 seconds should
increase the probability that Star2 searches at least to a depth of 3 for all game
positions. The results are illustrated in figure 5.8 and table 5.17. Table 5.17
shows that MCTS absolutely outperforms Star2. A winning rate of 80% is a
unique sign for the strength of MCTS. An interesting fact is that 13.2% of the
games of Star2 were wins by reaching terminal position of type (2), due to the
fact that the results of all other experiments related to the reached terminal
positions indicate that terminal position one is preferred over terminal position
of type (2).

MCTS Star2

win rate 80% 20%
terminal position type (1) 66.4% 6.8%
terminal position type (2) 13.6% 13.2%

Table 5.17: The winning rate distribution of the best player configurations.

Figure 5.8 illustrates the score of both players during the game. These points
are calculated by subtracting the remaining stones from the earned points of
each player. To illustrate this, we draw a graph which shows the games that
MCTS won and a graph which shows the games that Star2 won. The graphs
are based on average values for all simulated games and show that Star2 had
the better start every time. Nevertheless, it lost most of the games because

Robert Briesemeister Analysis and implementation of the game OnTop

5.5. COMPUTER PLAYER AGAINST HUMAN OPPONENTS 49

after more than half of the game MCTS earned more points than Star2. The
graphs show that MCST does not attempt to aggressively collect points. In-
stead, MCTS tries to win by focusing on a wide distribution of their colour in
order to keep many options to earn points.

Figure 5.8: Score progress for won and lost games of MCTS against Star2.

5.5 Computer Player against Human Opponents

This section gives an impression about the strength of the computer players
against human players. Therefore two advanced human players (Robert Briese-
meister, Cathleen Heyden) and one intermediate player (Frank Fleischhack)
played against the two player configurations which were involved in the tests of
section 5.4. The results of these games are presented in table 5.18. The results
are given as m/n, with the meaning that the program won m games out of n.

The results show that Star2 reached a higher winning rate against humans
than against MCTS. However, MCTS performs best and reached a winning
rate of 82%. The advanced players were able to challenge one of the computer
players. Due to this fact, it is quite interessting that both advanced player does
not challenge the same player. The experince of the human players was that
the strategy to beat the computer player should be to close the open circles of
the opponent without any advantage for the opponent. This strategy focuses
on responding to the actions of the opponent and not to increase the points of
their own.

MCTS Star2

Cathleen 4/8 6/8
Frank 12/12 4/7
Robert 7/8 3/8

winning rate 82% 56%

Table 5.18: Winning rate of MCTS and Star2 against human players.

Analysis and implementation of the game OnTop Robert Briesemeister

50 CHAPTER 5. EXPERIMENTS AND RESULTS

Robert Briesemeister Analysis and implementation of the game OnTop

Chapter 6

Conclusions and Future
Research

This chapter presents the final conclusions of our research and recommendations
for future research. Section 6.1 and 6.2 answers the research questions and
the problem statement. Finally, section 6.3 gives some possibilities for future
research.

6.1 Answering the Research Questions

In section 1.2 the following research questions were stated:

1. What is the complexity of the game OnTop?

This question was answered in chapter 3, where we calculated the game-tree
complexity as O(1064) and the state-space complexity as O(1077). Both num-
bers are only estimates, because the calculation was done with average values
for the branching factors and an average game length of 1400 simulated games.
Furthermore, the state-space complexity includes some illegal positions.

2. Can Expectimax be used for its implementation?

Expectimax is a full-width search, which was investigated first in order to build
a computer player for OnTop. Due to the large width of the search tree, which
results from the high branching factor of OnTop, the search of Expectimax usu-
ally reached a depth of no more than 2. The quality of the results of Expectimax
strongly depends on the evaluation function. If the features and their weightings
are reliable the evaluation function leads to good results.

3. Can Monte-Carlo Search be used for its implementation?

Monte-Carlo Search can be used for the implementation of OnTop. It requires
no strategic knowledge and evaluates a position using simulations to the end
of the game. For OnTop the behaviour appears quite passive at the beginning,
i.e., appears as if Monte-Carlo Search has no chance to win. However, during

52 CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

the game the strength of Monte-Carlo grows and reaches impressive results.

4. How can the investigated techniques be improved?

The results of section 5.4 demonstrate that the MCTS configuration of sec-
tion 5.3.5 performs best. MCTS won 80% of the 1400 simulated games. The
strength of Star2 is in the first plies where it leads each time. Nevertheless Star2
fails to keep the lead in the game.

5. Which improved technique of Monte-Carlo and Expectimax is most effec-
tive?

There are several techniques to improve Expectimax and Monte-Carlo. Ex-
pectimax can be adapted to a pruning algorithm like Alpha-Beta search. The
derived algorithms are Star1 and Star2. Both algorithms do not further inves-
tigate the full width of the search tree. They cut unpromising tree paths with
the help of a search window. Star2 also contains a probing phase to get more
accurate search-window bounds which are determined by the search of a single
child node. If more than one child node is searched during the probing phase
Star2 becomes Star2.5.

An improvement to Monte-Carlo Search is Monte-Carlo Tree Search. This
technique builds a search tree depending on game simulations. To select the
most promising leaf node for further simulations a UCT (Upper Confidence
bounds applied to Trees) selection strategy is applied on the search tree. The
evaluation of a simulation returns an indication of the outcome of the game. In
order to improve the accuracy of MCTS we increase the number of simulations
with root parallelisation.

6.2 Answering the Problem Statement

Now that all research questions are answered, we can also answer the problem
statement given in section 1.2:

Can we build an effective and efficient computer player for OnTop?

The results shows that it is possible to build a computer player which per-
forms quite well. The most convincing algorithm was Monte-Carlo Tree Search
with root parallelisation. We used a UCT value of 1 and a threshold of 0% of the
child nodes. Due to this fact we use every time the selection strategy. Neverthe-
less, the results of Star2 were not bad. However, Star2 wasted too much colour
potential for the first moves without planning for the complete game. With re-
gard to MCTS, this disadvantage was compensated by game simulations which
gave a rough estimate of the entire game.

6.3 Future Research

There are several areas for potential future research. For instance, the com-
plexity analysis for the state-space and game-tree complexity can be calculated

Robert Briesemeister Analysis and implementation of the game OnTop

6.3. FUTURE RESEARCH 53

more accurately. The estimated values can be replaced by more precise values
derived from a built formula so that even the illegal positions are excluded from
the calculation.

Furthermore, the investigated search algorithms can be more fine-tuned and
enhanced. In order to improve the Star algorithms the evaluation function can
be enhanced with more features and the weightings can be more fine-tuned.
Our test results showed that Star2 seems to lose the game at the beginning of
the game, where it still scores points but does not plan ahead. A possibility to
lower or remove this disadvantage could be to give Star2 more search time at
the beginning when the branching factor increases and lower the search time at
the end when the branching factor decreases. To achieve this, the tests must
be adapted with a total game time as opposed to the time per move which was
used in our tests. However, there is also another pruning technique which can
be investigated, ChanceProbCut [31].

A possibility to enhance Monte-Carlo Tree Search is to add more meaningful
knowledge to the search. This can be done with transposition tables which in
contrast to the implemented heuristic table save information of the entire board
configuration with the help of a Zobrist key [6].

Derived from the results of section 5.4 it is recommended to investigate a
combination of Star2 and MCTS. For this purpose, Star2 earns points until a
certain threshold is reached, after which MCTS takes over to save the lead and
win the game.

Additionally, it is recommended that the future research investigates a multi-
player variation of OnTop, because OnTop can be played with up to 4 players.

Analysis and implementation of the game OnTop Robert Briesemeister

54 CHAPTER 6. CONCLUSIONS AND FUTURE RESEARCH

Robert Briesemeister Analysis and implementation of the game OnTop

Bibliography

[1] L. V. Allis. Searching for Solutions in Games and Artificial Intelligence.
PhD thesis, University of Limburg, Maastricht, Netherlands, 1994.

[2] B. W. Ballard. A Search Procedure for Perfect Information Games of
Chance: Its Formulation and Analysis. In D. L. Waltz, editor, Proceedings
of the 1st Annual National Conference on Artificial Intelligence. Stanford
University, August 18-21, pages 111–114. AAAI Press, 1982.

[3] B. W. Ballard. The *-Minimax Search Procedure for Trees Containing
Chance Nodes. Artificial Intelligence, 21(3):327–350, 1983.

[4] D. Billings, A. Davidson, T. Schauenberg, N. Burch, M. H. Bowling, R. C.
Holte, J. Schaeffer, and D. Szafron. Game-Tree Search with Adaptation in
Stochastic Imperfect-Information Games. In H. J. van den Herik, Yngvi
Björnsson, and Nathan S. Netanyahu, editors, Computers and Games, 4th
International Conference, CG 2004, Ramat-Gan, Israel, July 5-7, 2004,
Revised Papers, volume 3846 of Lecture Notes in Computer Science, pages
21–34. Springer, 2004.

[5] B. Bouzy. Old-fashioned Computer Go vs Monte-Carlo Go.
http://ewh.ieee.org/cmte/cis/mtsc/ieeecis/tutorial2007/Bruno_

Bouzy_2007.pdf, Powerpoint presentation at Honolulu, Hawaii, 2007.

[6] D.M. Breuker, J. W.H.M. Uiterwijk, and H.J. van den Herik. Replacement
Schemes for Transposition Tables. ICCA Journal, 17(4):183–193, 1994.

[7] B. Brügemann. Monte Carlo Go. page 13, October 1993. Max-
Planck-Institut of Physics, München, Germany, http://www.ideanest.

com/vegos/MonteCarloGo.pdf.

[8] G. Van Brummelen and M. Kinyon, editors. Mathematics and the Histo-
rian’s Craft, chapter 11, pages 297–328. CMS Books in Mathematics. New
York, NY : Springer Science+Business Media, Inc., 2005.

[9] T. Cazenave and N. Jouandeau. On the Parallelization of UCT. In Proceed-
ings of the Computer Games Workshop 2007(CGW 2007), pages 93–101,
Universiteit Maastricht, Maastricht, The Netherlands, June 2007.

[10] T. Cazenave and N. Jouandeau. A Parallel Monte-Carlo Tree Search Al-
gorithm. In H. J. van den Herik, Xinhe Xu, Zongmin Ma, and Mark H. M.
Winands, editors, Computers and Games, 6th International Conference,
CG 2008, Beijing, China, September 29 - October 1, 2008. Proceedings,

http://ewh.ieee.org/cmte/cis/mtsc/ieeecis/tutorial2007/Bruno_Bouzy_2007.pdf
http://ewh.ieee.org/cmte/cis/mtsc/ieeecis/tutorial2007/Bruno_Bouzy_2007.pdf
http://www.ideanest.com/vegos/MonteCarloGo.pdf
http://www.ideanest.com/vegos/MonteCarloGo.pdf

56 BIBLIOGRAPHY

volume 5131 of Lecture Notes in Computer Science, pages 72–80. Springer,
2008.

[11] G. M.J.-B. Chaslot, M. H.M. Winands, and H. J. van den Herik. Parallel
Monte-Carlo Tree Search. In H. J. van den Herik, Xinhe Xu, Zongmin
Ma, and Mark H. M. Winands, editors, Computers and Games, 6th In-
ternational Conference, CG 2008, Beijing, China, September 29 - October
1, 2008. Proceedings, volume 5131 of Lecture Notes in Computer Science,
pages 60–71. Springer, 2008.

[12] G. M.J.-B. Chaslot, M. H.M. Winands, H. J. van den Herik, J.W.H.M.
Uiterwijk, and B. Bouzy. Progressive Strategies for Monte-Carlo Tree
Search. New Mathematics and Natural Computation (NMNC), 4(03):343–
357, 2008.

[13] P.-A. Coquelin and R. Munos. Bandit Algorithms for Tree Search. Tech-
nical Report 6141, INRIA, 2007.

[14] R. Coulom. Efficient Selectivity and Backup Operators in Monte-Carlo
Tree Search. In J. H. van den Herik, P. Ciancarini, and (jeroen) H. H.
L. M. Donkers, editors, Proceedings of the 5th International Conference on
Computer and Games, volume 4630/2007 of Lecture Notes in Computer
Science, pages 72–83. Springer, 2006.

[15] F. A. Dahl. The Lagging Anchor Algorithm: Reinforcement Learning in
Two-Player Zero-Sum Games with Imperfect Ifnformation. Machine Learn-
ing, 49(1):5–37, 2002.

[16] R. Eckard. Stan Ulam, John von Neumann, and the Monte Carlo Method.
In Los Alamos Science Special Issue, number 15, page 11. 1987.

[17] S. Gelly and Y. Wang. Exploration exploitation in Go: UCT for Monte-
Carlo Go. In NIPS: Neural Information Processing Systems Conference
On-line trading of Exploration and Exploitation Workshop, 2006.

[18] A. Gilpin. Algorithms for abstracting and solving imperfect information
games. Master’s thesis, Carnegie Mellon University - Computer Science
Department, April 2007.

[19] A. Grebennik. Monte Carlo Method in the Game of Clobber. Technical
report, Tartu University, 2005. BSc thesis.

[20] K. Hafner. In an Ancient Game, Computing’s Future. The New York
Times, pages 1–4, July 2002. http://www.nytimes.com/2002/08/01/

technology/in-an-ancient-game-computing-s-future.html.

[21] T. Hauk, M. Buro, and J. Schaeffer. *-Minimax Performance in Backgam-
mon. In H. J. van den Herik, Yngvi Björnsson, and Nathan S. Netanyahu,
editors, Computers and Games, 4th International Conference, CG 2004,
Ramat-Gan, Israel, July 5-7, 2004, Revised Papers, volume 3846 of Lecture
Notes in Computer Science, pages 41–66. Springer, 2004.

Robert Briesemeister Analysis and implementation of the game OnTop

http://www.nytimes.com/2002/08/01/technology/in-an-ancient-game-computing-s-future.html
http://www.nytimes.com/2002/08/01/technology/in-an-ancient-game-computing-s-future.html

BIBLIOGRAPHY 57

[22] T. Hauk, M. Buro, and J. Schaeffer. Rediscovering *-Minimax Search. In
H. J. van den Herik, Yngvi Björnsson, and Nathan S. Netanyahu, editors,
Computers and Games, 4th International Conference, CG 2004, Ramat-
Gan, Israel, July 5-7, 2004, Revised Papers, volume 3846 of Lecture Notes
in Computer Science, pages 35–50. Springer, 2004.

[23] C. Heyden. Implementing a computer player for carcassone. Master’s thesis,
Maastricht University, 2009.

[24] F.-H. Hsu. Behind Deep Blue. Princeton University Press, Princeton, NJ,
USA, 2002.

[25] J. Kloetzer, H. Ida, and B. Bouzy. The Monte-Carlo Approach in Amazons.
In Proceedings of the Computer Games Workshop 2007(CGW 2007), pages
185–192, Universiteit Maastricht, Maastricht, The Netherlands, 2007.

[26] L. Kocsis and C. Szepesvári. Bandit Based Monte-Carlo Planning. In
Machine Learning: ECML 2006, volume 4212 of Lecture Notes in Artificial
Intelligence, pages 282–293, 2006.

[27] Nicholas Metropolis. The beginning of the Monte Carlo method. Los
Alamos Science, 15:125–130, 1987.

[28] X. Niu and M. Müller. An Improved Safety Solver for Computer Go. In
H. J. van den Herik, Yngvi Björnsson, and Nathan S. Netanyahu, editors,
Computers and Games, 4th International Conference, CG 2004, Ramat-
Gan, Israel, July 5-7, 2004, Revised Papers, volume 3846 of Lecture Notes
in Computer Science, pages 97–112. Springer, 2004.

[29] P. Rajkumar. A Survey of Monte-Carlo Techniques in Games. Master’s
Scholarly Paper.

[30] S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Pearson Education, 2003.

[31] M.P.D. Schadd, M. H.M. Winands, and J. W.H.M. Uiterwijk. Forward
Pruning in Chance Nodes. In IEEE Symposium on Computational Intelli-
gence and Games (CIG’09), pages 178–185, 2009.

[32] J. Schaeffer. The History Heuristic and Alpha-Beta Search Enhancements
in Practice. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 11:1203–1212, 1989.

[33] J. Schaeffer, J. Culberson, N. Treloar, B. Knight, P. Lu, and D. Szafron.
Reviving The Game of Checkers. In Games of No Chance, pages 119–136.
Cambridge University Press, 1991.

[34] C. E. Shannon. Programming a computer for playing chess. In Computer
chess compendium, pages 2–13, New York, NY, USA, 1988. Springer-Verlag
New York, Inc. ISBN 0-387-91331-9.

[35] B. Sheppard. Towards Perfect Play of Scrabble. PhD thesis, Institute for
Knowledge and Agent Technology (IKAT), Universiteit Maastricht, 2002.

Analysis and implementation of the game OnTop Robert Briesemeister

58 BIBLIOGRAPHY

[36] B. Sheppard. World-championship-caliber Scrabble. Artif. Intell., 134(1-
2):241–275, 2002.

[37] G. Tesauro and G. R. Galperin. On-line policy improvement using Monte-
Carlo Search. Cambridge, 1996.

[38] J. Veness. Expectimax Enhancements for Stochastic Game Players. Mas-
ter’s thesis, The university of New South Wales, 2006.

[39] M. Wächter. Uct: Selektive Monte-Carlo-Simulation in Spielbäumen.
2008. http://www.ke.tu-darmstadt.de/lehre/ss08/challenge/

Ausarbeitungen/Waechter.pdf.

[40] M. H. M. Winands, Y. Björnsson, and J.-T. Saito. Monte-Carlo Tree Search
Solver. In H. J. van den Herik, Xinhe Xu, Zongmin Ma, and Mark H. M.
Winands, editors, Computers and Games, volume 5131 of Lecture Notes in
Computer Science, pages 25–36. Springer, 2008.

Robert Briesemeister Analysis and implementation of the game OnTop

http://www.ke.tu-darmstadt.de/lehre/ss08/challenge/Ausarbeitungen/Waechter.pdf
http://www.ke.tu-darmstadt.de/lehre/ss08/challenge/Ausarbeitungen/Waechter.pdf

Appendix A
The 10 test positions

Figure A.1: The subfigures below indicates the 10 predefined positions which
were used for testing.

Game state 1. Game state 2.

Game state 3. Game state 4.

60 6 APPENDIX A - TEST STATES

Game state 5. Game state 6.

Game state 7. Game state 8.

Game state 9. Game state 10.

Robert Briesemeister Analysis and implementation of the game OnTop

	Preface
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithm Listings
	1 Introduction
	1.1 Domain of Stochastic Games
	1.2 Problem Statement and Research Questions
	1.3 Thesis Outline

	2 The Game OnTop
	2.1 Gameplay
	2.2 Scoring and Stone Reduction
	2.3 Strategies

	3 Complexity Analysis of OnTop
	3.1 Game-Tree Complexity
	3.2 State-Space Complexity
	3.3 Comparison with Other Games

	4 Search Techniques for Games of Chance
	4.1 Expectimax
	4.1.1 Introduction
	4.1.2 Related Research
	4.1.3 Implementation
	4.1.4 *-Minimax Algorithms
	4.1.4.1 Introduction
	4.1.4.2 Star1
	4.1.4.3 Star2
	4.1.4.4 Star2.5

	4.2 Monte Carlo
	4.2.1 Related Research
	4.2.2 Implementation
	4.2.3 Monte-Carlo Tree Search (MCTS)
	4.2.4 Enhancements
	4.2.4.1 Final Move Selection
	4.2.4.2 Progressive Bias with History Heuristic
	4.2.4.3 Dynamic Simulation Cut

	4.2.5 Parallelisation Approach
	4.2.5.1 Monte-Carlo Search
	4.2.5.2 Monte-Carlo Tree Search

	5 Experiments and Results
	5.1 Settings
	5.2 Expectimax
	5.2.1 Evaluation Function
	5.2.2 Move Ordering
	5.2.3 Node Investigations
	5.2.4 Bounds Configuration for *-Minimax
	5.2.5 Optimal Probing Factor for Star2.5
	5.2.6 And The Winner Is?

	5.3 Monte Carlo and MCTS
	5.3.1 Evaluation
	5.3.2 UCT Selection
	5.3.3 Modifications
	5.3.4 Parallelisation
	5.3.5 And The Winner Is?

	5.4 Expectimax vs. Monte Carlo
	5.5 Computer Player against Human Opponents

	6 Conclusions and Future Research
	6.1 Answering the Research Questions
	6.2 Answering the Problem Statement
	6.3 Future Research

	Bibliograpy
	Appendix A

